Siga este enlace para ver otros tipos de publicaciones sobre el tema: Cohomogeneity.

Artículos de revistas sobre el tema "Cohomogeneity"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Cohomogeneity".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

DANCER, ANDREW y ANDREW SWANN. "QUATERNIONIC KAHLER MANIFOLDS OF COHOMOGENEITY ONE". International Journal of Mathematics 10, n.º 05 (agosto de 1999): 541–70. http://dx.doi.org/10.1142/s0129167x99000215.

Texto completo
Resumen
Classification results are given for (i) compact quaternionic Kähler manifolds with a cohomogeneity-one action of a semi-simple group, (ii) certain complete hyperKähler manifolds with a cohomogeneity-two action of a semi-simple group preserving each complex structure, (iii) compact 3-Sasakian manifolds which are cohomogeneity one with respect to a group of 3-Sasakian symmetries. Information is also obtained about non-compact quaternionic Kähler manifolds of cohomogeneity one and the cohomogeneity of adjoint orbits in complex semi-simple Lie algebras.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Deng, Shaoqiang y Jifu Li. "Some cohomogeneity one Einstein–Randers metrics on 4-manifolds". International Journal of Geometric Methods in Modern Physics 14, n.º 03 (14 de febrero de 2017): 1750044. http://dx.doi.org/10.1142/s021988781750044x.

Texto completo
Resumen
The Page metric on [Formula: see text] is a cohomogeneity one Einstein–Riemannian metric, and is the only known cohomogeneity one Einstein–Riemannian metric on compact [Formula: see text]-manifolds. It has been a long standing problem whether there exists another cohomogeneity one Einstein–Riemannian metric on [Formula: see text]-manifolds. In this paper, we construct some examples of cohomogeneity one Einstein–Randers metrics on simply connected 4-manifolds. This shows that, although cohomogeneity one Einstein–Riemmian 4-manifolds are rare, non-Riemannian examples may exist at large.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Li, Jifu, Zhiguang Hu y Shaoqiang Deng. "Cohomogeneity One Randers Metrics". Canadian Mathematical Bulletin 59, n.º 3 (1 de septiembre de 2016): 575–84. http://dx.doi.org/10.4153/cmb-2015-009-5.

Texto completo
Resumen
AbstractAn action of a Lie group G on a smooth manifold M is called cohomogeneity one if the orbit space M/G is of dimension 1. A Finsler metric F on M is called invariant if F is invariant under the action of G. In this paper, we study invariant Randers metrics on cohomogeneity one manifolds. We first give a sufficient and necessary condition for the existence of invariant Randers metrics on cohomogeneity one manifolds. Then we obtain some results on invariant Killing vector fields on the cohomogeneity one manifolds and use them to deduce some sufficient and necessary conditions for a cohomogeneity one Randers metric to be Einstein.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Galaz-García, Fernando y Masoumeh Zarei. "Cohomogeneity one Alexandrov spaces in low dimensions". Annals of Global Analysis and Geometry 58, n.º 2 (7 de julio de 2020): 109–46. http://dx.doi.org/10.1007/s10455-020-09716-7.

Texto completo
Resumen
Abstract Alexandrov spaces are complete length spaces with a lower curvature bound in the triangle comparison sense. When they are equipped with an effective isometric action of a compact Lie group with one-dimensional orbit space, they are said to be of cohomogeneity one. Well-known examples include cohomogeneity-one Riemannian manifolds with a uniform lower sectional curvature bound; such spaces are of interest in the context of non-negative and positive sectional curvature. In the present article we classify closed, simply connected cohomogeneity-one Alexandrov spaces in dimensions 5, 6 and 7. This yields, in combination with previous results for manifolds and Alexandrov spaces, a complete classification of closed, simply connected cohomogeneity-one Alexandrov spaces in dimensions at most 7.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Julio-Batalla, Jurgen y Jimmy Petean. "Nodal solutions of Yamabe-type equations on positive Ricci curvature manifolds". Proceedings of the American Mathematical Society 149, n.º 10 (23 de julio de 2021): 4419–29. http://dx.doi.org/10.1090/proc/15548.

