Tesis sobre el tema "CO₂ hydrogenation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 48 mejores tesis para su investigación sobre el tema "CO₂ hydrogenation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Musadi, Maya Ramadianti. "Catalytic hydrogenation of CO₂ for sustainable transport". Thesis, University of Manchester, 2009. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.505377.
Texto completoRennison, A. J. "CO hydrogenation on reduced solid solution catalysts". Thesis, University of Bath, 1987. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378000.
Texto completoBalakrishnan, Nianthrini. "Theoretical Studies of Co Based Catalysts on CO Hydrogenation and Oxidation". Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4434.
Texto completoNozonke, Dumani. "Iron modification of rhodium nano-crystallites for CO hydrogenation". Master's thesis, University of Cape Town, 2013. http://hdl.handle.net/11427/16858.
Texto completoSchweicher, Julien. "Kinetic and mechanistic studies of CO hydrogenation over cobalt-based catalysts". Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210036.
Texto completoTwo different types of catalysts have been investigated during this thesis: cobalt with magnesia used as support or dispersant (Co/MgO) and cobalt with silica used as support (Co/SiO2). Each catalyst from the first class is prepared by precipitation of a mixed Co/Mg oxalate in acetone. This coprecipitation is followed by a thermal decomposition under reductive atmosphere leading to a mixed Co/MgO catalyst. On the other hand, Co/SiO2 catalysts are prepared by impregnation of a commercial silica support with a chloroform solution containing Co nanoparticles. This impregnation is then followed by a thermal activation under reductive atmosphere.
The mixed Co/Mg oxalates and the resulting Co/MgO catalysts have been extensively characterized in order to gain a better understanding of the composition, the structure and the morphology of these materials: thermal treatments under reductive and inert atmospheres (followed by MS, DRIFTS, TGA and DTA), BET surface area measurements, XRD and electron microscopy studies have been performed. Moreover, an original in situ technique for measuring the H2 chemisorption surface area of catalysts has been developed and used over our catalysts.
The performances of the Co/MgO and Co/SiO2 catalysts have then been evaluated in the CO+H2 reaction at atmospheric pressure. Chemical Transient Kinetics (CTK) experiments have been carried out in order to obtain information about the reaction kinetics and mechanism and the nature of the catalyst active surface under reaction conditions. The influence of several experimental parameters (temperature, H2 and CO partial pressures, total volumetric flow rate) and the effect of passivation are also discussed with regard to the catalyst behavior.
Our results indicate that the FT active surface of Co/MgO 10/1 (molar ratio) is entirely covered by carbon, oxygen and hydrogen atoms, most probably associated as surface complexes (possibly formate species). Thus, this active surface does not present the properties of a metallic Co surface (this has been proved by performing original experiments consisting in switching from the CO+H2 reaction to the propane hydrogenolysis reaction (C3H8+H2) which is sensitive to the metallic nature of the catalyst). CTK experiments have also shown that gaseous CO is the monomer responsible for chain lengthening in the FT reaction (and not any CHx surface intermediates as commonly believed). Moreover, CO chemisorption has been found to be irreversible under reaction conditions.
The CTK results obtained over Co/SiO2 are quite different and do not permit to draw sharp conclusions concerning the FT reaction mechanism. More detailed studies would have to be carried out over these samples.
Finally, Co/MgO catalysts have also been studied on a combined DRIFTS/MS experimental set-up in Belfast. CTK and Steady-State Isotopic Transient Kinetic Analysis (SSITKA) experiments have been carried out. While formate and methylene (CH2) groups have been detected by DRIFTS during the FT reaction, the results indicate that these species play no role as active intermediates. These formates are most probably located on MgO or at the Co/MgO interface, while methylene groups stand for skeleton CH2 in either hydrocarbon or carboxylate. Unfortunately, formate/methylene species have not been detected by DRIFTS over pure Co catalyst without MgO, because of the full signal absorption.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
DAUBREGE, FRANCK. "Etude de la mise en regime des catalyseurs a base de cuivre et de cobalt destines a la synthese d'alcools superieurs a partir de co/h#2". Paris 6, 1990. http://www.theses.fr/1990PA066465.
Texto completoYao, Libo. "Sustainable, energy-efficient hydrogenation processes for selective chemical syntheses". University of Akron / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=akron1626172267871778.
Texto completoAoyama, Yoshimasa. "Hybridization of 4d Metal Nanoparticles with Metal-Organic Framework and the Investigation of the Catalytic Property". Kyoto University, 2020. http://hdl.handle.net/2433/254504.
Texto completoJi, Qinqin. "The synthesis of higher alcohols from CO2 hydrogenation with Co, Cu, Fe-based catalysts". Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF023/document.
Texto completoCO2 is a clean carbon source for the chemical reactions, many researchers have studied the utilization of CO2. Higher alcohols are clean fuel additives. The synthesis of higher alcohols from CO hydrogenation has also been studied by many researchers, but there are few literatures about the synthesis of higher alcohols from CO2 hydrogenation, which is a complex and difficult reaction. The catalysts that used for higher alcohols synthesis need at least two active phases and goodcooperation. In our study, we tested the Co. Cu. Fe spinel-based catalysts and the effect of supports (CNTs and TUD-1) and promoters (K, Na, Cs) to the HAS reaction. We found that catalyst CuFe-precursor-800 is beneficial for the synthesis of C2+ hydrocarbons and higher alcohols. In the CO2 hydrogenation, Co acts as a methanation catalyst rather than acting as a FT catalyst, because of the different reaction mechanism between CO hydrogenation and CO2 hydrogenation. In order to inhibit the formation of huge amount of hydrocarbons, it is better to choose catalysts without Co in the CO2 hydrogenation reaction. Compared the functions of CNTs and TUD-1, we found that CNTs is a perfect support for the synthesis of long-chain products (higher alcohols and C2+ hydrocarbons). The TUD-1 support are more suitable for synthesis of single-carbon products (methane and methanol).The addition of alkalis as promoters does not only lead to increase the conversion of CO2 and H2, but also sharply increased the selectivity to the desired products, higher alcohols. The catalyst 0.5K30CuFeCNTs owns the highest productivities (370.7 g∙kg-1∙h-1) of higher alcohols at 350 °C and 50 bar
FERREIRA, ELINER A. "Estudo das propriedades magnéticas e da microestrutura em imãs permanentes à base de Pr-Fe-B-Co-Nd obtidos pelos processos HD e HDDR". reponame:Repositório Institucional do IPEN, 2008. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11694.
Texto completoMade available in DSpace on 2014-10-09T14:06:59Z (GMT). No. of bitstreams: 0
Dissertação (Mestrado)
IPEN/D
Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP
Paredes-Nunez, Anaëlle. "Étude de la réaction d’hydrogénation du CO sur des catalyseurs à base de cobalt supporté par DRIFTS operando". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1200.
Texto completoOur dependence on fossil fuels and the decrease of oil resources warrant the search for renewable energy sources and chemicals. Fischer-Tropsch synthesis enables meeting the requirements for cleaner and renewable fuels through the use of syngas obtained from biomass.The objective of this work was to contribute to the understanding of the mechanism of CO hydrogenation on cobalt-based catalysts and the identification of the active site by operando DRIFT spectroscopy. Different species were adsorbed on the surface of the catalyst under reaction conditions: bridged and linear CO, formates, carboxylates and hydrocarbons. Our resutls shows that so-called “fast formate” can account for the formation of methanol under our reaction conditions. The study of a typical biomass element, chlorine, revealed that the activity decreased under trichloroethylene,. The CO bridged band being the most affected band and shifting to higher wavenumber, the chlorine effect was partly associated with an electronic effect on cobalt. Chlorine adsorption being reversible, tin poisoning was also studied. This metal does not adsorb CO under our conditions. Tin addition to cobalt selectively poisons bridged CO and greatly limits the chemisorption of hydrogen. A linear relationship between the rate of formation of products and the proportion of CO bridged is observed, highlighting the importance of CO bridged
Clark, Joshua Patrick. "A multinuclear solid state nuclear magnetic resonance investigation of the preparation of Co, Pt and Ni based hydrogenation catalyst systems". Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/106443/.
Texto completoSILVA, SUELANNY C. da. "Estudo da influência da temperatura nas propriedades magnéticas e na microestrutura nos imãs permanentes à base de Pr-Fe-B-Nb-Co obtidos com hidrogênio". reponame:Repositório Institucional do IPEN, 2007. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11612.
Texto completoMade available in DSpace on 2014-10-09T13:58:57Z (GMT). No. of bitstreams: 0
Dissertação (Mestrado)
IPEN/D
Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
Peng, Lu. "Metal Nanoparticles Wrapped on Defective Nitrogen-doped Graphitic Carbons as Highly Selective Catalysts for C02 Hydrogenation". Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/172329.
Texto completo[CA] Tenint en compte l'esgotament dels combustibles fòssils i la creixent concentració de CO2 en l'atmosfera, la hidrogenació de CO2 és una forma prometedora de convertir el CO2 en productes químics i combustibles de carboni d'alt valor afegit. Considerant la gran influència de la grandària de partícula, la composició química, la naturalesa del suport i les condicions d'operació sobre el comportament catalític dels catalitzadors, s'han desenvolupat una sèrie de catalitzadors per a la hidrogenació de CO2 basats en metalls abundants no nobles i polisacàrids naturals com a precursors del grafé. En la present tesi doctoral, les espècies metàl·liques suportades sobre una matriu de carboni grafític defectuosa, amb diferents grandàries de partícules, mostren diferent activitat catalítica i selectivitat per a la hidrogenació de CO2. Es van preparar, de manera controlada, nanopartícules d'aliatges de Co i Co-Fe suportades en grafens dopats amb N defectuosos, amb una àmplia distribució de grandària de nanopartícules, per a la reacció de Sabatier, presentant una selectivitat a metà superior al 90% amb valors de conversió de CO2 superiors al 85%. En el cas d'un sol metall, Co o Fe, i els seus aliatges en forma de "clústers" i xicotetes nanopartícules suportades en el mateix material, la selectivitat de la hidrogenació de CO2 canvia a CO, en lloc de metà, obtenint-se un valor del 98% i aconseguint una conversió de CO2 del 56%. Convé ressaltar que, els catalitzadors basats en "clústers" d'aliatges de metall amb una càrrega de metall fins i tot per davall del 0.2% en pes, exhibeixen una major selectivitat i rendiment que els que tenen nanopartícules d'aliatges de Co-Fe més grans que varien d'1 a 4 nm i una càrrega de metall més alta en una composició similar. Seguint la línia d'investigació d'hidrogenació de CO2, es van desenvolupar una sèrie de nanopartícules d'aliatges de Co-Fe suportades sobre grafens dopats amb N defectuosos amb distribució de grandària de nanopartícules controlada en el rang de 7-17 nm, obtenint una selectivitat cap a hidrocarburs C2+ al voltant del 45% i una conversió del CO2 pròxima al 60%. A més, es va realitzar un estudi comparatiu de l'activitat catalítica de catalitzadors similars basats en Co-Fe amb promotors i inhibidors per a la hidrogenació de CO2, observant la seua influència en la conversió i selectivitat de CO2. Finalment, a més dels catalitzadors basats en Co-Fe, també s'han preparat catalitzadors basats en Cu-ZnO mitjançant un mètode de dos passos. Aquestes nanopartícules de Cu-ZnO suportades sobre grafé defectuós dopat amb N exhibeixen una alta selectivitat cap a la conversió de CO2 a metanol.
[EN] Considering the depletion of fossil fuels and the increasing atmospheric CO2 concentration, CO2 hydrogenation is a promising way to convert CO2 into value-added carbon-containing chemicals and fuels. Taking into account the significant influences of the particle size, chemical composition, nature of the support, and operation conditions on the catalytic performance of catalysts, a series of catalysts for CO2 hydrogenation have been developed based on the use of abundant non-noble metals and natural polysaccharides as graphene precursors. In the present PhD Thesis, metal species supported on defective graphitic carbon matrix with different particle sizes show different catalytic activity and selectivity for CO2 hydrogenation. Under effective control, Co and Co-Fe alloy nanoparticles wrapped on defective N-doped graphenes with a broad nanoparticle size distribution were prepared and performed for the Sabatier reaction, exhibiting a selectivity to methane over 90 % at CO2 conversion values over 85 %. In the case of single Co or Fe metal and their alloys in the form of clusters and small nanoparticles wrapped on the same support, the selectivity for CO2 hydrogenation shifts to CO, rather than methane, reaching a conversion of 56 % with 98 % CO selectivity. It is worth noting that the metal alloy clusters-based catalysts with the metal loading even below 0.2 wt.% exhibit a higher selectivity and better performance than the ones with larger Co-Fe alloy nanoparticles ranging from 1-4 nm and higher metal loading in a similar composition. Following the research line for CO2 hydrogenation, a series of Co-Fe alloy nanoparticles supported on defective N-doped graphenes with controlled nanoparticle size distribution in the range of 7-17 nm are developed, obtaining a selectivity towards C2+ hydrocarbons about 45% with a CO2 conversion close to 60%. In addition, a comparative catalytic activity of similar Co-Fe-based catalysts with promoters and poison has been studied for CO2 hydrogenation to observe their influence on CO2 conversion and selectivity. Finally, besides Co-Fe-based catalysts, Cu-ZnO-based catalysts have also been prepared by a two-step method. These Cu-ZnO nanoparticles supported on N-doped defective graphene exhibit a high selectivity for CO2 conversion to methanol.
Peng, L. (2021). Metal Nanoparticles Wrapped on Defective Nitrogen-doped Graphitic Carbons as Highly Selective Catalysts for C02 Hydrogenation [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172329
TESIS
Ralston, Walter Thomas. "Hydrogenation Reactions of CO and CO2| New Insights through In Situ X-ray Spectroscopy and Chemical Transient Kinetics Experiments on Cobalt Catalysts". Thesis, University of California, Berkeley, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10282649.
Texto completoThe catalytic hydrogenations of CO and CO2 to more useful chemicals is not only beneficial in producing more valuable products and reducing dependence on fossil fuels, but present a scientific challenge in how to control the selectivity of these reactions. Using colloidal chemistry techniques, a high level of control over the synthesis of nanomaterials can be achieved, and by exploiting this fact a simple model system can be realized to understand the reaction of CO and CO2 on a molecular level. Specifically, this dissertation focuses on understanding cobalt materials for the conversion of CO and CO2 into more useful, valuable chemicals.
Colloidally prepared cobalt nanoparticles with a narrow size distribution were supported in mesoporous SiO2 and TiO2 to study the effect of the support on the Co catalyzed hydrogenation of CO and CO2. The 10nm Co/SiO2 and Co/TiO2 catalysts were tested for CO and CO2 hydrogenation at 5 bar with a ratio to hydrogen of 1:2 and 1:3, respectively. In addition, the effect of Co oxidation state was studied by using different reduction pretreatment temperatures (250°C and 450°C). The results showed that for both hydrogenation reactions, Co/TiO2 had a high activity at both reduction temperatures compared to Co/SiO2. However, unlike Co/SiO2 which showed higher activity after 450°C reduction, Co/TiO2 had a higher activity after reduction at 250°C. Through synchrotron x-ray spectroscopy, it was concluded that the TiO2 was wetting the Co particle at higher reduction temperatures and dewetting at lower reduction temperatures. In addition to the wetting, CoO was observed to be the surface species on Co/TiO2 catalyst after reduction at low temperatures, which catalyzed both CO and CO2 hydrogenation reactions with higher activity than the Co metal obtained after reduction at 450°C.
Classical steady-state measurements are limited in so much as they are often unable to provide information on individual reaction steps in complex reaction pathways. To attempt to circumvent this, a chemical transient kinetics (CTK) reactor was designed and built. Verification of the reactor was performed by evaluating a catalyst from the literature and confirming the results. A CoMgO catalyst was used to accomplish this, and our original findings show that at short time scales steric hindrances at the surface may push the product distribution towards olefinic rather than branched compounds.
Continuing work on the CTK, two distinct particle sizes of Co nanoparticles were synthesized and tested under atmospheric conditions (H2:CO = 2:1) on the transient reactor. 4.3 nm Co and 9.5 nm Co were supported on MCF-17 to study the previously observed size effect, where Co nanoparticles lose activity at smaller sizes. It was found that indeed, the 4.3 nm Co are less active because they contain less CO dissociation sites, which are necessary for populating the surface with carbon monomers and spurring subsequent chain growth. The specific CO dissociation site was identified as the Co (221) step, of which larger Co particles have more and smaller Co particles have less.
To investigate the nature of the MnO / Co3O4 interface, an in situ study using synchrotron radiation was undertaken. A sample of 6nm MnO nanoparticles loaded on mesoporous Co3O4 was studied with ambient pressure x-ray photoelectron spectroscopy, soft x-ray absorption spectroscopy at the Mn and Co L edges, and scanning transmission x-ray microscopy. X-ray measurements show that under reducing conditions of CO + H2, the MnO nanoparticles wet the Co surface until it is completely covered by a layer of MnO. Through the combination of techniques, it is shown that the system is catalytic active at the low pressures studied, and that the nature of the interface between MnO and Co3O4 is highly dependent on the temperature and gaseous environment it is prepared in. (Abstract shortened by ProQuest.)
Li, Liwei. "Density functional theory study of alcohol synthesis reactions on alkali-promoted Mo2C catalysts". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53456.
Texto completoZhang, Long. "In-Situ Infrared Studies of Adsorbed Species in CO2 Capture and Green Chemical Processes". University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1481213980572202.
Texto completoZanella, Specia Rodolfo. "Nouvelle méthode de préparation de nanoparticules d'or supportées sur TiO2, caractérisation et propriétés catalytiques pour des réactions d'oxydation et d'hydrogénation". Paris 6, 2003. http://www.theses.fr/2003PA066343.
Texto completoEndot, N. B. "Selective hydrogenation of 5-hydroxymethylfurfural (HMF) to 2, 5-dimethylfuran (DMF) over Ru, Ni, and Co mono and bimetallic catalysts supported on carbon and carbon nanotube". Thesis, University of Liverpool, 2017. http://livrepository.liverpool.ac.uk/3008300/.
Texto completoBoudouvas, Denis. "Effet du potassium sur un catalyseur composite Fe-Co-C en synthèse d'hydrocarbures". Grenoble INPG, 1989. http://www.theses.fr/1989INPG0092.
Texto completoDeronzier, Thierry. "Développement d'une nouvelle voie de synthèse de catalyseurs métalliques autosupportés (nanomousses) : étude des propriétés structurales et catalytiques". Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10184.
Texto completoGold, generally considered as catalytically inactive, demonstrates a surprising activity toward several oxidation reactions when supported on a proper oxide. New synthesis ways have been developed for ten years to obtain nanoporous gold catalysts based on selective dissolution of the less noble component of a metallic alloy (dealloying). These catalysts exhibit very high activity towards the carbon monoxide oxidation reaction. However recent studies seem to reveal that this activity could be due to impurities inherent to dealloying. In this study a very pure nanoporous catalyst was obtained by spontaneous oxidation of a AuZr alloy at room temperature; a total selective dissolution of ZrO2 was then carried out in HF. Its structural and morphological characteristics proved to be similar to the dealloyed catalysts ones. The evaluation of its catalytic properties by CO oxidation showed that pure nanoporous gold was not catalytically active. Besides bimetallic AgAu catalysts were prepared following the same preparation method with three silver concentrations chosen close to the residual impurities concentrations obtained by dealloying. Their catalytic properties proved to be impacted by silver impurities: gold activity was emphasized at room temperature by synergy between the two elements. However, the promotional effect of hydrogen disappeared in PrOx and the role of silver concentration was low for CO oxidation. In parallel an exploratory study was carried out on NiPd nanofoams. The catalysts were prepared following the Raney® nickel method to improve the palladium activity towards the selective hydrogenation reaction. The results showed a slight increase of the catalytic activity
Barrios, Medina Alan Josue. "Synthèse Directe d'Oléfines Légères par des Réactions d'Hydrogénation du CO et du CO2". Electronic Thesis or Diss., Centrale Lille Institut, 2021. http://www.theses.fr/2021CLIL0030.
Texto completoCO and CO2 Hydrogenation are an attractive way to convert non-petroleum and renewable feedstocks such as biomass, plastic and organic waste into fuels and chemicals. Activity, selectivity to light olefins and stability are major challenges of these reactions over Fe catalysts. In this thesis, we synthesized different iron-based catalysts for both CO and CO2 hydrogenation in order to get highly selective, active and stable catalysts. For CO hydrogenation SiO2 was used as support while for CO2 hydrogenation reaction ZrO2 supported catalysts presented the most encouraging results. We relied on High Throughput Experimentation (HTE) to identify among 27 promoters the most efficient ones for FT synthesis at the same time that different selectivity trends were evaluated. HTE tests allowed us to clearly identify Sn, Sb, Bi and Pb as the most promising promoters in order to obtain Fe catalysts with higher activity in FT synthesis. Then, we focused on studying the strong promoting effects of Sb and Sn on the catalytic performance of SiO2 supported iron Fischer Tropsch catalysts using a combination of advanced and in-situ techniques. TEM in the activated FeSn/SiO2 catalyst showed highly dispersed Sn nanoparticles on the silica support. On the other hand, activated FeSb/SiO2 catalyst showed a core-shell morphology. Additionally, smaller amount of carbon deposition detected is crucial for better stability of the Sn- and Sb-promoted catalysts in FT reaction. Finally, we focused on the identification of efficient promoters for ZrO2 supported iron catalysts in CO2 hydrogenation reaction. We observed the most pronounced increase in the reaction rate for the K and Cs promoted catalysts. HTE clearly showed that the presence of K was essential to achieve higher light olefin selectivity. Additionally, Mo, Cu, Cs, Ce and Ga were identified as possible promoters to further increase the selectivity of CO2 hydrogenation to this fraction. The work performed during this thesis allowed to design new catalysts for CO and CO2 hydrogenation reaction that could be easily implemented at industrial level. Catalysts studied for both reactions showed improvement three key aspects: activity, selectivity, and stability
Chew, Ly May [Verfasser], Martin [Gutachter] Muhler y Wolfgang [Gutachter] Grünert. "Catalytic hydrogenation of CO_2 and CO to short-chain hydrocarbons over iron nanoparticles supported on functionalized carbon nanotubes / Ly May Chew ; Gutachter: Martin Muhler, Wolfgang Grünert ; Fakultät für Chemie und Biochemie". Bochum : Ruhr-Universität Bochum, 2015. http://d-nb.info/1204257035/34.
Texto completoSilva, Suelanny Carvalho da. "Estudo da influência da temperatura nas propriedades magnéticas e na microestrutura nos ímãs permanentes à base de Pr-Fe-B-Nb-Co obtidos com hidrogênio". Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/85/85134/tde-24102011-104115/.
Texto completoFine magnetic powders were produced using the hydrogenation disproportionation desorption and recombination (HDDR) process. The first stage in this work involved an investigation of the effect of the Co content and range of desorption/ recombination temperatures between 800 and 900°C with the purpose of optimizing the HDDR treatment for Pr14Fe80B6 and Pr14FebalCoxB6Nb0,1 (x= 0, 4, 8, 10, 12, 16) alloys. The cast alloys were annealed at 1100°C for 20 hours for homogenization. The processing temperature (desorption/ recombination) affected the microstructure and magnetic properties of the bonded magnets. The alloy with low cobalt content (4 at.%) required the highest reaction temperature (880°C) to yield anisotropic bonded magnets. The optimum temperature for alloys with 8 at.% Co and 10 at.% Co were 840°C and 820°C, respectively. Alloys with high cobalt content (12 at.% and 16 at.%) were processed at 840°C. The optimum desorption temperature for achieving high anisotropy for Pr14Fe80B6 and Pr14Fe79,9B6Nb0,1 was 820°C. The best remanence (862mT) was achieved with the Pr14Fe67,9B6Co12Nb0,1 magnet, processed at 840°C. Each alloy required an optimum reaction temperature and exhibited a particular microstructure according to the composition. The second stage of the work involved the characterization, for each temperature, of the Pr14Fe80B6 HDDR powder processed using X-ray diffraction analysis. The samples of the HDDR material were studied by synchrotron radiation powder diffraction using the Rietveld method for cell refinement, phase quantification and crystallite sizes determination. Scanning electron microscopy (SEM) has also been employed to reveal the morphology of the HDDR powder.
Chafik, Abdelghani. "Influence de terres rares (La, Ce) sur les propriétés de systèmes catalytiques Métal-Carbone (Métal : Fe, Co, Ni) dans la conversion d'oxydes de carbone". Poitiers, 1988. http://www.theses.fr/1988POIT2309.
Texto completoQuezada, Maxwell Josias. "Hydrogénation catalytique de CO₂ en méthanol en lit fixe sous chauffage conventionnel et sous plasma à DBD ZSM-5 surface modification by plasma for catalytic activity improvement in the gas phase methanol-to-dimethylether reaction". Thesis, Normandie, 2020. http://www.theses.fr/2020NORMIR12.
Texto completoThe objective of this thesis is to contribute to the optimisation of the production of methanol by hydrogenation of CO₂ by synthesising new catalysts in the form of extrudates for industrial use. In this regard, six Cu-ZnO based catalysts supported on alumina and ZSM-5 were prepared and tested. At 36 bar and under conventional heating, the CuZnO/Al₂O₃ showed the best methanol yield. An industrial process based on this catalyst has been proposed and optimised. The influence of extracting water and methanol from the reaction medium using two reactors in series instead of one was investigated and it was found to increase methanol yield considerably. Tests at atmospheric pressure and under DBD plasma showed that the Cu/Al₂O₃ gives better CO₂ conversions, while the CuZnO/ZSM-5 showed better methanol yields. This was attributed to the ionic conductivity and the dielectric constant of the catalysts
Duran, Martinez Laura Elizabeth. "Dévelοppement et οptimisatiοn d'un prοcédé de prοductiοn de mοlécules d'intérêt par hydrοgénatiοn du CΟ2 à partir d'hydrοgène renοuvelable". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR21.
Texto completoThe transition from fossil fuels to renewable energy sources is becoming increasingly urgent due to their significant contribution to global climate change. The rising levels of carbon dioxide in the atmosphere highlight the critical need for sustainable alternatives. Converting CO₂ into value-added molecules (energy carriers) offers a promising solution to reduce reliance on fossil fuels. This thesis explores the potential of the catalytic hydrogenation of CO₂ to produce value-added chemicals such as methane, methanol, and dimethyl ether (DME). These processes not only offer a means to reduce CO₂ emissions but also provide a path toward sustainable fuel production. The research explores various catalytic processes, with a particular emphasis on thermal catalysis due to its higher efficiency and suitability for industrial implementation. The one-step CO₂ hydrogenation to DME is the case of study. Preliminary experiments were conducted into a laboratory fixed bed reactor to better understand catalyst performance. Different catalysts were tested for DME synthesis. Since the reactions that take place into CO₂ hydrogenation to DME comprise the methanol synthesis from CO₂ followed by methanol dehydration, a mixture of catalysts was done for the direct DME synthesis. For the powder mixture, two different CuO/ZnO/Al₂O₃ (CZA) catalysts, one commercial and one developed, were tested for methanol synthesis and two CZA zeolites (HY and HZSM-5) were tested for methanol dehydration. The physical mixture of CZA-C plus HZSM-5 was chosen for further analysis. The effect of temperature, pressure, feed molar ratio (H₂/CO₂) and gas hourly space velocity (GHSV) were assessed for the development of the kinetics of DME synthesis. A Langmuir–Hinshelwood kinetic model for methanol synthesis was proposed, along with a novel relationship for methanol dehydration to DME, since the reaction is not at equilibrium. An Optimal Temperature Profile (OTP) reactor integrating the kinetic model developed was studied for precise temperature control to maximise CO₂ conversion. Simulations and optimisations confirmed that longer residence times by adjusting catalysts mass is more effective for higher CO₂ conversion. A minimal advantage (<1%) was identified in terms of CO₂ conversion for the OTP reactor over an isothermal reactor. However, the combined productivity of DME and methanol had a better performance (>4.4%) over the isothermal reactor. An OTP multi-tubular reactor with variable coolant temperature, comprising 958 tubes, achieved 34.18% CO₂ conversion and a combined methanol and DME production rate of 30.84 mol.h⁻¹ per tube, approaching to thermodynamic equilibrium without recirculation
Zhong, Song-Zheng y 鍾松政. "Co hydrogenation over supported FE, CO and Pt catalysts". Thesis, 1994. http://ndltd.ncl.edu.tw/handle/26113583026942292851.
Texto completoLIAO, HONG-ZHANG y 廖宏章. "Application of nickel boride on CO hydrogenation". Thesis, 1987. http://ndltd.ncl.edu.tw/handle/99920456375661206105.
Texto completoShadravan, Vahid. "Catalytic hydrogenation of CO and CO₂ in the presence of light hydrocarbons". Thesis, 2018. http://hdl.handle.net/1959.13/1393112.
Texto completoCarbon oxides emission, as by-products of many industrial synthetic hydrocarbon processes, causes serious environmental issues and negatively affects commercialisation of some new processes (e.g. OCM). Thus, producing CO and CO₂ (COx) free (or with minimal amount of COx) synthetic hydrocarbon streams is necessary to facilitate commercialization of these new processes as large scale industrial plants. Moreover, due to the significant environmental effect of COx, it is critical to develop processes to convert COx and reduce their emission into the atmosphere. In this thesis, catalytic hydrogenation of COx in the presence of light hydrocarbons (methane, C₂-C₃ alkane and alkene) was studied. The feasibility of converting COx (where the residual concentration of both CO and CO₂ in the product gas stream are less than 1 ppm) without reducing the inlet concentration of feed hydrocarbons was initially investigated over a bench-mark hydrogenation catalyst (Ni/Al₂O₃). It is found that the inlet species were consumed and converted in different temperature ranges. For feed compositions containing COx and C₁-C₃, the consumption of carbon monoxide, carbon dioxide and C₂/C₃ paraffins was observed and their maximum conversion was attained over different temperature ranges, in the following order: CO (150 – 250 °C) < CO₂ (250 – 350 °C) < C₂/C₃ paraffins (275 – 400 °C). Moreover, Olefins were converted under all reaction conditions at lower temperatures (below 150 °C) due to the hydrogenation reaction which resulted in the formation of saturated hydrocarbons. Furthermore, the studies on COx hydrogenation in the presence of light hydrocarbons were extended to the development of catalysts to enhance the total outlet concentration of light hydrocarbons in a COx-free product stream. The effect of different transition metals (i.e. Fe, Co, Cu, Cr, Mn, Zn, Ru, Rh, Ag and Cd) on the catalytic performance of a Ni/Al₂O₃ catalyst was studied. Different and distinct promoting or inhibiting influence was observed (e.g. maximum C₂-C₄ yield of production increased from 6% for Ni/Al₂O₃ to 12% for Ni-Mn/Al₂O₃). The characteristics of partially charged active sites of the catalysts were studied by employing different techniques (i.e. in situ NO-FTIR, CO-/H₂-TPD and chemisorption). It is found that the addition of transition metals to Ni/Al₂O₃ markedly changed the structure of the active sites on the primary catalyst. For example, addition of copper resulted in increasing the ratio of Carbon-accepting to Oxygen-accepting sites (i.e. NO linear/bent adsorption increased from 7.70 for Ni/Al₂O₃ to 24.89 for Ni-Cu/Al₂O₃), which is probably increased the chance of linear CO adsorption that needs higher temperature for C – O cleavage. In contrast, by adding manganese to Ni/Al₂O₃ catalyst the ratio of electron accepting to donating sites balanced on the catalyst surface. Thus, most probably the number active carbon and hydrogen species increased on the surface. Promoting effect of manganese on Ni/Al₂O₃ was further investigated. Catalyst activity measurements as well as various characterisation techniques (such as XRD, CO and H₂ chemisorption, in situ NO-FTIR and TPR) were performed for a series of Ni-Mn/Al₂O₃ catalysts with different nickel and manganese contents. It is considered that there is an optimum amount of Mn added (i.e. bi-metallic Ni-Mn/Al2O3 catalyst with 8 wt% of nickel and 4 wt% of manganese) to the primary catalyst which enhanced the catalyst activity and selectivity. Moreover, the more hydrogen amount in the feed stream improved the catalyst activity for COx hydrogenation and selectivity toward C₂-C4 production (i.e. maximum C₂-C₄ yield of production increased from 1.5% for ~9.5 kPa H2 to 6.5% for ~37.8 kPa H2 in the feed stream over Ni/Al₂O₃). According to investigation of the catalysts’ electronic properties with different Ni and Mn contents, changes in catalytic activity (for COx hydrogenation) and selectivity (for light hydrocarbons formation) can be interpreted as being due to the effect of different electronic structure of the catalysts with variety of Ni/Mn ratios. The electrostatic properties of crystalline nickel and nickel-manganese particles was studied by computational methods (i.e. KS-DFT). Finally, this study continued on investigating the catalytic hydrogenation of COx in an industrial gas mixture containing light hydrocarbons. Complete removal of COx present in an ethane offgas (ExxonMobil refinery, Altona, VIC) via catalytic hydrogenation (over Ni-Mn/Al₂O₃) was studied. The effects of adding extra hydrogen and pre-treatment of the feed stream on the process was analysed. It is found that the addition of hydrogen gas into the feed reduced the concentration of CO and CO₂ to below the detection limits. By adding 25% and 40% of extra H₂ to the feed stream no COx were detected in the outlet. Moreover, pre-treatment of the offgas using molecular sieves to remove water vapour from the feed gas stream did not affect COx hydrogenation at low temperatures (below 300 °C). However, pre-treatment resulted in a significant reduction in CO and CO₂ concentrations at temperatures above 300 °C. The results also confirmed the saturate gas plant ethane offgas can considerably deactivate the Ni-Mn/Al₂O₃ catalyst. The effect of ethane and ethylene in the feed gas stream on catalytic hydrogenation of low concentration CO and CO₂ has also been investigated. Ethane addition did not influence the hydrogenation of COx at 180 °C while it inhibited the hydrogenation reaction at 320 °C. On the other hand, ethylene addition inhibited CO and CO₂ hydrogenation at both 180 °C and 320 °C.
Dong, Laura Beth. "Polystyrene hydrogenation in supercritical CO₂-decahydronaphthalene using porous catalysts". 2010. http://www.lib.ncsu.edu/theses/available/etd-01132010-100457/unrestricted/etd.pdf.
Texto completoGIU, JIN-SHAN y 邱金山. "Characterization of CoFe and CuFe bimetallic catalyst on CO hydrogenation". Thesis, 1987. http://ndltd.ncl.edu.tw/handle/17345487778031920412.
Texto completoYing-ChiLin y 林英吉. "The application of Bimetallic catalysts for CO2 / CO hydrogenation reaction". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/p38fx9.
Texto completoJiang, Wan-Lan y 江挽瀾. "Effect of addition of Mn to Fe catalyst for CO hydrogenation". Thesis, 1986. http://ndltd.ncl.edu.tw/handle/60475855729158071676.
Texto completoYou, Wen-Wen y 游汶玟. "Selective hydrogenation of cinnamaldehyde in liquid-phase over Ag-Co catalysts". Thesis, 2013. http://ndltd.ncl.edu.tw/handle/41313903520903663669.
Texto completo桃園創新技術學院
材料應用科技研究所
101
The Ag-Co catalysts were prepared by chemical reduction with sodium borohydride. Physical and surface properties of catalysts were characterized by techniques of BET, XRD, TGA, DSC, SEM-EDS, TEM and AFM. The catalytic behaviors of catalysts were explored by the selective hydrogenation of cinnamaldehyde in liquid phase. The factors affecting the activity and selectivity of catalysts included the preparation conditions of catalysts, reaction conditions, phenomena of overall hydrogenation and promoter effect. The Ag catalyst was much less active than CoB under the basis of same metal content. Replacing a part of Ag by Co during the preparation could promote significantly the activity of Ag catalyst. The optimal molar ratio of Ag/Co in Ag-Co catalysts was 6/4. Ag-Co(6/4) catalyst was not only as active as CoB catalyst, but also the selectivity to cinnamyl alcohol (unsaturated alcohol) was higher under the same conversion. Silver itself has good activity in hydrogenation. The main reason for the low activity of Ag catalyst resulted from its low value of surface area, owing to the aggregation of silver metal. Replacing a small amount of Ag in catalyst by Co could significantly reduce the particle size of Ag, increase the surface area of catalyst, and the thermal stability was better than those of CoB and Ag catalysts. Ag-Co(6/4) catalyst could effectively hydrogenate cinnamaldehyde to unsaturated alcohol under 120 C and 120 psig. The adsorption strength of cinnamaldehyde molecules on Ag catalyst was much less than those on Group VIII metals. Therefore, the adsorption strength of the C=O bond with strong dipole was much greater than the C=C bond, the C=O bond was thus predominately reduced to form cinnamyl alcohol. A high selectivity of unsaturated alcohol about 93% was reached at the complete conversion over Ag-Co(6/4).
ZHANG, YU-JIN y 張玉金. "Influence of mltal-support interaction on the CO adsorption and hydrogenation". Thesis, 1989. http://ndltd.ncl.edu.tw/handle/69815388031751477386.
Texto completoChu, Chih-Yang y 朱智陽. "Effect of thermal treatment on the Nickle species and CO hydrogenation". Thesis, 1994. http://ndltd.ncl.edu.tw/handle/76577341770808776852.
Texto completoLin, Jhe-yi y 林哲逸. "Studies on the CO poison and cyclic hydrogenation of the ZK60 alloy". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/11205346784817166724.
Texto completo逢甲大學
材料科學所
100
In this study, the ZK60 (Mg-5.7Zn-0.57Zr) alloy was severely deformed by equal channel angular pressing (ECAP) with route BA and 12 passes. Then, we used drilling machine to get small scraps, and added various contents of alloying elements to the scraps in ball milling for 20hr to prepare the alloy powders. The powders were used to analyze various hydrogen storage properties. Experimental results show that the hydrogen storage capacity of the ZK60 alloy is only 4.13wt% after 60 mins hydrogen absorption, and its hydrogen absorption rate is very slow. In order to improve the hydrogen storage properties, we added various amounts of activated carbon to the ZK60 alloy during ball milling. It is found that the hydrogen storage capacity and its absorption rate are obviously enhanced with the carbon addition. The alloy with addition of 5wt% activated carbon had the highest hydrogen storage capacity that reaches 6.16wt%. Therefore, we fixed activated carbon content at 5wt%, and added various amounts of vanadium and/or palladium during ball milling for the study of hydrogen storage properties. The results show that the alloys with 5C0.5V, 5C0.5Pd, and 5C0.5V0.75Pd additives, respectively, exhibited better hydrogenation kinetics. The maximum hydrogen storage capacity of the alloys with 5C0.5V additives reaches 7.01wt%. It is found that the addition of palladium during ball milling can effectively enhance hydrogen absorption rate. The hydrogen storage capacity can reach 61%~71% in the first minute as compared with that for 60 minutes hydrogen absorption, and it can reach 90% in the first 3 mins hydrogen absorption. Bseides, the addition of palladium has also a positive effect on cyclic hydrogenation. For the study of the cyclic hydrogenation and poison effect, the alloys with 5C0.5V and 5C0.5V0.75Pd additives were used for the cyclic test. The results show that the decrease percentage of the hydrogen storage capacity of the alloy with 5C0.5V additives is 54.59% after 300 cyclic test. However, the counterpart of the alloy with 5C0.5V0.75Pd additives is only 14.40% under the same condition. It means that the addition of palladium can effectively improve the properties on cyclic hydrogenation. For the hydrogen absorption capacity, the alloy with 5C0.5V0.75Pd is poisoned more seriously than that with 5C0.5V in the CO poison cyclic test. For the hydrogen absorption rate under poison condition, the catalytic effect of the palladium is good when CO concentration is less than 100ppm, but becomes worse when CO concentration is over 200ppm.
Sikhwivhilu, Lucky Mashudu. "Titania derived nanotubes and nanoparticles : catalyst supports in hydrogenation, oxidation and esterification reactions". Thesis, 2009. http://hdl.handle.net/10539/5953.
Texto completoShih, Wen-Cheng. "Heterogeneous CO Oxidation and Homogeneous Anthracene Hydrogenation Catalyzed by Gold, Silver and Alloys Nanoparticles". 2007. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-3007200701113000.
Texto completoShih, Wen-Cheng y 施文塵. "Heterogeneous CO Oxidation and Homogeneous Anthracene Hydrogenation Catalyzed by Gold, Silver and Alloys Nanoparticles". Thesis, 2007. http://ndltd.ncl.edu.tw/handle/92526739475641924875.
Texto completo臺灣大學
化學研究所
95
The heterogeneously catalytic CO Oxidation with Au-Ag alloy deposited on inert and acidic mesoporous aliminosilicate MCM-41 support, prepared by either one-pot or two-step procedure, has been investigated in terms of the experimental kinetics, in-situ DRIFTS, O2 pulse adsorption, O2-TPD and theoretical reaction modeling. For one-pot/3:1 Au-Ag/MCM-41 alloy catalyst, the unexpectedly high catalytic activity at 80oC may be associated with the non-dissociative and non-competitive adsorption Langmuir-Hinshelwood model between CO and O2 species in intimate proximity on the alloy surface. The small activation energy, negligible surface coverage and desorption with raising temperature for both CO and O2 may give rise to the unusual behavior in reaction rate above 80oC. At higher temperature, the different reaction behavior and/or active site for CO oxidation could be altered, which may behave like supported monometallic metal catalyst. For two-step/5:1 Au-Ag/MCM-41 catalyst, the high catalytic activity at 80oC could be due to non-dissociative and non-competitive or competitive Langmuir-Hinshelwood model between adsorbed CO on Au and O2 on Ag in close proximity of Au-Ag alloy surface as the RDS. The decrease in CO conversion with the increasing temperature could be caused by either desorption of both CO and O2 or dissociative adsorption for O2 on the Au-Ag alloy surface. Anthracene hydrogenation in aqueous micellar solutions at room temperature is homogeneously catalyzed by ionic-surfactant-protected Au and Ag nanoparticles with well-controlled particle sizes. A remarkable size-dependence of catalytic activity is derived. The difference in the optical property of meal nanoparticles could be related to the charging of their surfaces, indicating that both the metal nanoparticles play a role as the nanoelectrode storing electrons from hydrides. The behavior about the electron transfer-relaying effects of metal nanoparticles is proposed for the hydrogenation reaction.
Pai, Yun-Chieh y 白芸潔. "Investigation of the Hydrogenation Effects upon Co/Pd Multilayers Using X-ray Absorption Spectroscopy". Thesis, 2017. http://ndltd.ncl.edu.tw/handle/ydz8km.
Texto completoNdou, Dakalo Lorraine. "Catalytic evaluation of Ru(II) and Co(II) salicylaldimine complexes for transfer hydrogenation of acetophenone". Thesis, 2017. http://hdl.handle.net/10539/23597.
Texto completoN-(aryl) salicylaldimine ligands were prepared by the condensation of salicylaldehyde and aniline, 2,6 – dimethylaniline, 2,6 – diisopropylaniline and N,N-diethyl-p-phenylenediamine to give the desired ligands in good yields (70 - 93 % yield). The synthesised ligands were characterised by NMR spectroscopy, FTIR spectroscopy, ESI mass spectrometry and elemental analysis. The purity of these ligands was determined by determining the meting points. Co(II) and Ru(II) complexes were prepared from Co(OAc)2.4H2O and [RuCl2(η6-p cymene)]2 to afford the N-(aryl) salicylaldiminato complexes Co1 – Co4 and Ru1 – Ru4 with yields in the range 60 – 66 % and 90 – 97 %, respectively. These complexes were characterised by NMR spectroscopy, FTIR, ESI mass spectrometry, elemental analysis and TGA. The purity of these complexes was also determined by determining the melting point. The transfer hydrogenation of acetophenone was studied using 2-propanol as the hydrogen source and KOH as the base with the Ru (II) and Co (II) complexes as catalyst precursors. The catalytic activity of these complexes was evaluated using 1H-NMR and GC - MS. Preliminary studies were performed for 6 h at 82 oC and the conversion was evaluated using 1H-NMR. Due to the low catalytic activity of these complexes, the reaction time was increased to 48 h. Increasing the reaction time resulted in improvements in the conversion of the complexes. The catalysis was also evaluated at various temperatures to study the effect it has on the activity of the complexes. Temperature was found to not have a significant effect on the conversion. The ruthenium complexes were found to be active towards the transfer hydrogenation of acetophenone but the cobalt complexes were observed to have no catalytic activity in the transfer hydrogenation of acetophenone. The ruthenium complexes were investigated in an ionic liquid – organic biphasic system with the aim of separating the metal complexes in order to reuse the catalysts. Toluene was the organic phase and [BMIM]BF4 was the ionic liquid which afforded a biphasic system. Three cycles were performed and the performance of Ru1 – Ru3 decreased with each cycle but Ru4 behaved differently as the performance increased with each cycle.
XL2018
Chang, I.-Hsiu y 張溢修. "Promotion of Hydrogenation Characteristics for Li3N by Addition of Pd-Ni and Pd-Co Catalysts". Thesis, 2009. http://ndltd.ncl.edu.tw/handle/21971304037413900760.
Texto completo國立中央大學
材料科學與工程研究所
97
Hydrogen is viewed as one kind of promising clean fuel of the future. The refueling method, the hydrogen storage, and the handling facilities are critical factors in the development of a hydrogen technology for transportation. An effective hydrogen storage technology is required to make this source of energy economically viable. Li3N is a potential hydrogen storage material owing to its high theoretical H2 capacity (10.4 wt%). In this study, the Pd, Pd-Ni and Pd-Co alloy catalysts were used to modify Li3N to enhance its hydrogenation kinetics. The hydrogenation properties were investigated by a technique of temperature programmed reduction (TPR). The identification of phase structures of materials before and after hydrogenation was carried out by the X-ray powder diffraction (XRD) method. The hydrogenation curves by TPR measurements displayed that the initial hydrogenation temperature (Ti) for Li3N was about 450 K. A following desorption peak starting at 660 K indicates that the hydride formed was not stable. For the modified Li3N, the Ti and absorption capacity was both changed by catalyzing with Pd-Ni and Pd-Co alloy catalysts. The hydrogenation kinetics of Li3N was promoted due to the spillover of hydrogen from alloy catalysts to Li3N and their Ti was lower than that of unmodified Li3N. Moreover, the Li3N hydride formed was stabilized by the PdxNi100-x PdxCo100-x modification and no hydrogen desorption peak was observed at high temperature. When 1:1 ratio of materials and catalysts is used, Pd15Ni85 and Pd15Co85 can decrease the Ti from 450 to 440 K and 370 K, respectively. In the case of Li3N : Pd15Ni85 = 1:4, the Ti of PdNi and PdCo modified Li3N further decreases to 420 K and 360 K and the their hydrogenation capacity is 107 % and 58 % of Li3N, respectively. As a result, the hydrogenation kinetic could effectively be promoted by addition of Pd15Ni85 and Pd15Co85 alloy catalysts.
Lie, Leon y 賴亮全. "HYDROGENATION PROPERTIES OF SUBSTITUTIONAL LaNi5-BASED ALLOYS AND BALL MILLED Zr-Mn-V-Co-Ni AMORPHOUS ALLOY". Thesis, 1996. http://ndltd.ncl.edu.tw/handle/86730752730734215619.
Texto completoAl, Dakhil Abdullah. "Synthesis and Application of PN3P Cobalt Pincer Complex for Selective Hydrogenation of Nitriles to Secondary Imines and α -Alkylation of Nitriles with Alcohols". Thesis, 2018. http://hdl.handle.net/10754/628071.
Texto completoAlberico, Elisabetta [Verfasser]. "Optically active [(η6-arene)Cr(CO)3]-based [(eta6-arene)Cr(CO)3-based] diphosphines : synthesis and application in asymmetric homogeneous hydrogenation / vorgelegt von Elisabetta Alberico". 2003. http://d-nb.info/970879490/34.
Texto completoStrotman, Neil Adham. "I. Stereochemistry of cyclopropane formation involving group (IV) organometallic complexes : II. Slower stoichiometric and faster catalytic reduction of aldehydes by the PPh₃ substituted hydroxycyclopentadienyl ruthenium hydride [2,5-Ph₂-3,4-Tol₂([eta]⁵-C₄COH)]Ru(CO)(PPh₃)H: a highly complex chemoselective catalyst for hydrogenation of aldehydes over ketones /". 2005. http://catalog.hathitrust.org/api/volumes/oclc/70792586.html.
Texto completo