Artículos de revistas sobre el tema "Cobaltite de calcium"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Cobaltite de calcium.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Cobaltite de calcium".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Yu, Jincheng y Robert Freer. "Calcium cobaltite, a promising oxide for energy harvesting: effective strategies toward enhanced thermoelectric performance". Journal of Physics: Energy 4, n.º 2 (15 de marzo de 2022): 022001. http://dx.doi.org/10.1088/2515-7655/ac5172.

Texto completo
Resumen
Abstract Thermoelectric (TE) materials are able to generate power from waste heat and thereby provide an alternative source of sustainable energy. Calcium cobaltite is a promising p-type TE oxide because of its intrinsically low thermal conductivity arising from the misfit-layered structure. Its structural framework contains two sub-layers with different incommensurate periodicities, offering different sites for substituting elements; the plate-like grain structure contributes to texture development, thereby providing opportunities to modulate the TE response. In this topical review, we briefly introduce the misfit crystal structure of calcium cobaltite and summarize three efficient strategies to enhance the TE performance, namely (a) elemental doping, (b) optimization of fabrication route, and (c) composite design. For each strategy, examples are presented and enhancing mechanisms are discussed. The roles of dopants, processing routes and phase composition are identified to provide insights into processing-microstructure-property relationships for calcium cobaltite based materials. We outline some of the challenges that still need to be addressed and hope that the proposed strategies can be exploited in other TE systems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Kim, Dong-Wan, Young-Dae Ko, Jong-Sung Park, Hae-June Je, Ji-Won Son y Joosun Kim. "Electrochemical Performance of Calcium Cobaltite Nano-Plates". Journal of Nanoscience and Nanotechnology 9, n.º 7 (1 de julio de 2009): 4056–60. http://dx.doi.org/10.1166/jnn.2009.m10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Romo-De-La-Cruz, C., L. Liang, S. A. Paredes Navia, Y. Chen, J. Prucz y X. Song. "Role of oversized dopant potassium on the nanostructure and thermoelectric performance of calcium cobaltite ceramics". Sustainable Energy & Fuels 2, n.º 4 (2018): 876–81. http://dx.doi.org/10.1039/c7se00612h.

Texto completo
Resumen
The impact of the non-stoichiometric addition of potassium (K) on the nanostructure and thermoelectric performance of misfit layered calcium cobaltite (Ca3Co4O9) ceramics is reported.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Baily, S. A. y M. B. Salamon. "Anomalous Hall effect of calcium-doped lanthanum cobaltite films". Journal of Applied Physics 93, n.º 10 (15 de mayo de 2003): 8316–18. http://dx.doi.org/10.1063/1.1540183.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Lee, Hwasoo, Felipe Caliari y Sanjay Sampath. "Thermoelectric properties of plasma sprayed of calcium cobaltite (Ca2Co2O5)". Journal of the European Ceramic Society 39, n.º 13 (octubre de 2019): 3749–55. http://dx.doi.org/10.1016/j.jeurceramsoc.2019.05.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Sopicka-Lizer, Małgorzata, Paweł Smaczyński, Karolina Kozłowska, Ewa Bobrowska-Grzesik, Julian Plewa y Horst Altenburg. "Preparation and characterization of calcium cobaltite for thermoelectric application". Journal of the European Ceramic Society 25, n.º 12 (enero de 2005): 1997–2001. http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.222.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Srepusharawoot, Pornjuk, Supree Pinitsoontorn y Santi Maensiri. "Electronic structure of iron-doped misfit-layered calcium cobaltite". Computational Materials Science 114 (marzo de 2016): 64–71. http://dx.doi.org/10.1016/j.commatsci.2015.12.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Tang, G. D., H. H. Guo, T. Yang, D. W. Zhang, X. N. Xu, L. Y. Wang, Z. H. Wang, H. H. Wen, Z. D. Zhang y Y. W. Du. "Anisotropic thermopower and magnetothermopower in a misfit-layered calcium cobaltite". Applied Physics Letters 98, n.