Texto completo
Resumen
We consider a closed cohomogeneity one Riemannian manifold ( M n , g ) (M^n,g) of dimension n ≥ 3 n\geq 3 . If the Ricci curvature of M M is positive, we prove the existence of infinite nodal solutions for equations of the form − Δ g u + λ u = λ u q -\Delta _g u + \lambda u = \lambda u^q with λ > 0 \lambda >0 , q > 1 q>1 . In particular for a positive Einstein manifold which is of cohomogeneity one or fibers over a cohomogeneity one Einstein manifold we prove the existence of infinite nodal solutions for the Yamabe equation, with a prescribed number of connected components of its nodal domain.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Díaz-Ramos, José Carlos, Miguel Domínguez-Vázquez y Alberto Rodríguez-Vázquez. "Homogeneous and inhomogeneous isoparametric hypersurfaces in rank one symmetric spaces". Journal für die reine und angewandte Mathematik (Crelles Journal) 2021, n.º 779 (17 de agosto de 2021): 189–222. http://dx.doi.org/10.1515/crelle-2021-0043.

Texto completo
Resumen
Abstract We conclude the classification of cohomogeneity one actions on symmetric spaces of rank one by classifying cohomogeneity one actions on quaternionic hyperbolic spaces up to orbit equivalence. As a by-product of our proof, we produce uncountably many examples of inhomogeneous isoparametric families of hypersurfaces with constant principal curvatures in quaternionic hyperbolic spaces.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Cleyton, Richard y Andrew Swann. "Cohomogeneity-one G2-structures". Journal of Geometry and Physics 44, n.º 2-3 (diciembre de 2002): 202–20. http://dx.doi.org/10.1016/s0393-0440(02)00074-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Galaz-Garcia, Fernando y Catherine Searle. "Cohomogeneity one Alexandrov spaces". Transformation Groups 16, n.º 1 (16 de febrero de 2011): 91–107. http://dx.doi.org/10.1007/s00031-011-9122-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

AHMADI, P. y S. M. B. KASHANI. "Cohomogeneity one Minkowski space Rn1". Publicationes Mathematicae Debrecen 78, n.º 1 (1 de enero de 2011): 49–59. http://dx.doi.org/10.5486/pmd.2011.4392.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Dancer, Andrew y Andrew Swann. "Hyperkähler metrics of cohomogeneity one". Journal of Geometry and Physics 21, n.º 3 (febrero de 1997): 218–30. http://dx.doi.org/10.1016/s0393-0440(96)00017-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Fujioka, Atsushi y Hitoshi Furuhata. "Centroaffine Surfaces of Cohomogeneity One". Bulletin of the Brazilian Mathematical Society, New Series 50, n.º 1 (28 de septiembre de 2018): 291–313. http://dx.doi.org/10.1007/s00574-018-0120-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Dammerman, Brandon. "Diagonalizing cohomogeneity-one Einstein metrics". Journal of Geometry and Physics 59, n.º 9 (septiembre de 2009): 1271–84. http://dx.doi.org/10.1016/j.geomphys.2009.06.010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Buttsworth, Timothy. "Cohomogeneity-one quasi-Einstein metrics". Journal of Mathematical Analysis and Applications 470, n.º 1 (febrero de 2019): 201–17. http://dx.doi.org/10.1016/j.jmaa.2018.09.064.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Galaz-García, Fernando y Masoumeh Zarei. "Cohomogeneity one topological manifolds revisited". Mathematische Zeitschrift 288, n.º 3-4 (20 de agosto de 2017): 829–53. http://dx.doi.org/10.1007/s00209-017-1915-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Ahmadi, P. "Cohomogeneity One Dynamics on Three Dimensional Minkowski Space". Zurnal matematiceskoj fiziki, analiza, geometrii 15, n.º 2 (25 de septiembre de 2016): 155–69. http://dx.doi.org/10.15407/mag15.02.155.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Böhm, Christoph. "Non-compact cohomogeneity one Einstein manifolds". Bulletin de la Société mathématique de France 127, n.º 1 (1999): 135–77. http://dx.doi.org/10.24033/bsmf.2345.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Morisawa, Yoshiyuki, Soichi Hasegawa, Tatsuhiko Koike y Hideki Ishihara. "Cohomogeneity-one-string integrability of spacetimes". Classical and Quantum Gravity 36, n.º 15 (17 de julio de 2019): 155009. http://dx.doi.org/10.1088/1361-6382/ab2e28.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Berndt, Jürgen y Martina Brück. "Cohomogeneity one actions on hyperbolic spaces". Journal für die reine und angewandte Mathematik (Crelles Journal) 2001, n.º 541 (23 de enero de 2001): 209–35. http://dx.doi.org/10.1515/crll.2001.093.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Goertsches, Oliver y Augustin-Liviu Mare. "Equivariant cohomology of cohomogeneity one actions". Topology and its Applications 167 (abril de 2014): 36–52. http://dx.doi.org/10.1016/j.topol.2014.03.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Vân Lê, Hông. "Compact symplectic manifolds of low cohomogeneity". Journal of Geometry and Physics 25, n.º 3-4 (mayo de 1998): 205–26. http://dx.doi.org/10.1016/s0393-0440(97)00018-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Conti, Diego. "Cohomogeneity One Einstein-Sasaki 5-Manifolds". Communications in Mathematical Physics 274, n.º 3 (13 de julio de 2007): 751–74. http://dx.doi.org/10.1007/s00220-007-0286-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Podest�, Fabio. "Immersions of cohomogeneity one Riemannian manifolds". Monatshefte f�r Mathematik 122, n.º 3 (septiembre de 1996): 215–25. http://dx.doi.org/10.1007/bf01320185.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

