Literatura académica sobre el tema "Cohomology of condensed groups"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Cohomology of condensed groups".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Cohomology of condensed groups"
Rodrigues Jacinto, Joaquín y Juan Rodríguez Camargo. "Solid locally analytic representations of 𝑝-adic Lie groups". Representation Theory of the American Mathematical Society 26, n.º 31 (31 de agosto de 2022): 962–1024. http://dx.doi.org/10.1090/ert/615.
Texto completoArtusa, Marco. "Duality for condensed cohomology of the Weil group of a $p$-adic field". Documenta Mathematica 29, n.º 6 (26 de noviembre de 2024): 1381–434. http://dx.doi.org/10.4171/dm/977.
Texto completoGähler, Franz y Johannes Kellendonk. "Cohomology groups for projection tilings of codimension 2". Materials Science and Engineering: A 294-296 (diciembre de 2000): 438–40. http://dx.doi.org/10.1016/s0921-5093(00)01171-0.
Texto completoFISHER, BENJI N. y DAVID A. RABSON. "Group Cohomology and Quasicrystals I: Classification of Two-Dimensional Space Groups". Ferroelectrics 305, n.º 1 (enero de 2004): 37–40. http://dx.doi.org/10.1080/00150190490462360.
Texto completoConduché, Daniel, Hvedri Inassaridze y Nick Inassaridze. "Modq cohomology and Tate–Vogel cohomology of groups". Journal of Pure and Applied Algebra 189, n.º 1-3 (mayo de 2004): 61–87. http://dx.doi.org/10.1016/j.jpaa.2003.10.025.
Texto completoInassaridze, H. "Non-Abelian Cohomology of Groups". gmj 4, n.º 4 (agosto de 1997): 313–31. http://dx.doi.org/10.1515/gmj.1997.313.
Texto completoThomas, C. B. "COHOMOLOGY OF FINITE GROUPS". Bulletin of the London Mathematical Society 29, n.º 1 (enero de 1997): 121–23. http://dx.doi.org/10.1112/blms/29.1.121.
Texto completoHiller, Howard. "Cohomology of Bieberbach groups". Mathematika 32, n.º 1 (junio de 1985): 55–59. http://dx.doi.org/10.1112/s002557930001086x.
Texto completoHuebschmann, Johannes. "Cohomology of metacyclic groups". Transactions of the American Mathematical Society 328, n.º 1 (1 de enero de 1991): 1–72. http://dx.doi.org/10.1090/s0002-9947-1991-1031239-1.
Texto completoPirashvili, Mariam. "Symmetric cohomology of groups". Journal of Algebra 509 (septiembre de 2018): 397–418. http://dx.doi.org/10.1016/j.jalgebra.2018.05.020.
Texto completoTesis sobre el tema "Cohomology of condensed groups"
Artusa, Marco. "Sur des théorèmes de dualité pour la cohomologie condensée du groupe de Weil d'un corps p-adique". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0228.
Texto completoThe goal of this thesis is twofold. First, we build a topological cohomology theory for the Weil group of p-adic fields. Secondly, we use this theory to prove duality theorems for such fields, which manifest as Pontryagin duality between locally compact abelian groups. These results improve existing duality theorems and give them a topological flavour. Condensed Mathematics allow us to reach these objectives, providing a framework where it is possible to do algebra with topological objects. We define and study a cohomology theory for condensed groups and pro-condensed groups, and we apply it to the Weil group of a p-adic field, considered as a pro-condensed group. The resulting cohomology groups are proved to be locally compact abelian groups of finite ranks in some special cases. This allows us to enlarge the local Tate duality to a more general category of non-necessarily discrete coefficients, where it takes the form of a Pontryagin duality between locally compact abelian groups. In the last part of the thesis, we use the same framework to recover a Weil-version of the Tate duality with coefficients in abelian varieties and more generally in 1-motives, expressing those dualities as perfect pairings between condensed abelian groups. To do this, we associate to every algebraic group, resp. 1-motive, a condensed abelian group, resp. a complex of condensed abelian groups, with an action of the (pro-condensed) Weil group. We call this association the condensed Weil-´etale realisation. We show the existence of a condensed Poincar´e pairing for abelian varieties and we prove a condensed-Weil version of the Tate duality with coefficients in abelian varieties, which improves the correspondent result of Karpuk. Lastly, we exhibit a condensed Poincar´e pairing for 1-motives. We show that this pairing is compatible with the weight filtration and we prove a duality theorem with coefficients in 1-motives, which improves a result of Harari-Szamuely
Watson, Toni Aliza. "Twisted cohomology groups". College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3929.
Texto completoThesis research directed by: Dept. of Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Česnavičius, Kęstutis. "Selmer groups as flat cohomology groups". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90180.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 44-46).
Given a prime number p, Bloch and Kato showed how the p Selmer group of an abelian variety A over a number field K is determined by the p-adic Tate module. In general, the pm1-Selmer group Selpmn A need not be determined by the mod pm Galois representation A[pm]; we show, however, that this is the case if p is large enough. More precisely, we exhibit a finite explicit set of rational primes E depending on K and A, such that Selpm A is determined by A[pm] for all ... In the course of the argument we describe the flat cohomology group ... of the ring of integers of K with coefficients in the pm- torsion A[pm] of the Neron model of A by local conditions for p V E, compare them with the local conditions defining Selm 2A, and prove that A[p't ] itself is determined by A[pm] for such p. Our method sharpens the relationship between Selpm A and ... which was observed by Mazur and continues to work for other isogenies 0 between abelian varieties over global fields provided that deg o is constrained appropriately. To illustrate it, we exhibit resulting explicit rank predictions for the elliptic curve 11A1 over certain families of number fields. Standard glueing techniques developed in the course of the proofs have applications to finite flat group schemes over global bases, permitting us to transfer many of the known local results to the global setting.
by Kęstutis Česnavičius.
Ph. D.
Clark, Jonathan Owen. "Cohomology of some finite groups". Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240535.
Texto completoEastridge, Samuel Vance. "First l^2-Cohomology Groups". Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/52952.
Texto completoMaster of Science
QUADRELLI, CLAUDIO. "Cohomology of Absolute Galois Groups". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/56993.
Texto completoLeary, Ian James. "The cohomology of certain finite groups". Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386114.
Texto completoKim, Yunhyong. "Smooth cochain cohomology of loop groups". Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621575.
Texto completoFoster-Greenwood, Briana A. "Hochschild Cohomology and Complex Reflection Groups". Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc149591/.
Texto completoAnwar, Muhammad F. "Representations and cohomology of algebraic groups". Thesis, University of York, 2011. http://etheses.whiterose.ac.uk/2032/.
Texto completoLibros sobre el tema "Cohomology of condensed groups"
Adem, Alejandro y R. James Milgram. Cohomology of Finite Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06280-7.
Texto completoAdem, Alejandro y R. James Milgram. Cohomology of Finite Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-06282-1.
Texto completoCogdell, James W., Günter Harder, Stephen Kudla y Freydoon Shahidi, eds. Cohomology of Arithmetic Groups. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95549-0.
Texto completoJames, Milgram R., ed. Cohomology of finite groups. 2a ed. Berlin: Springer, 2004.
Buscar texto completoJames, Milgram R., ed. Cohomology of finite groups. Berlin: Springer-Verlag, 1994.
Buscar texto completoVermani, L. R. Lectures on cohomology of groups. Kurukshetra: Publication Bureau, Kurukshetra University, 1994.
Buscar texto completoLang, Serge. Topics in Cohomology of Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0092624.
Texto completoCarlson, Jon F., Lisa Townsley, Luis Valeri-Elizondo y Mucheng Zhang. Cohomology Rings of Finite Groups. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0215-7.
Texto completoMaulik, Davesh. Quantum groups and quantum cohomology. Paris: Société Mathématique de France, 2019.
Buscar texto completoLang, Serge. Topics in cohomology of groups. Berlin: Springer, 1996.
Buscar texto completoCapítulos de libros sobre el tema "Cohomology of condensed groups"
Jantzen, Jens. "Cohomology". En Representations of Algebraic Groups, 49–64. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/surv/107/04.
Texto completoBump, Daniel. "Cohomology of Grassmannians". En Lie Groups, 517–27. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8024-2_48.
Texto completoBump, Daniel. "Cohomology of Grassmannians". En Lie Groups, 428–37. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4094-3_50.
Texto completoMac Lane, Saunders. "Cohomology of Groups". En Homology, 103–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-62029-4_5.
Texto completoHilton, Peter J. y Urs Stammbach. "Cohomology of Groups". En A Course in Homological Algebra, 184–228. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4419-8566-8_7.
Texto completoHalter-Koch, Franz. "Cohomology of groups". En Class Field Theory and L Functions, 87–154. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9780429506574-2.
Texto completoWedhorn, Torsten. "Lie Groups". En Manifolds, Sheaves, and Cohomology, 123–37. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-10633-1_6.
Texto completoKoch, Helmut. "Cohomology of Profinite Groups". En Springer Monographs in Mathematics, 21–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04967-9_4.
Texto completoHarari, David. "Cohomology of Profinite Groups". En Galois Cohomology and Class Field Theory, 65–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43901-9_4.
Texto completoSerre, Jean-Pierre. "Cohomology of profinite groups". En Springer Monographs in Mathematics, 1–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59141-9_1.
Texto completoActas de conferencias sobre el tema "Cohomology of condensed groups"
Masuoka, Akira. "Hopf cohomology vanishing via approximation by Hochschild cohomology". En Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-8.
Texto completoBONANZINGA, V. y L. SORRENTI. "LEXSEGMENT IDEALS AND SIMPLICIAL COHOMOLOGY GROUPS". En Selected Contributions from the 8th SIMAI Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812709394_0016.
Texto completoVenkataramana, T. N. "Cohomology of Arithmetic Groups and Representations". En Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0100.
Texto completoKhalkhali, M. y B. Rangipour. "Cyclic cohomology of (extended) Hopf algebras". En Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-5.
Texto completoVENKATESH, AKSHAY. "COHOMOLOGY OF ARITHMETIC GROUPS - FIELDS MEDAL LECTURE". En International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0014.
Texto completoSAKANE, YUSUKE y TAKUMI YAMADA. "HARMONIC COHOMOLOGY GROUPS ON COMPACT SYMPLECTIC NILMANIFOLDS". En Proceedings of the International Conference on Modern Mathematics and the International Symposium on Differential Geometry. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776419_0014.
Texto completoSOMA, TERUHIKO. "THE THIRD BOUNDED COHOMOLOGY AND KLEINIAN GROUPS". En Proceedings of the 37th Taniguchi Symposium. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789814503921_0015.
Texto completoLI, JIAN-SHU y JOACHIM SCHWERMER. "AUTOMORPHIC REPRESENTATIONS AND COHOMOLOGY OF ARITHMETIC GROUPS". En Proceedings of the International Conference on Fundamental Sciences: Mathematics and Theoretical Physics. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811264_0005.
Texto completoSharygin, G. I. "Hopf-type Cyclic Cohomology via the Karoubi Operator". En Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-14.
Texto completoCallegaro, Filippo, Davide Moroni y Mario Salvetti. "Cohomology of Artin groups of type \tildeAn, Bn and applications". En Groups, homotopy and configuration spaces, in honour of Fred Cohen's 60th birthday. Mathematical Sciences Publishers, 2008. http://dx.doi.org/10.2140/gtm.2008.13.85.
Texto completoInformes sobre el tema "Cohomology of condensed groups"
Holod, Petro I. Geometric Quantization, Cohomology Groups and Intertwining Operators. GIQ, 2012. http://dx.doi.org/10.7546/giq-1-2000-95-104.
Texto completo