º 20 (16 de mayo de 2011): 202109. http://dx.doi.org/10.1063/1.3592831.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Sekak, Khairunnadim Ahmad y Adrian Lowe. "Structural and Thermal Characterization of Calcium Cobaltite Electrospun Nanostructured Fibers". Journal of the American Ceramic Society 94, n.º 2 (28 de septiembre de 2010): 611–19. http://dx.doi.org/10.1111/j.1551-2916.2010.04106.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Klyndyuk, A. I. y I. V. Matsukevich. "Synthesis and properties of disubstituted derivatives of layered calcium cobaltite". Glass Physics and Chemistry 41, n.º 5 (septiembre de 2015): 545–50. http://dx.doi.org/10.1134/s1087659615050077.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Faaland, Sonia, Mari-Ann Einarsrud y Tor Grande. "Reactions between Calcium- and Strontium-Substituted Lanthanum Cobaltite Ceramic Membranes and Calcium Silicate Sealing Materials". Chemistry of Materials 13, n.º 3 (marzo de 2001): 723–32. http://dx.doi.org/10.1021/cm991184n.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Carvillo, Paulo, Yun Chen, Cullen Boyle, Paul N. Barnes y Xueyan Song. "Thermoelectric Performance Enhancement of Calcium Cobaltite through Barium Grain Boundary Segregation". Inorganic Chemistry 54, n.º 18 (11 de septiembre de 2015): 9027–32. http://dx.doi.org/10.1021/acs.inorgchem.5b01296.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Murai, Kei-Ichiro, Shuhei Kori, Shun Nakai y Toshihiro Moriga. "Effect of thermoelectric material of Ca or Fe-doped LaCoO3". International Journal of Modern Physics B 32, n.º 19 (18 de julio de 2018): 1840037. http://dx.doi.org/10.1142/s0217979218400374.

Texto completo
Resumen
As the Perovskite-type Lanthanum Cobalt Oxide of LaCoO3 is nontoxic and thermally stable even at high temperature, this material is expected as a candidate for thermoelectric applications. The thermoelectric performance of a material is often evaluated by the dimensionless figure-of-merit, ZT (=S[Formula: see text]T/[Formula: see text]), or S[Formula: see text] in the ZT equation. S[Formula: see text] shows the electrical characteristic as a Power factor (PF). It has been reported Seebeck coefficient of LaCoO3 is higher than other oxide materials at room temperature even though electrical conductivity and ZT are lower values. In this study, calcium-doped lanthanum cobaltite La[Formula: see text]Ca[Formula: see text]CoO3 (x = 0.00, 0.05, 0.10 and 0.15) and iron-doped lanthanum cobaltite LaCo[Formula: see text]Fe[Formula: see text]O3 (y = 0.05, 0.10 and 0.15) have been prepared by solid-phase process. The X-ray diffraction patterns of the calcium-doped samples and iron-doped samples show cubic perovskite structure. Electric conductivities were improved by Ca or Fe substitution and showed a tendency to increase with increasing the temperature. The sample substituted with Fe 5 mol.% showed the maximum PF, 0.510 ([Formula: see text] W/K2m) at 548 K, and the sample substituted with Ca 15 mol.% showed the maximum PF, 0.152 ([Formula: see text] W/K2m) at 498 K.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Machado, R. A. M., M. V. Gelfuso y D. Thomazini. "Thermoelectric properties of barium doped calcium cobaltite obtained by simplified chemical route". Cerâmica 67, n.º 381 (marzo de 2021): 90–97. http://dx.doi.org/10.1590/0366-69132021673813034.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Ermakova, E. A., S. S. Strel’nikova, A. S. Anokhin, A. N. Rogova y D. N. Sovyk. "Sol-Gel Synthesis of Lanthanum Cobaltite Powders with Added Strontium and Calcium". Glass and Ceramics 77, n.º 11-12 (marzo de 2021): 438–41. http://dx.doi.org/10.1007/s10717-021-00327-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Abbas, Yasir, Muhammad Kamran, Tanveer Akhtar y Muhammad Anis-ur-Rehman. "Study of Temperature Dependent Dielectric Spectroscopy of Cerium Doped Bismuth Calcium Cobaltite". Materials Science Forum 1067 (10 de agosto de 2022): 197–203. http://dx.doi.org/10.4028/p-292841.

Texto completo
Resumen
Bulk specimens of Bi2Ca2-xCexCoO6 (x = 0.00, 0.20) were prepared in pure phase form using co-precipitation method. The monoclinic structure of all samples is revealed via X-Ray Diffraction (XRD) analysis. The crystallite size, lattice constant, lattice strain, and volume of the unit cell were all determined using XRD analysis. On sintered at 750°C for 2 hours, the average crystallite size was 32-38nm. The precision analyzer was used to determine the loss tangent tan (δ), dielectric constant (ε'), AC conductivity (σac) in the 20Hz-3MHz range. The conduction process of electrical conductivity was also investigated utilizing the Jonscher Power Law.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Klyndyuk, A. I., N. S. Krasutskaya y A. A. Khort. "Synthesis and Properties of Ceramics Based on a Layered Bismuth Calcium Cobaltite". Inorganic Materials 54, n.º 5 (mayo de 2018): 509–14. http://dx.doi.org/10.1134/s0020168518050059.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Shi, Zongmo, Can Zhang, Taichao Su, Jie Xu, Jihong Zhu, Haiyan Chen, Tong Gao et al. "Boosting the Thermoelectric Performance of Calcium Cobaltite Composites through Structural Defect Engineering". ACS Applied Materials & Interfaces 12, n.º 19 (22 de abril de 2020): 21623–32. http://dx.doi.org/10.1021/acsami.0c03297.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Boyle, Cullen, Paulo Carvillo, Yun Chen, Ever J. Barbero, Dustin Mcintyre y Xueyan Song. "Grain boundary segregation and thermoelectric performance enhancement of bismuth doped calcium cobaltite". Journal of the European Ceramic Society 36, n.º 3 (febrero de 2016): 601–7. http://dx.doi.org/10.1016/j.jeurceramsoc.2015.10.042.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Song, Xueyan, Dustin McIntyre, Xueqin Chen, Ever J. Barbero y Yun Chen. "Phase evolution and thermoelectric performance of calcium cobaltite upon high temperature aging". Ceramics International 41, n.º 9 (noviembre de 2015): 11069–74. http://dx.doi.org/10.1016/j.ceramint.2015.05.052.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Bresch, Sophie, Björn Mieller, Daniela Schönauer‐Kamin, Ralf Moos, Timmy Reimann, Fabien Giovannelli y Torsten Rabe. "Influence of pressure and dwell time on pressure‐assisted sintering of calcium cobaltite". Journal of the American Ceramic Society 104, n.º 2 (5 de noviembre de 2020): 917–27. http://dx.doi.org/10.1111/jace.17541.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Yu, Jincheng, Kan Chen, Feridoon Azough, Diana T. Alvarez-Ruiz, Michael J. Reece y Robert Freer. "Enhancing the Thermoelectric Performance of Calcium Cobaltite Ceramics by Tuning Composition and Processing". ACS Applied Materials & Interfaces 12, n.º 42 (7 de octubre de 2020): 47634–46. http://dx.doi.org/10.1021/acsami.0c14916.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Yu, Shancheng, Guiping Zhang, Han Chen y Lucun Guo. "A novel post-treatment to calcium cobaltite cathode for solid oxide fuel cells". International Journal of Hydrogen Energy 43, n.º 4 (enero de 2018): 2436–42. http://dx.doi.org/10.1016/j.ijhydene.2017.12.040.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Bresch, Sophie, Björn Mieller, Christian Selleng, Thomas Stöcker, Ralf Moos y Torsten Rabe. "Influence of the calcination procedure on the thermoelectric properties of calcium cobaltite Ca3Co4O9". Journal of Electroceramics 40, n.º 3 (27 de febrero de 2018): 225–34. http://dx.doi.org/10.1007/s10832-018-0124-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Silva, Thayse, Vinícius Silva, Jakeline Santos, Thiago Simões y Daniel Macedo. "Effect of Cu-doping on the activity of calcium cobaltite for oxygen evolution reaction". Materials Letters 298 (septiembre de 2021): 130026. http://dx.doi.org/10.1016/j.matlet.2021.130026.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Klyndyuk, A. I., E. A. Chizhova, E. A. Tugova, R. S. Latypov, O. N. Karpov y M. V. Tomkovich. "Thermoelectric Multiphase Ceramics Based on Layered Calcium Cobaltite, as Synthesized Using Two-Stage Sintering". Glass Physics and Chemistry 46, n.º 6 (noviembre de 2020): 562–69. http://dx.doi.org/10.1134/s1087659620060127.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Aswathy, P. K., R. Ganga y Deepthi N Rajendran. "Impact of A-site calcium on structural and electrical properties of samarium cobaltite perovskites". Solid State Communications 350 (julio de 2022): 114748. http://dx.doi.org/10.1016/j.ssc.2022.114748.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Yu, Jincheng, Mikko Nelo, Xiaodong Liu, Shouqi Shao, Bing Wang, Sarah J. Haigh, Heli Jantunen y Robert Freer. "Enhancing the thermoelectric performance of cold sintered calcium cobaltite ceramics through optimised heat-treatment". Journal of the European Ceramic Society 42, n.º 9 (agosto de 2022): 3920–28. http://dx.doi.org/10.1016/j.jeurceramsoc.2022.03.017.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Ko, Young-Dae, Jin-Gu Kang, Kyung Jin Choi, Jae-Gwan Park, Jae-Pyoung Ahn, Kyung Yoon Chung, Kyung-Wan Nam, Won-Sub Yoon y Dong-Wan Kim. "High rate capabilities induced by multi-phasic nanodomains in iron-substituted calcium cobaltite electrodes". Journal of Materials Chemistry 19, n.º 13 (2009): 1829. http://dx.doi.org/10.1039/b817120c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Zhang, Cuijuan, Xinyue Zhang, Katelynn Daly, Curtis P. Berlinguette y Simon Trudel. "Water Oxidation Catalysis: Tuning the Electrocatalytic Properties of Amorphous Lanthanum Cobaltite through Calcium Doping". ACS Catalysis 7, n.º 9 (24 de agosto de 2017): 6385–91. http://dx.doi.org/10.1021/acscatal.7b02145.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Tani, Toshihiko, Hiroshi Itahara, Hiroaki Kadoura y Ryoji Asahi. "Crystallographic Orientation Analysis on Calcium Cobaltite Ceramic Grains Textured by Reactive-Templated Grain Growth". International Journal of Applied Ceramic Technology 4, n.º 4 (agosto de 2007): 318–25. http://dx.doi.org/10.1111/j.1744-7402.2007.02146.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Yang, Wenchao, Huicheng Zhang, Jiaqing Tao, Dongdong Zhang, Dewei Zhang, Zhihe Wang y Guodong Tang. "Optimization of the spin entropy by incorporating magnetic ion in a misfit-layered calcium cobaltite". Ceramics International 42, n.º 8 (junio de 2016): 9744–48. http://dx.doi.org/10.1016/j.ceramint.2016.03.065.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Klyndyuk, A. I., E. A. Chizhova y S. V. Shevchenko. "Spin–state transition in the layered barium cobaltite derivatives and their thermoelectric properties". Chimica Techno Acta 7, n.º 1 (25 de marzo de 2020): 26–33. http://dx.doi.org/10.15826/chimtech.2020.7.1.04.

Texto completo
Resumen
Ba1.9Me0.1Co9O14 (Me = Ba, Sr, Ca) (BCO) layered cobaltites were prepared by means of solid-state reactions method. Crystal structure, microstructure, thermal expansion, electrical conductivity, and thermo-EMF for the obtained oxides were studied; the values of their linear thermal expansion coefficient, activation energy of electrical transport, and power factor values were calculated. It was found that BCO are p-type semiconductors, in which the spin-state transition occurs within 460-700 K temperature interval due to change in spin state of cobalt ions, which accompanied the sharp increase in electrical conductivity, activation energy of electrical conductivity, and linear thermal expansion coefficient, while thermo-EMF coefficient decreased. Partial substitution of barium by strontium or calcium in BCO leads to the increase in spin-state transition temperature and electrical conductivity of the samples, and, at the same time, thermo-EMF coefficient; consequently, their power factor values decrease.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Yu, Jincheng, Yabin Chang, Ewa Jakubczyk, Bing Wang, Feridoon Azough, Robert Dorey y Robert Freer. "Modulation of electrical transport in calcium cobaltite ceramics and thick films through microstructure control and doping". Journal of the European Ceramic Society 41, n.º 9 (agosto de 2021): 4859–69. http://dx.doi.org/10.1016/j.jeurceramsoc.2021.03.044.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Yu, Jincheng, Xiaodong Liu, Wei Xiong, Bing Wang, Michael J. Reece y Robert Freer. "The effects of dual-doping and fabrication route on the thermoelectric response of calcium cobaltite ceramics". Journal of Alloys and Compounds 902 (mayo de 2022): 163819. http://dx.doi.org/10.1016/j.jallcom.2022.163819.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Rubešová, K., V. Jakeš, O. Jankovský, M. Lojka y D. Sedmidubský. "Bismuth calcium cobaltite thermoelectrics: A study of precursor reactivity and its influence on the phase formation". Journal of Physics and Chemistry of Solids 164 (mayo de 2022): 110631. http://dx.doi.org/10.1016/j.jpcs.2022.110631.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Bochmann, Arne, Timmy Reimann, Thomas Schulz, Steffen Teichert y Jörg Töpfer. "Transverse thermoelectric multilayer generator with bismuth-substituted calcium cobaltite: Design optimization through variation of tilt angle". Journal of the European Ceramic Society 39, n.º 9 (agosto de 2019): 2923–29. http://dx.doi.org/10.1016/j.jeurceramsoc.2019.03.036.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Schulz, Thomas, Timmy Reimann, Arne Bochmann, Andre Vogel, Beate Capraro, Björn Mieller, Steffen Teichert y Jörg Töpfer. "Sintering behavior, microstructure and thermoelectric properties of calcium cobaltite thick films for transversal thermoelectric multilayer generators". Journal of the European Ceramic Society 38, n.º 4 (abril de 2018): 1600–1607. http://dx.doi.org/10.1016/j.jeurceramsoc.2017.11.017.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Wu, Jiajing, Jiancheng Tang, Xiaoxiao Wei, Nan Ye y Fangxin Yu. "Preparation process and mechanism of ultra-fine spherical cobalt powders by hydrogen reduction of calcium cobaltite". Journal of Alloys and Compounds 726 (diciembre de 2017): 1119–23. http://dx.doi.org/10.1016/j.jallcom.2017.08.070.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Ramasubramaniam, Ashwin. "First-principles Studies of the Electronic and Thermoelectric Properties of Misfit Layered Phases of Calcium Cobaltite". Israel Journal of Chemistry 57, n.º 6 (9 de noviembre de 2016): 522–28. http://dx.doi.org/10.1002/ijch.201600065.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Araújo, Allan J. M., Francisco J. A. Loureiro, Laura I. V. Holz, João P. F. Grilo, Daniel A. Macedo, Carlos A. Paskocimas y Duncan P. Fagg. "Composite of calcium cobaltite with praseodymium-doped ceria: A promising new oxygen electrode for solid oxide cells". International Journal of Hydrogen Energy 46, n.º 55 (agosto de 2021): 28258–69. http://dx.doi.org/10.1016/j.ijhydene.2021.06.049.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Klyndyuk, A. I., I. V. Matsukevich, M. Janek, E. A. Chizhova, Z. Lenčéš, O. Hanzel y P. Veteška. "Effect of Copper Additions on the Thermoelectric Properties of a Layered Calcium Cobaltite Prepared by Hot Pressing". Inorganic Materials 56, n.º 11 (noviembre de 2020): 1198–205. http://dx.doi.org/10.1134/s0020168520110059.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Prasoetsopha, Natkrita, Supree Pinitsoontorn, Atipong Bootchanont, Pinit Kidkhunthod, Pornjuk Srepusharawoot, Teerasak Kamwanna, Vittaya Amornkitbamrung, Ken Kurosaki y Shinsuke Yamanaka. "Local structure of Fe in Fe-doped misfit-layered calcium cobaltite: An X-ray absorption spectroscopy study". Journal of Solid State Chemistry 204 (agosto de 2013): 257–65. http://dx.doi.org/10.1016/j.jssc.2013.05.038.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Mishra, Avinna, Aneeya K. Samantara, Swagatika Kamila, Bikash Kumar Jena, U. Manju y Sarama Bhattacharjee. "Non-precious transition metal oxide calcium cobaltite: Effect of dopant on oxygen/hydrogen evolution reaction and thermoelectric properties". Materials Today Communications 15 (junio de 2018): 48–54. http://dx.doi.org/10.1016/j.mtcomm.2018.02.022.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Gholizadeh, Ahmad, Hamid Yousefi, Azim Malekzadeh y Faiz Pourarian. "Calcium and strontium substituted lanthanum manganite–cobaltite [La1−(Ca,Sr) Mn0.5Co0.5O3] nano-catalysts for low temperature CO oxidation". Ceramics International 42, n.º 10 (agosto de 2016): 12055–63. http://dx.doi.org/10.1016/j.ceramint.2016.04.134.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Boyle, Cullen, Liang Liang, Yun Chen, Jacky Prucz, Ercan Cakmak, Thomas R. Watkins, Edgar Lara-Curzio y Xueyan Song. "Competing dopants grain boundary segregation and resultant seebeck coefficient and power factor enhancement of thermoelectric calcium cobaltite ceramics". Ceramics International 43, n.º 14 (octubre de 2017): 11523–28. http://dx.doi.org/10.1016/j.ceramint.2017.06.029.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Bayata, Fatma. "Enhancement of high temperature thermoelectric performance of cobaltite based materials for automotive exhaust thermoelectric generators". Smart Materials and Structures 31, n.º 2 (27 de diciembre de 2021): 025017. http://dx.doi.org/10.1088/1361-665x/ac4120.

Texto completo
Resumen
Abstract Thermoelectric (TE) generators can directly convert exhaust waste heat into electricity in vehicles. However, the low conversion efficiency of TE generators is the main obstacle to their commercialization in automotive. Their efficiency mainly depends on the performance of the used materials which is quantified by the figure of merit (ZT value). In the present study, single- and co-doped calcium cobaltites (CCO) with rare-earth (Tb) and transition metals (Cu, Fe, Ni, Mn, Cr) were produced using sol–gel technique in order to improve their high temperature TE properties for heat recovery in exhaust manifold applications. By the combined effect of doping approach and the production technique used in this study, a remarkable decrease in the grain size of CCO was obtained, and thus its thermal conductivity dramatically decreased. Besides, thermopower values were improved significantly. The reduction in thermal conductivity and the increase in thermopower led to an enhancement in ZT value of CCO ceramics. Among all the co-doped samples, Tb–Cu co-doped CCO displayed the maximum ZT value of 0.116 at 873 K which is 2.5 times larger than that of pure CCO. The high thermal stability and the enhanced TE performance make Tb–Cu co-doped CCO material a potential candidate for heat recovery in automotive exhaust TE generators.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Klyndyuk, A. I., E. A. Chizhova, R. S. Latypov, S. V. Shevchenko y V. M. Kononovich. "Effect of the Addition of Copper Particles on the Thermoelectric Properties of the Ca3Co4O9 + δ Ceramics Produced by Two-Step Sintering". Russian Journal of Inorganic Chemistry 67, n.º 2 (febrero de 2022): 237–44. http://dx.doi.org/10.1134/s0036023622020073.

Texto completo
Resumen
Abstract Composite thermoelectric materials based on layered calcium cobaltite Ca3Co4O9 + δ doped with copper particles were synthesized by two-step sintering, and their microstructure, and electrotransport and thermoelectric properties were studied. It was determined that the introduction of copper particles into the ceramics improves their sinterability at moderate sintering temperatures (Tsint ≤ 1273 K), leading to a decrease in the porosity of the samples and an increase in their electrical conductivity and power factor, whereas the oxidation of copper to less conductive copper(II) oxide significantly decreases the electrical conductivity and power factor of the ceramics sintered at elevated temperatures (Tsint ≥ 1373 K). The power factor is maximum for the Ca3Co4O9 + δ + 3 wt % Cu ceramic sintered at 1273 K (335 μW/(m K2) at a temperature of 1100 K), which is by a factor of 2.3 higher than the power factor of the base material Ca3Co4O9 + δ with the same thermal history (145 μW/(m K2) at 1100 K) and more than 3 times higher than the power factor of the Ca3Co4O9+δ ceramic synthesized by the conventional solid-phase method.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Bangert, U., U. Falke y A. Weidenkaff. "Nature of domains in lanthanum calcium cobaltite perovskite revealed by atomic resolution Z-contrast and electron energy loss spectroscopy". Materials Science and Engineering: B 133, n.º 1-3 (agosto de 2006): 30–36. http://dx.doi.org/10.1016/j.mseb.2006.04.044.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Dziedzic, Andrzej, Szymon Wójcik, Mirosław Gierczak, Slavko Bernik, Nana Brguljan, Kathrin Reinhardt y Stefan Körner. "Planar Thermoelectric Microgenerators in Application to Power RFID Tags". Sensors 24, n.º 5 (2 de marzo de 2024): 1646. http://dx.doi.org/10.3390/s24051646.

Texto completo
Resumen
This paper presents an innovative approach to the integration of thermoelectric microgenerators (μTEGs) based on thick-film thermopiles of planar constantan–silver (CuNi-Ag) and calcium cobaltite oxide–silver (Ca3Co4O9-Ag) thick-film thermopiles with radio frequency identification (RFID) technology. The goal was to consider using the TEG for an active or semi-passive RFID tag. The proposed implementation would allow the communication distance to be increased or even operated without changing batteries. This article discusses the principles of planar thermoelectric microgenerators (μTEGs), focusing on their ability to convert the temperature difference into electrical energy. The concept of integration with active or semi-passive tags is presented, as well as the results of energy efficiency tests, considering various environmental conditions. On the basis of the measurements, the parameters of thermopiles consisting of more thermocouples were simulated to provide the required voltage and power for cooperation with RFID tags. The conclusions of the research indicate promising prospects for the integration of planar thermoelectric microgenerators with RFID technology, opening the way to more sustainable and efficient monitoring and identification systems. Our work provides the theoretical basis and practical experimental data for the further development and implementation of this innovative technology.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía