Tesis sobre el tema "Cohomologie des groupes condensés"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Cohomologie des groupes condensés".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Artusa, Marco. "Sur des théorèmes de dualité pour la cohomologie condensée du groupe de Weil d'un corps p-adique". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0228.
Texto completoThe goal of this thesis is twofold. First, we build a topological cohomology theory for the Weil group of p-adic fields. Secondly, we use this theory to prove duality theorems for such fields, which manifest as Pontryagin duality between locally compact abelian groups. These results improve existing duality theorems and give them a topological flavour. Condensed Mathematics allow us to reach these objectives, providing a framework where it is possible to do algebra with topological objects. We define and study a cohomology theory for condensed groups and pro-condensed groups, and we apply it to the Weil group of a p-adic field, considered as a pro-condensed group. The resulting cohomology groups are proved to be locally compact abelian groups of finite ranks in some special cases. This allows us to enlarge the local Tate duality to a more general category of non-necessarily discrete coefficients, where it takes the form of a Pontryagin duality between locally compact abelian groups. In the last part of the thesis, we use the same framework to recover a Weil-version of the Tate duality with coefficients in abelian varieties and more generally in 1-motives, expressing those dualities as perfect pairings between condensed abelian groups. To do this, we associate to every algebraic group, resp. 1-motive, a condensed abelian group, resp. a complex of condensed abelian groups, with an action of the (pro-condensed) Weil group. We call this association the condensed Weil-´etale realisation. We show the existence of a condensed Poincar´e pairing for abelian varieties and we prove a condensed-Weil version of the Tate duality with coefficients in abelian varieties, which improves the correspondent result of Karpuk. Lastly, we exhibit a condensed Poincar´e pairing for 1-motives. We show that this pairing is compatible with the weight filtration and we prove a duality theorem with coefficients in 1-motives, which improves a result of Harari-Szamuely
Basbois, Nicolas. "La naissance de la cohomologie des groupes". Phd thesis, Université de Nice Sophia-Antipolis, 2009. http://tel.archives-ouvertes.fr/tel-00430204.
Texto completoBonneau, Philippe. "Groupes quantiques". Dijon, 1993. http://www.theses.fr/1993DIJOS022.
Texto completoSequeira-Manzino, Emiliano. "Cohomologie Lp et d'Orlicz relative et applications aux groupes d'Heintze". Thesis, Lille 1, 2020. https://pepite-depot.univ-lille.fr/LIBRE/EDSPI/2020/2020LILUI053.pdf.
Texto completoThis work has two parts. In the first we define the $L^p$-cohomology of certain Gromov-hyperbolic spaces relative to a point on its boundary at infinity. This is done in two different contexts. First we consider a simplicial version, defined for simplicial complexes with bounded geometry. In a similar way as in the classical case we prove the quasi-isometry invariance under a contractibility condition. Then we define a relative version of the de Rham $L^p$-cohomology in the case of Riemannian manifolds. We study the relationship between these two definitions, which allows to conclude that this second version is also invariant under certain hypothesis. As an application we study the $L^p$-cohomology relative to a special point on the boundary of Heintze groups of the form $\R^{n-1}\rtimes_\alpha\R$, where the derivation $\alpha$ has positive eigenvalues $\lambda_1\leq\cdots\leq\lambda_{n-1}$. As a consequence the numbers $\frac{\lambda_1}{\mathrm{tr}(\alpha)},\ldots,\frac{\lambda_{n-1}}{\mathrm{tr}(\alpha)}$ are invariant by quasi-isometries. In the second part we work with Orlicz cohomology, which is a generalization of $L^p$-cohomology. We also define a relative version and adapt the proof of the quasi-isometry invariance in the simplicial case. As the main result of this part we prove the equivalence between the simplicial (relative) Orlicz cohomology and the (relative) Orlicz-de Rham cohomology for Lie groups. An important consequence of this is the quasi-isometry invariance of Orlicz-de Rham cohomology in the case of contractible Lie groups
Louvet, Nicolas. "Phénomènes de rigidité pour un réseau dans un produit de groupes". Metz, 1998. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1998/Louvet.Nicolas.SMZ9841.pdf.
Texto completoLouvet, Nicolas Bekka M. Bachir. "Phénomènes de rigidité pour un réseau dans un produit de groupes /". [S.l.] : [s.n.], 1998. ftp://ftp.scd.univ-metz.fr/pub/Theses/1998/Louvet.Nicolas.SMZ9841.pdf.
Texto completoRousseau, Cédric. "Déformations d'actions de groupes et de certains réseaux résolubles". Valenciennes, 2006. http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/9d5ce0c1-8f64-4c8e-8316-a2f3833238d9.
Texto completoThe criterion for local rigidity given by Weil in 1964 is at the beginning of many group cohomology calculations in order to study the deformations of lattices in Lie groups. By introducing by analogy the concept of infinitesimal rigidity, Zimmer suggests the same type of calculations for the deformations of group actions on differentiable manifolds. We deal in this work with situations not very studied hitherto for these two concepts of rigidity : the standard action on the torus T2 of an infinite index subgroup of SL(2,ℤ) generated by a hyperbolic matrix. We will define the concept of Sobolev Ws-infinitesimal rigidity for this action and we will show that this one is Ws-infinitesimally rigid only if s is strictly lower than 1, and from there, that this action is not differentiably infinitesimally rigid. The deformations of a certain lattice in a non-nilpotent solvable Lie group G. We will determine the dimension of the cohomology space H1(,g) supposed “to measure” the defect of rigidity of this lattice, then, by the precise description of its deformations, we will show that, although not being locally rigid in G, the group , considered as a subgroup of SL(n+1,ℝ), is locally SL(n+1,ℝ)-rigid in G in the sense that any small enough deformation of in G is conjugated to by an element of SL(n+1, ℝ)
Tchoudjem, Alexis. "Représentations d'algèbres de Lie dans des groupes de cohomologie à support". Université Joseph Fourier (Grenoble), 2002. http://www.theses.fr/2002GRE10235.
Texto completoTouzé, Antoine Franjou Vincent. "Cohomologie rationnelle du groupe linéaire et extensions de bifoncteurs". [S.l.] : [s.n.], 2008. http://castore.univ-nantes.fr/castore/GetOAIRef?idDoc=37741.
Texto completoNguyen, Tuong-Huy. "Cohomologie des variétés de Coxeter pour le groupe linéaire : algèbre d'endomorphismes, compactification". Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS031/document.
Texto completoDeligne-Lusztig varieties associated to Coxeter elements, or more simply Coxeter Varieties denoted by $YY(dot{c})$, are good candidates to realize the derived equivalence needed for the Broué's conjecture. The conjecture implies that the varieties should have disjoint cohomology as well as gives a description of the endomorphisms algebra.For linear groups, we describe the cohomology of the Coxeter varieties and hence show that it agrees with the conditions implied by Broué's conjecture. To do so, we prove it is possible to apply a og transitivityfg result allowing us to restrict to og smallerfg Coxeter varieties. Then, we apply a result obtained by Lusztig on varieties $XX(c)$, which are quotient varieties of $YY(dot{c})$ by some finite groups.In the last part of the thesis, we use the description of the cohomology of Coxeter varieties to connect the cohomology of the compactification $overline{YY}(dot{c})$ and the cohomology of the compactification $overline{XX}(c)$
Masbaum, Gregor. "Sur l'algebre de cohomologie des espaces classifiants de certains groupes de jauge". Nantes, 1989. http://www.theses.fr/1989NANT2026.
Texto completoVidal, Isabelle. "Contributions à la cohomologie étale des schémas et des log-schémas". Paris 11, 2001. http://www.theses.fr/2001PA112246.
Texto completoThis work consists of two independent parts. The first one (chaps. I through III) deals with logarithmic geometry. In chap. I we define the logarithmic fundamental group of an fs log scheme and in the proper and log smooth case over the spectrum of a henselian dvr we prove that it satisfies a specialization theorem à la Grothendieck. We then consider a standard logarithmic point s of characteristic p. In chap. II we show that if X is an fs log scheme, separated and of finite type over s, the l-adic Kummer etale cohomology (l different from p) of the log geometric fiber of X finitely generated and endowed with a quasi-unipotent action of the logarithmic inertia, and we study the exponents. In chap. III, for k finite with q elements we define, à la Rapoport, the l-adic Kummer etale semi-simple zeta function of X. We prove it is rational and independent of l. In the proper, log smooth, vertical, Cartier type case we interpret it in terms of log crystalline cohomology and describe its zeroes and poles on the p-adic annuli of radius an integral power of q. .
Dudas, Olivier. "Géométrie des variétés de Deligne-Lusztig : décompositions, cohomologie modulo l et représentations modulaires". Besançon, 2010. http://www.theses.fr/2010BESA2004.
Texto completoThis work is a contribution to the modular representation theory of finite reductive groups. As in the ordinary setting, we are mainly interested in geometric constructions of the representations by means of the cohomology of Deligne-Lusztig varieties. We start by studying a Deodhar-type decomposition that we use to locate a certain class of representations, the so-called Gelfand-Graev modules and some of their generalizations. More precise results are obtained for varieties associated to some short-length regular elements. The case of Coxeter elements holds an important place in this work: for these specific elements we give an explicit construction of a complex representing the cohomology of the corresponding varieties, leading to a proof of the geometric version of Broue’s conjecture for some prime numbers. We also deduce the Brauer tree of the principal block in this case, which settles a conjecture of Hiss, Lubeck and Malle. Both of these results rely on the assumption that the cohomology is torsion-free, which is shown to hold for several classical and exceptional groups
BARKATS, FREDERIQUE. "Calcul effectif de groupes de cohomologie locale a support dans des ideaux monomiaux". Nice, 1995. http://www.theses.fr/1995NICE4920.
Texto completoFuchs, Mathias. "K-théorie et cohomologie cyclique des produits croisés associés aux groupes de Lie". Aix-Marseille 2, 2007. http://theses.univ-amu.fr.lama.univ-amu.fr/2007AIX22050.pdf.
Texto completoTERRACINI, LEA. "Groupes de cohomologie de courbes de Shimura et algèbres de Hecke quaternioniques entières". Paris 13, 1998. http://www.theses.fr/1998PA132059.
Texto completoLourdeaux, Alexandre. "Sur les invariants cohomologiques des groupes algébriques linéaires". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSE1044.
Texto completoOur thesis deals with the cohomological invariants of smooth and connected linear algebraic groups over an arbitrary field. More precisely, we study degree 2 invariants with coefficients Q/Z(1), that is invariants taking values in the Brauer group. Our main tool is the étale cohomology of sheaves on simplicial schemes. We get a description of these invariants for every smooth and connected linear groups, in particular for non reductive groups over an imperfect field (as pseudo-reductive or unipotent groups for instance).We use our description to investigate how the groups of invariants with values in the Brauer group behave with respect to operations on algebraic groups. We detail this group of invariants for particular non reductive algebraic groups over an imperfect field
Weiss, Nicolas. "Cohomologie de GL_2(Z[i,1/2]) à coefficients dans F_2". Phd thesis, Université Louis Pasteur - Strasbourg I, 2007. http://tel.archives-ouvertes.fr/tel-00174888.
Texto completoOn peut montrer que si la conjecture est vraie pour n=4, alors nécessairement, il existe un certain carré cartésien en cohomologie à coefficients dans F_2 dans lequel apparaît le classifiant du groupe GL_2(Z[i,1/2]). L'espoir initial, motivé par des idées de Henn et Lannes, était que la cohomologie à coefficients dans F_2 de BGL_2(Z[i,1/2]) rendrait ce carré non cartésien, invalidant de ce fait la conjecture de Lichtenbaum et Quillen dès n=4.
Nous avons calculé la cohomologie à coefficients dans F_2 de BGL_2(Z[i,1/2]) et montré que le carré cartésien sus-nommé est bien cartésien.
La conjecture a ainsi passé un test avec succès et a encore des chances d'être vraie pour n=4. En tout cas, la recherche d'un contre-exemple est plus délicate qu'on aurait pu l'espérer.
Les moyens utilisés pour effectuer le calcul de H*(BGL_2(Z[i,1/2]),F_2) ont été la construction d'un certain espace Z sur lequel le groupe PSL_2(Z[i]) agit avec de bonnes propriétés, et le calcul de H*(BPSL_2(Z[i]),F_2) et H*(BGo,F_2) où Go est un certain sous-groupe de PSL_2(Z[i]) tel qu'on ai la décomposition en somme amalgamée PSL_2(Z[i,1/2])=PSL_2(Z[i])*_Go PSL_2(Z[i]). On obtient ensuite H*(BGL_2(Z[i,1/2]),F_2) en étudiant certains morphismes de H*(BPSL_2(Z[i]),F_2) vers H*(BGo,F_2) et plusieurs suites spectrales.
Weiss, Nicolas. "Cohomologie de Gl2(Z[i,1/2]) à coefficients dans F2". Strasbourg 1, 2007. https://publication-theses.unistra.fr/public/theses_doctorat/2007/WEISS_Nicolas_2007.pdf.
Texto completoThe aim of this Phd thesis was to compute H*(BGL_2(Z[i,1/2]),F_2). This cohomology ring appears in a certain version of the conjecture of Lichtenbaum and Quillen, asserting that the cohomology modulo 2 of the classifying space of a general linear group over Z[1/2] should be detected by the cohomology of its subgroup of diagonal matrices. The original idea was to show that this conjecture fails in the special case of the general linear group of rank 4 over Z[1/2], and the cohomology of BGL_2(Z[i,1/2]) should have been the main argument. By computing H*(BGL_2(Z[i,1/2]),F_2), we proved that the conjecture is true in the case of GL_2(Z[i,1/2]). The calculation of H*(BGL_2(Z[i,1/2]),F_2) depends on the analysis of a certain space Z on which PSL_2(Z[i]) acts in a good way, and the as well as on calculation of H*(BPSL_2(Z[i]),F_2) and H*(BGo,F_2) where Go is a suitable subgroup of PSL_2(Z[i]) such that PSL_2(Z[i,1/2]) is isomorphic to the amalgamated sum PSL_2(Z[i])*_Go PSL_2(Z[i])
Weiss, Nicolas Henn Hans-Werner. "Cohomologie de GL2(Z[i,1/2]) à coefficients dans F2". Strasbourg : Université Louis Pasteur, 2008. http://eprints-scd-ulp.u-strasbg.fr:8080/863/01/WEISS_Nicolas_2007.pdf.
Texto completoArrigoni, Maurice. "Théorie d'Iwasawa et groupes de Galois nilpotents ou résolubles". Besançon, 1993. http://www.theses.fr/1993BESA2043.
Texto completoBarrat, Pierre. "Sur la dimension de la cohomologie parabolique de sous-groupes arithmetiques de sl(3)". Paris 6, 1987. http://www.theses.fr/1987PA066250.
Texto completoBarrat, Pierre. "Sur la dimension de la cohomologie parabolique de sous-groupes arithmétiques de SL (3)". Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb37602667s.
Texto completoDelacroix, Frédéric. "Courants invariants et formes automorphes d'un groupe kleinéen élémentaire". Valenciennes, 2001. https://ged.uphf.fr/nuxeo/site/esupversions/eec105a9-7817-4db3-b224-32c0dc021ef6.
Texto completoRozensztajn, Sandra. "Compactifications toroïdales et cohomologie de De Rham et cristalline de certaines variétés de Shimura". Paris 13, 2005. http://www.theses.fr/2005PA132040.
Texto completoFlorence, Mathieu. "Points rationnels sur les espaces homogènes". Paris 11, 2005. http://www.theses.fr/2005PA112101.
Texto completoThis thesis presents two results concerning homogeneous spaces of algebraic groups. In the first part, we consider the following question, recently asked by Burt Totaro:Let k be a field, G a linear algebraic k-group, and X a quasi-projective variety, endowed with the structure of a homogeneous space of G. Assume there exists a zero-cycle of degree d>0 on X; that is to say, there exists a family of closed points of X, having the property that the gcd of thedegrees (over k) of their residue fields divides d. Can we say that X has a rational point in a separable field extension of k, of degree dividing d ?We show that, in general, the answer is negative. In particular, we produce a counter-example X when k is a number field. The space X is geometrically rational, and a smooth k-compactification of X cannot have a k-rational point. This suggests to considerthe following general question: let X be a homogeneous space of an algebraic group (over a field k), such that X admits a k-compactification having a k-rational point. Then, does X itself possess a rational point ? In the second part of this thesis, we show the answer is positive,in full generality. Roughly speaking, we use cohomological tools to reduce the problem to the case of torsors under semi-simple groups, which is settled by the theory of Bruhat and Tits
Ducoat, Jerôme. "Invariants cohomologiques des groupes de Coxeter finis". Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00859840.
Texto completoFang, Xin. "Autour des algèbres de battages quantiques : idéaux de définition, spécialisation et cohomologie". Paris 7, 2012. http://www.theses.fr/2012PA077131.
Texto completoThe main part of this thesis is devoted to study some constructions and structures around quantum shuffle algebras: differential algebras and Kashiwara operators; defining ideals and specialization problem ; coHochschild homology and an analogue of Borel-Weil-Bott theorem. In the last chapter we prove a family of identities relating powers of Dedekind η-function and the trace of the Coxeter element in the Artin braid groups acting on quantum coordinate algebras
Vasserot, Eric. "Formule asymptotique de la torsion analytique de Ray-Singer d'un fibré vectoriel positif, classe de Segre équivariante et représentation de groupes quantiques dans l'espace de cohomologie de la variété des drapeaux non complets". Paris 7, 1992. http://www.theses.fr/1992PA077203.
Texto completoFargues, Laurent. "Correspondances de Langlands locales dans la cohomologie des espaces de Rapoport-Zink". Paris 7, 2001. http://www.theses.fr/2001PA077192.
Texto completoHoang, Duc Auguste. "Relèvements de représentations galoisiennes à valeurs dans des groupes algébriques". Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAD039/document.
Texto completoLet 1 -> N -> H -> H' -> 1 be an exact sequence of algebraic groups over Q_p^alg and F be a number field. Given a Galois representation r' : Gal_F -> H', we are interested in its lifts with values in H through the morphism H -> H'. We say a lift r : Gal_F -> H is minimal, if it is unramied at places where r' is unramified and is de Rham/semi-stable/crystalline at p-adic places if r' is so. In this thesis, we prove the existence of such minimal lifts in some cases
Zhao, Tiehong. "Géométries des réseaux hyperboliques complexes". Paris 6, 2011. http://www.theses.fr/2011PA066613.
Texto completoJebali, Hajer. "Espace des représentations du groupe d'un noeud dans les groupes de Lie résolubles". Clermont-Ferrand 2, 2008. http://www.theses.fr/2008CLF21861.
Texto completoEssafi, Louafi. "Construction d'une nouvelle théorie de cohomologie équivariante via la catégorie orbite". Paris 13, 2000. http://www.theses.fr/2000PA132005.
Texto completoWang, Haoran. "Géométrie et cohomologie de l’espace de Drinfeld et correspondance de Langlands locale". Paris 6, 2013. http://www.theses.fr/2013PA066371.
Texto completoLet K be a local field of mixed characteristic and d >1 an integer. We studythe geometry and cohomology of the tamely ramified cover of Drinfeld’s symmetricspace of dimension d − 1 over K. We realise, in a purely local way, the level zeroclassical local Langlands correspondence and the level zero local Jacquet-Langlandscorrespondence for the supercuspidal representations of GLd(K) in its cohomological groups, and we reprove in this case (up to a little ambiguity) a conjecture of Harris concerning the cohomology of the Drinfeld tower. During this study, we analyse the relation with the Deligne-Lusztig varieties and their compactifications, and the theory of coefficient systems over the Bruhat-Tits building
Ben, Charrada Rochdi. "Cohomologie de Dolbeault feuilletée de certaines laminations complexes". Phd thesis, Université de Valenciennes et du Hainaut-Cambresis, 2013. http://tel.archives-ouvertes.fr/tel-00871710.
Texto completoZhykhovich, Maskim. "Décompositions motiviques des variétés de Severi-Brauer généralisées et isotropie des involutions unitaires". Paris 6, 2012. http://www.theses.fr/2012PA066306.
Texto completoThis thesis consists of two main parts. The first one is devoted to the study of Chow motives of generalized Severi-Brauer varieties. According to a result of Chernousov and Merkurjev, the Chow motive with coefficients in a finite field of any generalized Severi-Brauervariety decomposes in an essentially unique way into a sum of indecomposable motives. We relate a number of motives of usual Severi-Brauer varieties in this decomposition with the dimension of a certain subgroup of rational cycles. In particular, we prove that the motive of a generalized Severi-Brauer variety is decomposable, except the cases, where motivic indecomposability was proven by N. Karpenko. The second part of the thesis is the joint work with N. Karpenko. We prove the so-called Unitary Isotropy Theorem, a result on isotropy of a unitary involution. The analogous previously known results on isotropy of orthogonal and symplectic involutions as well as on hyperbolicity of orthogonal, symplectic, and unitary involutions are formal consequences of this theorem. A component of the proof is a study of the quasi-split unitary grassmannians and the Steenrod operations on them
Rahm, Alexander Daniel. "(Co)homologies et K-théorie de groupes de Bianchi par des modèles géométriques calculatoires". Grenoble 1, 2010. http://www.theses.fr/2010GRENM069.
Texto completoThis thesis consists of the study of the geometry of a certain class of arithmetic groups, by means of a proper action on a contractible space. We will explicitly compute their group homology, and their equivariant K-homology. More precisely, consider an imaginary quadratic number field, and its ring of integers R. The Bianchi groups are the groups SL_2(R) and PSL_2(R). These groups act in a natural way on hyperbolic three-space. The Bianchi groups are a key to the study of a larger class of groups, the Kleinian groups, which dates back to works of Poincaré. In fact, each non-cocompact arithmetic Kleinian group is commensurable with some Bianchi group. The author has implemented the computation of a fundamental domain for the Bianchi groups. By computing the stabilisers and identifications on this fundamental domain, we obtain an explicit orbifold structure. We use it to study different aspects of the geometry of our groups. Firstly, we compute group homology with integer coefficients, using the equivariant Leray/Serre spectral sequence. Secondly, we compute the Bredon homology of the Bianchi groups, from which we deduce their equivariant K-homology. By the Baum/Connes conjecture, which is verified by the Bianchi groups, we obtain the K-theory of the reduced C*-algebras of the Bianchi groups, as isomorphic images. Finally, we complexify our orbifolds, by complexifying the real hyperbolic three-space. We obtain orbifolds given by the induced action of the Bianchi groups on complex hyperbolic three-space. Then we compute the Chen/Ruan orbifold cohomology for these complex orbifolds. This is one side of Ruan's cohomological crepant resolution conjecture
Derrien, Jean-Marc. "Propriétés ergodiques d'extensions isométriques : théorème ergodique polynôminal ponctuel : régularisation de cocycles par cohomologie". Tours, 1994. http://www.theses.fr/1994TOUR4023.
Texto completoBujard, Cédric. "Sous-groupes finis des groupes de stabilisateur étendus de Morava". Phd thesis, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-00699844.
Texto completoRajhi, Anis. "Cohomologie d'espaces fibrés au-dessus de l'immeuble affine de GL(N)". Thesis, Poitiers, 2014. http://www.theses.fr/2014POIT2266/document.
Texto completoThis thesis consists of two parts: the first one gives a generalization of fiber spaces constructed above the Bruhat-Tits tree of the group GL(2) over a p-adic field. More precisely we construct a projective tower of spaces over the 1-skeleton of the Bruhat-Tits building of GL(n) over a p-adic field. We show that any cuspidal representation π of GL(n) embeds with multiplicity 1 in the first cohomology space with compact support of k-th floor of the tower, where k is the conductor of π. In the second part we constructed a space W above the barycentric subdivision of the Bruhat-Tits building of GL(n) over a p-adic field. To study the cohomology spaces with compact support of a proper G-simplicial complex X with a rather special equivariant covering, where G is a totally disconnected locally compact group, we show the existence of a spactrale sequence in the category of smooth representations of G that converges to the cohomology with compact support of X. Based on the latter results, we calculate the cohomology with compact support of W as smooth representation of GL(n), and then we show that the level zero cuspidal types of GL(n) appear with finite multiplicity in the cohomology of some finite simplicial complexes constructed in residual level. As a consequence, we show that the cuspidal representations of level 0 of GL(n) appear in the cohomology of W
Touzé, Antoine. "Cohomologie rationnelle du groupe linéaire et extensions de bifoncteurs". Phd thesis, Université de Nantes, 2008. http://tel.archives-ouvertes.fr/tel-00289942.
Texto completoNous rappelons dans un premier temps la structure de la catégorie des bifoncteurs polynomiaux sur un anneau commutatif quelconque. Nous démontrons que la cohomologie des bifoncteurs calcule la cohomologie rationnelle du groupe linéaire sur un anneau quelconque (ce résultat n'était auparavant connu que sur un corps). Puis nous développons des techniques générales pour le calcul de la cohomologie des bifoncteurs. Nous introduisons notamment de nouveaux outils efficaces pour étudier la torsion de Frobenius en caractéristique p. Enfin, nous appliquons ces méthodes à des familles explicites de bifoncteurs. Nous obtenons ainsi de nouveaux résultats (par exemple des séries de Poincaré) sur la cohomologie rationnelle à valeur dans des représentations classiques, telles que les puissances symétriques et divisées des twists de l'algèbre de Lie du groupe linéaire.
Morel, Sophie. "Complexes d'intersection des compactifications de Baily-Borel : le cas des groupes unitaires sur Q". Paris 11, 2005. http://www.theses.fr/2005PA112250.
Texto completoIn this work, we calculate the trace of a power of the Frobenius endomorphism on the fibers of the intersection complex of the Baily-Borel compactification of a Shimura variety associated to a unitary group over Q. Our main tool is Pink's theorem about the restriction to the strata of the Baily-Borel compactification of a local system on the Shimura variety. To use this theorem, we give a new construction of the intermediate extension of a pure perverse sheaf as a weight truncated of the full direct image. More generally, we are able to define analogs in positive characteristic of the weighted cohomology complexes introduced by Goresky, Harder and MacPherson
Pirutka, Alena. "Deux contributions à l'arithmétique des variétés : R-équivalence et cohomologie non ramifiée". Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00769925.
Texto completoDjamaï, Bénaouda. "Sur la 2-cohomologie non abélienne : corps des modules". Thesis, Lille 1, 2008. http://www.theses.fr/2008LIL10020/document.
Texto completoLet f: X-Y be a morphism of schemes and G a group scheme over Y. If G is abelian, the Leray spectral sequence associated to f, Epq=HP(Y, Rqf*Gx)==>Hp+q(X,Gx), gives rise to an exact sequence in low dimensions: 0- H1(y ,f*Gx)- H1 (X,Gx)- W(Y,R If*GX)_ H2(y ,f*Gx)- H2(X, Gx)tr_ H1(Y,R1f*GX)_ H3(Y,f*Gx). ln this thesis, we consider the case of a non abelian group G. The notion of a gerb, due to Grothendieck allows us to get an equivalent morphism to d0,1:H0(Y,R1f*Gx)-H2(Y,f*Gx). Here we study the obstruction to a Gx-gerb on X to be the image of an f*Gx-gerb on Y. For this aim, we use the Giraud's iterpretation ofR1f*Gx, to build an equivalent object to H1(Y,R1f*Gx) and an equivalent morphism to d1,1: H1(Y,R1f*Gx)_H3(Y,f*GX), in terms of field of moduli condition and 2-gerbs. We will then give two results in the non abelian case: a cohomological one, wich is the case of a surface fibred on a curve, studied by Grothendieck, and a arithrnetical one wich deals with the maximal abelian extension of the fractions field of a local, heselian, excellent ring of dimension 2
Menet, Grégoire. "Cohomologie entière et fibrations lagrangiennes sur certaines variétés holomorphiquement symplectiques singulières". Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10050/document.
Texto completoThe starting point of the thesis was the study of a singular irreducible holomorphically symplectic variety (IHSV) of dimension 4 with orbifold singularities which was constructed by Markushevich—Tikhomirov in 2007 as a compactification of a Lagrangian family of (1,2)-polarized Prym surfaces. This family of Prym surfaces is associated to a linear system of genus-3 curves on a quartic K3 surface endowed with an anti-symplectic involution. In the fist part of the thesis, the Beauville—Bogomolov form (BB) on the second integer cohomology group of this IHSV is computed. The existence of the BB form for an IHSV with singular locus of codimension 4 was proved by Namikawa, but no explicit example of such a form was known. The thesis provides the first concrete examples of BB forms on singular IHSV. The calculation of these BB forms required the development of some tools for computing the integer cohomology of varieties quotiented by automorphism groups of prime order. In the second part of the thesis, the mirror family of dual abelian surfaces for the Markushevich—Tikhomirov IHSV is determined. As it turns out, it is also a family of Prym surfaces associated to a quartic K3 surface with an anti-symplectic involution and hence admits a compactification, which is the mirror of the original IHSV. A very precise geometric description of this duality is given, using Pantazis's bigonal construction. Moreover, it is proved that the mirror symmetry constructed in this way represents a non-trivial birational involution on the moduli space of Markushevich—Tikhomirov IHSV
Richard, Lionel. "Equivalence rationnelle et homologie de Hochschild pour certaines algèbres polynomiales classiques et quantiques". Clermont-Ferrand 2, 2002. http://www.theses.fr/2002CLF21389.
Texto completoBrunerie, Guillaume. "Sur les groupes d’homotopie des sphères en théorie des types homotopiques". Thesis, Nice, 2016. http://www.theses.fr/2016NICE4029/document.
Texto completoThe goal of this thesis is to prove that π4(S3) ≃ Z/2Z in homotopy type theory. In particular it is a constructive and purely homotopy-theoretic proof. We first recall the basic concepts of homotopy type theory, and we prove some well-known results about the homotopy groups of spheres: the computation of the homotopy groups of the circle, the triviality of those of the form πk(Sn) with k < n, and the construction of the Hopf fibration. We then move to more advanced tools. In particular, we define the James construction which allows us to prove the Freudenthal suspension theorem and the fact that there exists a natural number n such that π4(S3) ≃ Z/nZ. Then we study the smash product of spheres, we construct the cohomology ring of a space, and we introduce the Hopf invariant, allowing us to narrow down the n to either 1 or 2. The Hopf invariant also allows us to prove that all the groups of the form π4n−1(S2n) are infinite. Finally we construct the Gysin exact sequence, allowing us to compute the cohomology of CP2 and to prove that π4(S3) ≃ Z/2Z and that more generally πn+1(Sn) ≃ Z/2Z for every n ≥ 3
Reynaud, Eric. "Le groupe fondamental algébrique". Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2002. http://tel.archives-ouvertes.fr/tel-00202368.
Texto completoVirrion, Anne. "Théorèmes de dualité locale et globale dans la théorie arithmétique des D-modules". Rennes 1, 1995. http://www.theses.fr/1995REN1A002.
Texto completo