ABATE, MARCO y LAURA GEATTI. "COHOMOGENEITY TWO HYPERBOLIC ACYCLIC STEIN MANIFOLDS". International Journal of Mathematics 03, n.º 05 (octubre de 1992): 591–608. http://dx.doi.org/10.1142/s0129167x92000278.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Berndt, Jürgen, José Carlos Díaz-Ramos y Mohammad Javad Vanaei. "Cohomogeneity one actions on Minkowski spaces". Monatshefte für Mathematik 184, n.º 2 (18 de junio de 2016): 185–200. http://dx.doi.org/10.1007/s00605-016-0945-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Dancer, Andrew y McKenzie Y. Wang. "Kähler-Einstein metrics of cohomogeneity one". Mathematische Annalen 312, n.º 3 (1 de noviembre de 1998): 503–26. http://dx.doi.org/10.1007/s002080050233.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Gambioli, Andrea. "SU(3)-manifolds of cohomogeneity one". Annals of Global Analysis and Geometry 34, n.º 1 (13 de diciembre de 2007): 77–100. http://dx.doi.org/10.1007/s10455-007-9097-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Dancer, Andrew S. y McKenzie Y. Wang. "On Ricci solitons of cohomogeneity one". Annals of Global Analysis and Geometry 39, n.º 3 (17 de octubre de 2010): 259–92. http://dx.doi.org/10.1007/s10455-010-9233-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

MIRZAIE, R. "ON EUCLIDEAN G-MANIFOLDS WHICH HAVE TWO DIMENSIONAL ORBIT SPACES". International Journal of Mathematics 22, n.º 03 (marzo de 2011): 399–406. http://dx.doi.org/10.1142/s0129167x11006829.

Texto completo
Resumen
We show that the orbit space of Euclidean space, under the action of a closed and connected Lie group of isometries is homeomorphic to a plane or closed half-plane, if the action is of cohomogeneity two.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Podestà, Fabio. "Cohomogeneity one Riemannian manifolds and Killing fields". Differential Geometry and its Applications 5, n.º 4 (diciembre de 1995): 311–20. http://dx.doi.org/10.1016/0926-2245(95)00021-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Frank, Philipp. "Cohomogeneity one manifolds with positive Euler characteristic". Transformation Groups 18, n.º 3 (4 de julio de 2013): 639–84. http://dx.doi.org/10.1007/s00031-013-9227-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Dancer, A. y M. Wang. "Superpotentials and the Cohomogeneity One Einstein Equations". Communications in Mathematical Physics 260, n.º 1 (2 de agosto de 2005): 75–115. http://dx.doi.org/10.1007/s00220-005-1410-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Searle, Catherine. "Cohomogeneity and positive curvature in low dimensions". Mathematische Zeitschrift 214, n.º 1 (septiembre de 1993): 491–98. http://dx.doi.org/10.1007/bf02572419.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Grove, Karsten y Wolfgang Ziller. "Cohomogeneity one manifolds with positive Ricci curvature". Inventiones Mathematicae 149, n.º 3 (1 de septiembre de 2002): 619–46. http://dx.doi.org/10.1007/s002220200225.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Li, Jifu, Zhiguang Hu y Shaoqiang Deng. "S-curvature of cohomogeneity one Randers spaces". Journal of Mathematical Analysis and Applications 441, n.º 2 (septiembre de 2016): 624–34. http://dx.doi.org/10.1016/j.jmaa.2016.03.084.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Bettiol, Renato G. y Paolo Piccione. "Delaunay-Type Hypersurfaces in Cohomogeneity One Manifolds". International Mathematics Research Notices 2016, n.º 10 (5 de agosto de 2015): 3124–62. http://dx.doi.org/10.1093/imrn/rnv231.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Gastel, Andreas y Felix Zorn. "Biharmonic maps of cohomogeneity one between spheres". Journal of Mathematical Analysis and Applications 387, n.º 1 (marzo de 2012): 384–99. http://dx.doi.org/10.1016/j.jmaa.2011.09.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Searle, Catherine. "Cohomogeneity and positive curvature in low dimensions". Mathematische Zeitschrift 226, n.º 1 (16 de septiembre de 1997): 165–67. http://dx.doi.org/10.1007/pl00004642.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Schwachhöfer, Lorenz J. "Lower curvature bounds and cohomogeneity one manifolds". Differential Geometry and its Applications 17, n.º 2-3 (septiembre de 2002): 209–28. http://dx.doi.org/10.1016/s0926-2245(02)00108-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Mirzaie, R. "Cohomogeneity Two Actions on Flat Riemannian Manifolds". Acta Mathematica Sinica, English Series 23, n.º 9 (21 de junio de 2007): 1587–92. http://dx.doi.org/10.1007/s10114-007-0952-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Püttmann, Thomas y Anna Siffert. "Harmonic self-maps of cohomogeneity one manifolds". Mathematische Annalen 375, n.º 1-2 (1 de julio de 2019): 247–82. http://dx.doi.org/10.1007/s00208-019-01848-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Böhm, Christoph. "Non-existence of cohomogeneity one Einstein metrics". Mathematische Annalen 314, n.º 1 (1 de mayo de 1999): 109–25. http://dx.doi.org/10.1007/s002080050288.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Villumsen, Martin. "Cohomogeneity-Three HyperKähler Metrics on Nilpotent Orbits". Annals of Global Analysis and Geometry 28, n.º 2 (septiembre de 2005): 123–56. http://dx.doi.org/10.1007/s10455-005-6636-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

HAMBLETON, IAN y JEAN-CLAUDE HAUSMANN. "EQUIVARIANT PRINCIPAL BUNDLES OVER SPHERES AND COHOMOGENEITY ONE MANIFOLDS". Proceedings of the London Mathematical Society 86, n.º 1 (enero de 2003): 250–72. http://dx.doi.org/10.1112/s0024611502013722.

Texto completo
Resumen
We classify smooth ${\rm SO}(n)$-equivariant principal bundles over $S^n$ in terms of their isotropy representations over the north and south poles. This is an example of a general result classifying equivariant $(\Pi, G)$-bundles over manifolds with cohomogeneity 1.2000 Mathematical Subject Classification: 55R91.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Schwachhöfer, Lorenz J. y Kristopher Tapp. "Cohomogeneity one disk bundles with normal homogeneous collars". Proceedings of the London Mathematical Society 99, n.º 3 (24 de abril de 2009): 609–32. http://dx.doi.org/10.1112/plms/pdp012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

MIRZAIE, R. "On negatively curved G-manifolds of low cohomogeneity". Hokkaido Mathematical Journal 38, n.º 4 (noviembre de 2009): 797–803. http://dx.doi.org/10.14492/hokmj/1258554244.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

KIM, CHANG-WAN. "POSITIVELY CURVED MANIFOLDS WITH FIXED POINT COHOMOGENEITY ONE". Communications of the Korean Mathematical Society 21, n.º 1 (1 de enero de 2006): 151–63. http://dx.doi.org/10.4134/ckms.2006.21.1.151.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Abedi, Hosein y Seyed Mohammad Bagher Kashani. "COHOMOGENEITY ONE RIEMANNIAN MANIFOLDS OF CONSTANT POSITIVE CURVATURE". Journal of the Korean Mathematical Society 44, n.º 4 (30 de julio de 2007): 799–807. http://dx.doi.org/10.4134/jkms.2007.44.4.799.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Console, Sergio y Carlos Olmos. "Curvature invariants, Killing vector fields, connections and cohomogeneity". Proceedings of the American Mathematical Society 137, n.º 03 (2 de octubre de 2008): 1069–72. http://dx.doi.org/10.1090/s0002-9939-08-09669-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Chen, Wei, Hong Lü y Christopher N. Pope. "Separability in cohomogeneity-2 Kerr-NUT-AdS metrics". Journal of High Energy Physics 2006, n.º 04 (4 de abril de 2006): 008. http://dx.doi.org/10.1088/1126-6708/2006/04/008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Kollross, Andreas. "A classification of hyperpolar and cohomogeneity one actions". Transactions of the American Mathematical Society 354, n.º 2 (18 de septiembre de 2001): 571–612. http://dx.doi.org/10.1090/s0002-9947-01-02803-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía