Siga este enlace para ver otros tipos de publicaciones sobre el tema: Coassemblies.

Artículos de revistas sobre el tema "Coassemblies"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Coassemblies".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Zhao, Jianjian, Bo Wang, Aiyou Hao y Pengyao Xing. "Arene–perfluoroarene interaction induced chiroptical inversion and precise ee% detection of chiral acids in a benzimidazole-involved ternary coassembly". Nanoscale 14, n.º 5 (2022): 1779–86. http://dx.doi.org/10.1039/d1nr06254a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Cheng, Qiuhong, Aiyou Hao y Pengyao Xing. "Dynamic evolution of supramolecular chirality manipulated by H-bonded coassembly and photoisomerism". Materials Chemistry Frontiers 5, n.º 17 (2021): 6628–38. http://dx.doi.org/10.1039/d1qm00850a.

Texto completo
Resumen
Dynamic evolution of supramolecular chirality inversion and the inversion of corresponding circularly polarized luminescence via the multiple-constituent coassemblies driven by hydrogen bonds was realized.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Shi, Nan, Junyan Tan, Xinhua Wan, Yan Guan y Jie Zhang. "Induced salt-responsive circularly polarized luminescence of hybrid assemblies based on achiral Eu-containing polyoxometalates". Chemical Communications 53, n.º 31 (2017): 4390–93. http://dx.doi.org/10.1039/c7cc01586k.

Texto completo
Resumen
Coassemblies of chiral cationic block polymers and achiral anionic Eu-POMs through electrostatic interactions display salt-responsive induced circularly polarized luminescence, which arises from the static coupling and dynamic coupling.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Wong, Kong M., Alicia S. Robang, Annabelle H. Lint, Yiming Wang, Xin Dong, Xingqing Xiao, Dillon T. Seroski et al. "Engineering β-Sheet Peptide Coassemblies for Biomaterial Applications". Journal of Physical Chemistry B 125, n.º 50 (14 de diciembre de 2021): 13599–609. http://dx.doi.org/10.1021/acs.jpcb.1c04873.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Liang, Juncong, Na Qi, Pengyao Xing y Aiyou Hao. "Selective chiral recognition of achiral species in nanoclay coassemblies". Colloids and Surfaces A: Physicochemical and Engineering Aspects 614 (abril de 2021): 126152. http://dx.doi.org/10.1016/j.colsurfa.2021.126152.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Cao, Zhaozhen, Bo Wang, Feng Zhu, Aiyou Hao y Pengyao Xing. "Solvent-Processed Circularly Polarized Luminescence in Light-Harvesting Coassemblies". ACS Applied Materials & Interfaces 12, n.º 30 (21 de julio de 2020): 34470–78. http://dx.doi.org/10.1021/acsami.0c10559.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Yang, Li, Xiaoqiu Dou, Chunmei Ding y Chuanliang Feng. "Induction of Chirality in Supramolecular Coassemblies Built from Achiral Precursors". Journal of Physical Chemistry Letters 12, n.º 4 (22 de enero de 2021): 1155–61. http://dx.doi.org/10.1021/acs.jpclett.0c03400.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Wang, Lu, Fuqiang Fan, Wei Cao y Huaping Xu. "Ultrasensitive ROS-Responsive Coassemblies of Tellurium-Containing Molecules and Phospholipids". ACS Applied Materials & Interfaces 7, n.º 29 (21 de julio de 2015): 16054–60. http://dx.doi.org/10.1021/acsami.5b04419.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Niu, Lin, Lei Liu, Wenhui Xi, Qiusen Han, Qiang Li, Yue Yu, Qunxing Huang et al. "Synergistic Inhibitory Effect of Peptide–Organic Coassemblies on Amyloid Aggregation". ACS Nano 10, n.º 4 (21 de marzo de 2016): 4143–53. http://dx.doi.org/10.1021/acsnano.5b07396.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Van Zee, Nathan J., Mathijs F. J. Mabesoone, Beatrice Adelizzi, Anja R. A. Palmans y E. W. Meijer. "Biasing the Screw-Sense of Supramolecular Coassemblies Featuring Multiple Helical States". Journal of the American Chemical Society 142, n.º 47 (10 de noviembre de 2020): 20191–200. http://dx.doi.org/10.1021/jacs.0c10456.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Zhao, Jianjian, Yaqing Liu, Aiyou Hao y Pengyao Xing. "High-Throughput Synthesis of Chiroptical Nanostructures from Synergistic Hydrogen-Bonded Coassemblies". ACS Nano 14, n.º 2 (10 de febrero de 2020): 2522–32. http://dx.doi.org/10.1021/acsnano.0c00352.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Wang, Lu, Wei Cao, Yu Yi y Huaping Xu. "Dual Redox Responsive Coassemblies of Diselenide-Containing Block Copolymers and Polymer Lipids". Langmuir 30, n.º 19 (9 de mayo de 2014): 5628–36. http://dx.doi.org/10.1021/la501054z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Schlesinger, Friedrich, Derk Tammena, Klaus Krampfl y Johannes Bufler. "Desensitization and resensitization are independently regulated in human recombinant GluR subunit coassemblies". Synapse 55, n.º 3 (2005): 176–82. http://dx.doi.org/10.1002/syn.20110.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Ching, GY y RK Liem. "Assembly of type IV neuronal intermediate filaments in nonneuronal cells in the absence of preexisting cytoplasmic intermediate filaments". Journal of Cell Biology 122, n.º 6 (15 de septiembre de 1993): 1323–35. http://dx.doi.org/10.1083/jcb.122.6.1323.

Texto completo
Resumen
We report here on the in vivo assembly of alpha-internexin, a type IV neuronal intermediate filament protein, in transfected cultured cells, comparing its assembly properties with those of the neurofilament triplet proteins (NF-L, NF-M, and NF-H). Like the neurofilament triplet proteins, alpha-internexin coassembles with vimentin into filaments. To study the assembly characteristics of these proteins in the absence of a preexisting filament network, transient transfection experiments were performed with a non-neuronal cell line lacking cytoplasmic intermediate filaments. The results showed that only alpha-internexin was able to self-assemble into extensive filamentous networks. In contrast, the neurofilament triplet proteins were incapable of homopolymeric assembly into filamentous arrays in vivo. NF-L coassembled with either NF-M or NF-H into filamentous structures in the transfected cells, but NF-M could not form filaments with NF-H. alpha-internexin could coassemble with each of the neurofilament triplet proteins in the transfected cells to form filaments. When all but 2 and 10 amino acid residues were removed from the tail domains of NF-L and NF-M, respectively, the resulting NF-L and NF-M deletion mutants retained the ability to coassemble with alpha-internexin into filamentous networks. These mutants were also capable of forming filaments with other wild-type neurofilament triplet protein subunits. These results suggest that the tail domains of NF-L and NF-M are dispensable for normal coassembly of each of these proteins with other type IV intermediate filament proteins to form filaments.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Guo, Zhijun, Guangyue Bai, Xize Zhan, Kelei Zhuo, Jianji Wang y Yujie Wang. "Supramolecular Vector/Drug Coassemblies of Polyglycerol Dendrons and Rutin Enhance the pH Response". Langmuir 38, n.º 11 (10 de marzo de 2022): 3392–402. http://dx.doi.org/10.1021/acs.langmuir.1c03131.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Jain, Anurag, Lisa M. Hall, Carlos B. W. Garcia, Sol M. Gruner y Ulrich Wiesner. "Flow-Induced Alignment of Block Copolymer−Sol Nanoparticle Coassemblies toward Oriented Bulk Polymer−Silica Hybrids". Macromolecules 38, n.º 24 (noviembre de 2005): 10095–100. http://dx.doi.org/10.1021/ma0483930.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Cohen-Erez, Ifat y Hanna Rapaport. "Coassemblies of the Anionic Polypeptide γ-PGA and Cationic β-Sheet Peptides for Drug Delivery to Mitochondria". Biomacromolecules 16, n.º 12 (9 de noviembre de 2015): 3827–35. http://dx.doi.org/10.1021/acs.biomac.5b01140.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Liu, Wei, Jun Mao, Yanhu Xue, Ziliang Zhao, Haishan Zhang y Xiangling Ji. "Nanoparticle Loading Induced Morphological Transitions and Size Fractionation of Coassemblies from PS-b-PAA with Quantum Dots". Langmuir 32, n.º 30 (22 de julio de 2016): 7596–605. http://dx.doi.org/10.1021/acs.langmuir.6b02202.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Shao, Qing, Kong M. Wong, Dillon T. Seroski, Yiming Wang, Renjie Liu, Anant K. Paravastu, Gregory A. Hudalla y Carol K. Hall. "Anatomy of a selectively coassembled β-sheet peptide nanofiber". Proceedings of the National Academy of Sciences 117, n.º 9 (18 de febrero de 2020): 4710–17. http://dx.doi.org/10.1073/pnas.1912810117.

Texto completo
Resumen
Peptide self-assembly, wherein molecule A associates with other A molecules to form fibrillar β-sheet structures, is common in nature and widely used to fabricate synthetic biomaterials. Selective coassembly of peptide pairs A and B with complementary partial charges is gaining interest due to its potential for expanding the form and function of biomaterials that can be realized. It has been hypothesized that charge-complementary peptides organize into alternating ABAB-type arrangements within assembled β-sheets, but no direct molecular-level evidence exists to support this interpretation. We report a computational and experimental approach to characterize molecular-level organization of the established peptide pair, CATCH. Discontinuous molecular dynamics simulations predict that CATCH(+) and CATCH(−) peptides coassemble but do not self-assemble. Two-layer β-sheet amyloid structures predominate, but off-pathway β-barrel oligomers are also predicted. At low concentration, transmission electron microscopy and dynamic light scattering identified nonfibrillar ∼20-nm oligomers, while at high concentrations elongated fibers predominated. Thioflavin T fluorimetry estimates rapid and near-stoichiometric coassembly of CATCH(+) and CATCH(−) at concentrations ≥100 μM. Natural abundance13C NMR and isotope-edited Fourier transform infrared spectroscopy indicate that CATCH(+) and CATCH(−) coassemble into two-component nanofibers instead of self-sorting. However,13C–13C dipolar recoupling solid-state NMR measurements also identify nonnegligible AA and BB interactions among a majority of AB pairs. Collectively, these results demonstrate that strictly alternating arrangements of β-strands predominate in coassembled CATCH structures, but deviations from perfect alternation occur. Off-pathway β-barrel oligomers are also suggested to occur in coassembled β-strand peptide systems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Yang, Wei, Chenqi Xu, Fuguo Liu, Fang Yuan y Yanxiang Gao. "Native and Thermally Modified Protein–Polyphenol Coassemblies: Lactoferrin-Based Nanoparticles and Submicrometer Particles as Protective Vehicles for (−)-Epigallocatechin-3-gallate". Journal of Agricultural and Food Chemistry 62, n.º 44 (21 de octubre de 2014): 10816–27. http://dx.doi.org/10.1021/jf5038147.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Sukhanova, Maria V., Rashid O. Anarbaev, Ekaterina A. Maltseva, David Pastré y Olga I. Lavrik. "FUS Microphase Separation: Regulation by Nucleic Acid Polymers and DNA Repair Proteins". International Journal of Molecular Sciences 23, n.º 21 (30 de octubre de 2022): 13200. http://dx.doi.org/10.3390/ijms232113200.

Texto completo
Resumen
Fused in sarcoma (FUS) is involved in the regulation of RNA and DNA metabolism. FUS participates in the formation of biomolecular condensates driven by phase transition. FUS is prone to self-aggregation and tends to undergo phase transition both with or without nucleic acid polymers. Using dynamic light scattering and fluorescence microscopy, we examined the formation of FUS high-order structures or FUS-rich microphases induced by the presence of RNA, poly(ADP-ribose), ssDNA, or dsDNA and evaluated effects of some nucleic-acid-binding proteins on the phase behavior of FUS–nucleic acid systems. Formation and stability of FUS-rich microphases only partially correlated with FUS’s affinity for a nucleic acid polymer. Some proteins—which directly interact with PAR, RNA, ssDNA, and dsDNA and are possible components of FUS-enriched cellular condensates—disrupted the nucleic-acid-induced assembly of FUS-rich microphases. We found that XRCC1, a DNA repair factor, underwent a microphase separation and formed own microdroplets and coassemblies with FUS in the presence of poly(ADP-ribose). These results probably indicated an important role of nucleic-acid-binding proteins in the regulation of FUS-dependent formation of condensates and imply the possibility of the formation of XRCC1-dependent phase-separated condensates in the cell.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Zeng, Danli, Ibtissam Tahar-Djebbar, Yiming Xiao, Farid Kameche, Navaphun Kayunkid, Martin Brinkmann, Daniel Guillon et al. "Intertwined Lamello-Columnar Coassemblies in Liquid-Crystalline Side-Chain Π-Conjugated Polymers: Toward a New Class of Nanostructured Supramolecular Organic Semiconductors". Macromolecules 47, n.º 5 (24 de febrero de 2014): 1715–31. http://dx.doi.org/10.1021/ma4020356.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Page, L. J. y M. S. Robinson. "Targeting signals and subunit interactions in coated vesicle adaptor complexes." Journal of Cell Biology 131, n.º 3 (1 de noviembre de 1995): 619–30. http://dx.doi.org/10.1083/jcb.131.3.619.

Texto completo
Resumen
There are two clathrin-coated vesicle adaptor complexes in the cell, one associated with the plasma membrane and one associated with the TGN. The subunit composition of the plasma membrane adaptor complex is alpha-adaptin, beta-adaptin, AP50, and AP17; while that of the TGN adaptor complex is gamma-adaptin, beta'-adaptin, AP47, and AP19. To search for adaptor targeting signals, we have constructed chimeras between alpha-adaptin and gamma-adaptin within their NH2-terminal domains. We have identified stretches of sequence in the two proteins between amino acids approximately 130 and 330-350 that are essential for targeting. Immunoprecipitation reveals that this region determines whether a construct coassemblies with AP50 and AP17, or with AP47 and AP19. These observations suggest that these other subunits may play an important role in targeting. In contrast, beta- and beta'-adaptins are clearly not involved in this event. Chimeras between the alpha- and gamma-adaptin COOH-terminal domains reveal the presence of a second targeting signal. We have further investigated the interactions between the adaptor subunits using the yeast two-hybrid system. Interactions can be detected between the beta/beta'-adaptins and the alpha/gamma-adaptins, between the beta/beta'-adaptins and the AP50/AP47 subunits, between alpha-adaptin and AP17, and between gamma-adaptin and AP19. These results indicate that the adaptor subunits act in concert to target the complex to the appropriate membrane.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Ching, G. Y. y R. K. Liem. "Roles of head and tail domains in alpha-internexin's self-assembly and coassembly with the neurofilament triplet proteins". Journal of Cell Science 111, n.º 3 (1 de febrero de 1998): 321–33. http://dx.doi.org/10.1242/jcs.111.3.321.

Texto completo
Resumen
The roles of the head and tail domains of alpha-internexin, a type IV neuronal intermediate filament protein, in its self-assembly and coassemblies with neurofilament triplet proteins, were examined by transient transfections with deletion mutants in a non-neuronal cell line lacking an endogenous cytoplasmic intermediate filament network. The results from the self-assembly studies showed that the head domain was essential for alpha-internexin's ability to self-assemble into a filament network and the tail domain was important for establishing a proper filament network. The data from the coassembly studies demonstrated that alpha-internexin interacted differentially with the neurofilament triplet protein subunits. Wild-type NF-L or NF-M, but not NF-H, was able to complement and form a normal filament network with the tailless alpha-internexin mutant, the alpha-internexin head-deletion mutant, or the alpha-internexin mutant missing the entire tail and some amino-terminal portion of the head domain. In contrast, neither the tailless NF-L mutant nor the NF-L head-deletion mutant was able to form a normal filament network with any of these alpha-internexin deletion mutants. However, coassembly of the tailless NF-M mutant with the alpha-internexin head-deletion mutant and coassembly of the NF-M head-deletion mutant with the tailless alpha-internexin mutant resulted in the formation of a normal filament network. Thus, the coassembly between alpha-internexin and NF-M exhibits some unique characteristics previously not observed with other intermediate filament proteins: only one intact tail and one intact head are required for the formation of a normal filament network, and they can be present within the same partner or separately in two partners.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Hedegaard, Clara Louise, Carlos Redondo-Gómez, Bee Yi Tan, Kee Woei Ng, Daniela Loessner y Alvaro Mata. "Peptide-protein coassembling matrices as a biomimetic 3D model of ovarian cancer". Science Advances 6, n.º 40 (octubre de 2020): eabb3298. http://dx.doi.org/10.1126/sciadv.abb3298.

Texto completo
Resumen
Bioengineered three-dimensional (3D) matrices expand our experimental repertoire to study tumor growth and progression in a biologically relevant, yet controlled, manner. Here, we used peptide amphiphiles (PAs) to coassemble with and organize extracellular matrix (ECM) proteins producing tunable 3D models of the tumor microenvironment. The matrix was designed to mimic physical and biomolecular features of tumors present in patients. We included specific epitopes, PA nanofibers, and ECM macromolecules for the 3D culture of human ovarian cancer, endothelial, and mesenchymal stem cells. The multicellular constructs supported the formation of tumor spheroids with extensive F-actin networks surrounding the spheroids, enabling cell-cell communication, and comparative cell-matrix interactions and encapsulation response to those observed in Matrigel. We conducted a proof-of-concept study with clinically used chemotherapeutics to validate the functionality of the multicellular constructs. Our study demonstrates that peptide-protein coassembling matrices serve as a defined model of the multicellular tumor microenvironment of primary ovarian tumors.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Urban, Jennifer M., Janson Ho, Gavin Piester, Riqiang Fu y Bradley L. Nilsson. "Rippled β-Sheet Formation by an Amyloid-β Fragment Indicates Expanded Scope of Sequence Space for Enantiomeric β-Sheet Peptide Coassembly". Molecules 24, n.º 10 (23 de mayo de 2019): 1983. http://dx.doi.org/10.3390/molecules24101983.

Texto completo
Resumen
In 1953, Pauling and Corey predicted that enantiomeric β-sheet peptides would coassemble into so-called “rippled” β-sheets, in which the β-sheets would consist of alternating l- and d-peptides. To date, this phenomenon has been investigated primarily with amphipathic peptide sequences composed of alternating hydrophilic and hydrophobic amino acid residues. Here, we show that enantiomers of a fragment of the amyloid-β (Aβ) peptide that does not follow this sequence pattern, amyloid-β (16–22), readily coassembles into rippled β-sheets. Equimolar mixtures of enantiomeric amyloid-β (16–22) peptides assemble into supramolecular structures that exhibit distinct morphologies from those observed by self-assembly of the single enantiomer pleated β-sheet fibrils. Formation of rippled β-sheets composed of alternating l- and d-amyloid-β (16–22) is confirmed by isotope-edited infrared spectroscopy and solid-state NMR spectroscopy. Sedimentation analysis reveals that rippled β-sheet formation by l- and d-amyloid-β (16–22) is energetically favorable relative to self-assembly into corresponding pleated β-sheets. This work illustrates that coassembly of enantiomeric β-sheet peptides into rippled β-sheets is not limited to peptides with alternating hydrophobic/hydrophilic sequence patterns, but that a broader range of sequence space is available for the design and preparation of rippled β-sheet materials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Schweitzer, S. C., M. W. Klymkowsky, R. M. Bellin, R. M. Robson, Y. Capetanaki y R. M. Evans. "Paranemin and the organization of desmin filament networks". Journal of Cell Science 114, n.º 6 (15 de marzo de 2001): 1079–89. http://dx.doi.org/10.1242/jcs.114.6.1079.

Texto completo
Resumen
De novo expression of vimentin, GFAP or peripherin leads to the assembly of an extended intermediate filament network in intermediate filament-free SW13/cl.2 cells. Desmin, in contrast, does not form extended filament networks in either SW13/cl.2 or intermediate filament-free mouse fibroblasts. Rather, desmin formed short thickened filamentous structures and prominent spot-like cytoplasmic aggregates that were composed of densely packed 9–11 nm diameter filaments. Analysis of stably transfected cell lines indicates that the inability of desmin to form extended networks is not due to a difference in the level of transgene expression. Nestin, paranemin and synemin are large intermediate filament proteins that coassemble with desmin in muscle cells. Although each of these large intermediate filament proteins colocalized with desmin when coexpressed in SW-13 cells, expression of paranemin, but not synemin or nestin, led to the formation of an extended desmin network. A similar rescue of desmin network organization was observed when desmin was coexpressed with vimentin, which coassembles with desmin, or with keratins, which formed a distinct filament network. These studies demonstrate that desmin filaments differ in their organizational properties from the other vimentin-like intermediate filament proteins and appear to depend upon coassembly with paranemin, at least when they are expressed in non-muscle cells, in order to form an extended filament network.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Hoshino, Osamu. "An Ongoing Subthreshold Neuronal State Established Through Dynamic Coassembling of Cortical Cells". Neural Computation 20, n.º 12 (diciembre de 2008): 3055–86. http://dx.doi.org/10.1162/neco.2008.08-07-589.

Texto completo
Resumen
Ensemble activation of neurons, triggered or spontaneous, sometimes involves a common (overlapping) neuronal population known as core cells. It is speculated that the core cells functioning as a core nucleus have a role in dictating noncore cells' behavior and thus overall local network dynamics. However, the truth and its significance in neuronal information processing still remain to be seen. To address this issue, a neural network model of an early sensory cortical area was simulated. In the network model, noncore cells that have selective responsiveness to sensory features constituted noncore cell assemblies. Core cells, having unselective responsiveness, constituted a single core cell assembly. Sensory stimulation activated neuronal ensembles that were indistinguishable from those activated spontaneously. The core cells were active in every ensemble activation and recruited a changing complement of noncore cells, which varied from spontaneous event to spontaneous event or from triggered event to triggered event. Ensemble activation of neurons was established through what we call dynamic coassembling, in which the core cell assembly and one of the noncore cell assemblies were dynamically linked together. Transient dynamic coassembling frequently and randomly took place during the ongoing (spontaneous) neuronal activity period, and persistent dynamic coassembling did during the stimulus-triggered neuronal activity period. The frequent ongoing activation of core cells mediated through transient dynamic coassembling depolarized noncore cells just below firing threshold, whereby the noncore cells could respond rapidly to sensory stimulation. The persistent dynamic coassembling enhanced the responsiveness of noncore cells. We suggest that the core cells, functioning as a core nucleus, dictate how the noncore cells oscillate at a subthreshold level during the ongoing period and how to respond when stimulated. The transient and persistent dynamic coassembling may be an essential neuronal mechanism for the cortex to prepare and respond effectively to sensory input.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Chen, Jianbo, Vinay K. Pathak, Weiqun Peng y Wei-Shau Hu. "Capsid Proteins from Human Immunodeficiency Virus Type 1 and Simian Immunodeficiency Virus SIVmac Can Coassemble into Mature Cores of Infectious Viruses". Journal of Virology 82, n.º 17 (25 de junio de 2008): 8253–61. http://dx.doi.org/10.1128/jvi.02663-07.

Texto completo
Resumen
ABSTRACT We have recently shown that the Gag polyproteins from human immunodeficiency virus type 1 (HIV-1) and HIV-2 can coassemble and functionally complement each other. During virion maturation, the Gag polyproteins undergo proteolytic cleavage to release mature proteins including capsid (CA), which refolds and forms the outer shell of a cone-shaped mature core. Less than one-half of the CA proteins present within the HIV-1 virion are required to form the mature core. Therefore, it is unclear whether the mature core in virions containing both HIV-1 and HIV-2 Gag consists of CA proteins from a single virus or from both viruses. To determine whether CA proteins from two different viruses can coassemble into mature cores of infectious viruses, we exploited the specificity of the tripartite motif 5α protein from the rhesus monkey (rhTRIM5α) for cores containing HIV-1 CA (hCA) but not the simian immunodeficiency virus SIVmac CA protein (sCA). If hCA and sCA cannot coassemble into the same core when equal amounts of sCA and hCA are coexpressed, the infectivities of such virus preparations in cells should be inhibited less than twofold by rhTRIM5α. However, if hCA and sCA can coassemble into the same core structure to form a mixed core, rhTRIM5α would be able to recognize such cores and significantly restrict virus infectivity. We examined the restriction phenotypes of viruses containing both hCA and sCA. Our results indicate that hCA and sCA can coassemble into the same mature core to produce infectious virus. To our knowledge, this is the first demonstration of functional coassembly of heterologous CA protein into the retroviral core.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Guo, Jun, Fan Zheng, Bo Song y Feng Zhang. "Tripeptide-dopamine fluorescent hybrids: a coassembly-inspired antioxidative strategy". Chemical Communications 56, n.º 46 (2020): 6301–4. http://dx.doi.org/10.1039/d0cc01882a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Li, Jin, Zhilong Su, Hongjie Xu, Xiaodong Ma, Jie Yin y Xuesong Jiang. "Photo-Induced Programmable Morphological Transition of the Hybrid Coassembles". Macromolecular Chemistry and Physics 219, n.º 11 (17 de abril de 2018): 1800054. http://dx.doi.org/10.1002/macp.201800054.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Bower, Raqual, Douglas Tritschler, Kristyn VanderWaal Mills, Thomas Heuser, Daniela Nicastro y Mary E. Porter. "DRC2/CCDC65 is a central hub for assembly of the nexin–dynein regulatory complex and other regulators of ciliary and flagellar motility". Molecular Biology of the Cell 29, n.º 2 (15 de enero de 2018): 137–53. http://dx.doi.org/10.1091/mbc.e17-08-0510.

Texto completo
Resumen
DRC2 is a subunit of the nexin–dynein regulatory complex linked to primary ciliary dyskinesia. Little is known about the impact of drc2 mutations on axoneme composition and structure. We used proteomic and structural approaches to reveal that DRC2 coassembles with DRC1 to attach the N-DRC to the A-tubule and mediate interactions with other regulatory structures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Han, Dongxue, Jianlei Han, Shengwei Huo, Zuoming Qu, Tifeng Jiao, Minghua Liu y Pengfei Duan. "Proton triggered circularly polarized luminescence in orthogonal- and co-assemblies of chiral gelators with achiral perylene bisimide". Chemical Communications 54, n.º 44 (2018): 5630–33. http://dx.doi.org/10.1039/c8cc02777c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Cheng, Xijun, Simin Zhang y Xun Wang. "Cluster–Nuclei Coassembled One-Dimensional Subnanometer Heteronanostructures". Nano Letters 21, n.º 23 (24 de noviembre de 2021): 9845–52. http://dx.doi.org/10.1021/acs.nanolett.1c03936.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Ardoña, Herdeline Ann M. y John D. Tovar. "Energy transfer within responsive pi-conjugated coassembled peptide-based nanostructures in aqueous environments". Chemical Science 6, n.º 2 (2015): 1474–84. http://dx.doi.org/10.1039/c4sc03122a.

Texto completo
Resumen
Energy transfer is demonstrated within a responsive donor–acceptor system which incorporates two different semiconducting units (oligo(p-phenylenevinylene and quaterthiophene) coassembled within peptide nanostructures in completely aqueous environments.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Gohma, Hiroshi, Takashi Kuramoto, Mitsuru Kuwamura, Ryoko Okajima, Noriaki Tanimoto, Ken-ichi Yamasaki, Satoshi Nakanishi et al. "WTC deafness Kyoto (dfk): a rat model for extensive investigations of Kcnq1 functions". Physiological Genomics 24, n.º 3 (marzo de 2006): 198–206. http://dx.doi.org/10.1152/physiolgenomics.00221.2005.

Texto completo
Resumen
KCNQ1 forms K+ channels by assembly with regulatory subunit KCNE proteins and plays a key role in the K+ homeostasis in a variety of tissues. In the heart, KCNQ1 is coassembled with KCNE1 to produce a cardiac delayed rectifier K+ current. In the inner ear, the KCNQ1/KCNE1 complex maintains the high concentration of K+ in the endolymph. In the stomach, KCNQ1 is coassembled with KCNE2 to form the K+ exflux channel that is essential for gastric acid secretion. In the colon and small intestine, KCNQ1 is coassembled with KCNE3 to play an important role in transepithelial cAMP-stimulated Cl− secretion. For further understanding of Kcnq1 function in vivo, an animal model has been required. Here we reported the identification of a coisogenic Kcnq1 mutant rat, named deafness Kyoto ( dfk), and the characterization of its phenotypes. WTC- dfk rats carried intragenic deletion at the Kcnq1 gene and showed impaired gain of weight, deafness, and imbalance resulting from the marked reduction of endolymph, prolonged QT interval in the electrocardiogram (ECG), and gastric achlorhydria associated with hypertrophic gastric mucosa. Surprisingly, WTC- dfk rats showed hypertension, which suggested that Kcnq1 might be involved in the regulation of blood pressure. These findings suggest that WTC- dfk rats could represent a powerful tool for studying the physiological functions of KCNQ1 and for the establishment of new therapeutic procedures for Kcnq1-related diseases.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Praveen, Vakayil K., Yohei Yamamoto, Takanori Fukushima, Yoshihide Tsunobuchi, Koji Nakabayashi, Shin-ichi Ohkoshi, Kenichi Kato, Masaki Takata y Takuzo Aida. "Translation of the assembling trajectory by preorganisation: a study of the magnetic properties of 1D polymeric unpaired electrons immobilised on a discrete nanoscopic scaffold". Chemical Communications 51, n.º 7 (2015): 1206–9. http://dx.doi.org/10.1039/c4cc08942a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Wang, Qian, Xiaoxue Hou, Jie Gao, Chunhua Ren, Qingxiang Guo, Huirong Fan, Jinjian Liu, Wenxue Zhang y Jianfeng Liu. "A coassembled peptide hydrogel boosts the radiosensitization of cisplatin". Chemical Communications 56, n.º 85 (2020): 13017–20. http://dx.doi.org/10.1039/d0cc05184e.

Texto completo
Resumen
The use of a novel coassembled peptide hydrogel enhanced the radiosensitization effect of cisplatin by increasing the number of Pt–DNA adducts, arresting the cell cycle, and promoting the inhibition of cyclooxygenase-2.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Green, Hodaya, Guy Ochbaum, Anna Gitelman-Povimonsky, Ronit Bitton y Hanna Rapaport. "RGD-presenting peptides in amphiphilic and anionic β-sheet hydrogels for improved interactions with cells". RSC Advances 8, n.º 18 (2018): 10072–80. http://dx.doi.org/10.1039/c7ra12503h.

Texto completo
Resumen
Schematic presentation of 25% mol FD-RGD in FD anionic β-sheet peptide assemblies (left) that form fibrils (middle). Hydrogels composed of this coassembled peptide system improved cell density compared to FD only hydrogels.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Cheng, Qiuhong, Zhuoer Wang, Aiyou Hao, Pengyao Xing y Yanli Zhao. "Aromatic vapor responsive molecular packing rearrangement in supramolecular gels". Materials Chemistry Frontiers 4, n.º 8 (2020): 2452–61. http://dx.doi.org/10.1039/d0qm00348d.

Texto completo
Resumen
Aromatic vapor responsive hydrogels are prepared by crystal transformation of commercially available β-cyclodextrin (β-CD). Hydrogel composites coassembled by clay with β-CD show haze evolution toward aromatic vapor under heating–cooling treatment.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Xu, Hui, Huanhuan Lu, Qi Zhang, Meng Chen, Yahan Shan, Tian-Yi Xu, Fei Tong y Da-Hui Qu. "Surfactant-induced chirality transfer, amplification and inversion in a cucurbit[8]uril–viologen host–guest supramolecular system". Journal of Materials Chemistry C 10, n.º 7 (2022): 2763–74. http://dx.doi.org/10.1039/d1tc03975j.

Texto completo
Resumen
The L4 molecular chirality can be amplified to a supramolecular scale by coassembling with SDS. Further incorporation of the CB[8] leads to a chirality inversion via a change from lamellar structure of L4/SDS to rectangular stacking in L4/SDS/CB[8].
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Miao, Ke, Huanhuan Liu y Youliang Zhao. "Thermo, pH and reduction responsive coaggregates comprising AB2C2 star terpolymers for multi-triggered release of doxorubicin". Polym. Chem. 5, n.º 10 (2014): 3335–45. http://dx.doi.org/10.1039/c3py01767b.

Texto completo
Resumen
Novel disulfide-linked PEG(PCL)2(PNIPAM)2 and PEG(PCL)2(PAA)2 star terpolymers were synthesized and coassembled into mixed micelles or vesicles for multi-triggered drug release.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Cinar, Goksu, Ilghar Orujalipoor, Chun-Jen Su, U.-Ser Jeng, Semra Ide y Mustafa O. Guler. "Supramolecular Nanostructure Formation of Coassembled Amyloid Inspired Peptides". Langmuir 32, n.º 25 (14 de junio de 2016): 6506–14. http://dx.doi.org/10.1021/acs.langmuir.6b00704.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Beach, Jordan R., Lin Shao, Kirsten Remmert, Dong Li, Eric Betzig y John A. Hammer. "Nonmuscle Myosin II Isoforms Coassemble in Living Cells". Current Biology 25, n.º 3 (febrero de 2015): 402. http://dx.doi.org/10.1016/j.cub.2015.01.028.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Beach, Jordan R., Lin Shao, Kirsten Remmert, Dong Li, Eric Betzig y John A. Hammer. "Nonmuscle Myosin II Isoforms Coassemble in Living Cells". Current Biology 24, n.º 10 (mayo de 2014): 1160–66. http://dx.doi.org/10.1016/j.cub.2014.03.071.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Swanekamp, Ria J., Jade J. Welch y Bradley L. Nilsson. "Proteolytic stability of amphipathic peptide hydrogels composed of self-assembled pleated β-sheet or coassembled rippled β-sheet fibrils". Chem. Commun. 50, n.º 70 (2014): 10133–36. http://dx.doi.org/10.1039/c4cc04644g.

Texto completo
Resumen
Hydrogel networks composed of rippled β-sheet fibrils of coassembled d- and l-Ac-(FKFE)2-NH2 amphipathic peptides exhibit proteolytic stability and increased rheological strength compared to networks of self-assembled l-Ac-(FKFE)2-NH2 pleated β-sheet fibrils.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Akram, Bilal, Qichen Lu y Xun Wang. "Polyoxometalate–Zirconia Coassembled Microdumbbells for Efficient Capture of Iodine". ACS Materials Letters 2, n.º 5 (26 de marzo de 2020): 461–65. http://dx.doi.org/10.1021/acsmaterialslett.0c00068.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Xu, Yin, Yingjie Zhou, Jingjing Liu y Luyi Sun. "Coassembled ionic liquid/laponite hybrids as effective CO2 adsorbents". Journal of Energy Chemistry 26, n.º 5 (septiembre de 2017): 1026–29. http://dx.doi.org/10.1016/j.jechem.2017.09.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Bollhorst, Tobias, Shakiba Shahabi, Katharina Wörz, Charlotte Petters, Ralf Dringen, Michael Maas y Kurosch Rezwan. "Bifunctional Submicron Colloidosomes Coassembled from Fluorescent and Superparamagnetic Nanoparticles". Angewandte Chemie International Edition 54, n.º 1 (4 de noviembre de 2014): 118–23. http://dx.doi.org/10.1002/anie.201408515.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Bollhorst, Tobias, Shakiba Shahabi, Katharina Wörz, Charlotte Petters, Ralf Dringen, Michael Maas y Kurosch Rezwan. "Bifunctional Submicron Colloidosomes Coassembled from Fluorescent and Superparamagnetic Nanoparticles". Angewandte Chemie 127, n.º 1 (4 de noviembre de 2014): 120–25. http://dx.doi.org/10.1002/ange.201408515.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía