Artículos de revistas sobre el tema "CMP-sialic acid transport proteins"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 37 mejores artículos de revistas para su investigación sobre el tema "CMP-sialic acid transport proteins".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Hipgrave Ederveen, Agnes L., Noortje de Haan, Melissa Baerenfaenger, Dirk J. Lefeber y Manfred Wuhrer. "Dissecting Total Plasma and Protein-Specific Glycosylation Profiles in Congenital Disorders of Glycosylation". International Journal of Molecular Sciences 21, n.º 20 (15 de octubre de 2020): 7635. http://dx.doi.org/10.3390/ijms21207635.
Texto completoGangi Setty, Thanuja, Christine Cho, Sowmya Govindappa, Michael A. Apicella y S. Ramaswamy. "Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site". Acta Crystallographica Section D Biological Crystallography 70, n.º 7 (24 de junio de 2014): 1801–11. http://dx.doi.org/10.1107/s139900471400830x.
Texto completoUrbanek, Kelly, Danica M. Sutherland, Robert C. Orchard, Craig B. Wilen, Jonathan J. Knowlton, Pavithra Aravamudhan, Gwen M. Taylor, Herbert W. Virgin y Terence S. Dermody. "Cytidine Monophosphate N-Acetylneuraminic Acid Synthetase and Solute Carrier Family 35 Member A1 Are Required for Reovirus Binding and Infection". Journal of Virology 95, n.º 2 (21 de octubre de 2020): e01571-20. http://dx.doi.org/10.1128/jvi.01571-20.
Texto completoSouter, E., M. Pypaert y G. Warren. "The Golgi stack reassembles during telophase before arrival of proteins transported from the endoplasmic reticulum". Journal of Cell Biology 122, n.º 3 (1 de agosto de 1993): 533–40. http://dx.doi.org/10.1083/jcb.122.3.533.
Texto completoQian, Mengding y Billy Tsai. "Lipids and Proteins Act in Opposing Manners To Regulate Polyomavirus Infection". Journal of Virology 84, n.º 19 (28 de julio de 2010): 9840–52. http://dx.doi.org/10.1128/jvi.01093-10.
Texto completoBensing, Barbara A., José A. López y Paul M. Sullam. "The Streptococcus gordonii Surface Proteins GspB and Hsa Mediate Binding to Sialylated Carbohydrate Epitopes on the Platelet Membrane Glycoprotein Ibα". Infection and Immunity 72, n.º 11 (noviembre de 2004): 6528–37. http://dx.doi.org/10.1128/iai.72.11.6528-6537.2004.
Texto completoBrigham, Christopher, Ruth Caughlan, Rene Gallegos, Mary Beth Dallas, Veronica G. Godoy y Michael H. Malamy. "Sialic Acid (N-Acetyl Neuraminic Acid) Utilization by Bacteroides fragilis Requires a Novel N-Acetyl Mannosamine Epimerase". Journal of Bacteriology 191, n.º 11 (20 de marzo de 2009): 3629–38. http://dx.doi.org/10.1128/jb.00811-08.
Texto completoHenriquez, Tania, Larissa Wirtz, Dan Su y Heinrich Jung. "Prokaryotic Solute/Sodium Symporters: Versatile Functions and Mechanisms of a Transporter Family". International Journal of Molecular Sciences 22, n.º 4 (13 de febrero de 2021): 1880. http://dx.doi.org/10.3390/ijms22041880.
Texto completoBaeuerle, P. A. y W. B. Huttner. "Tyrosine sulfation is a trans-Golgi-specific protein modification." Journal of Cell Biology 105, n.º 6 (1 de diciembre de 1987): 2655–64. http://dx.doi.org/10.1083/jcb.105.6.2655.
Texto completoTiralongo, Joe, Samia Abo, Basil Danylec, Rita Gerardy-Schahn y Mark von Itzstein. "A High-Throughput Assay for Rat Liver Golgi and Saccharomyces cerevisiae-Expressed Murine CMP-N-Acetylneuraminic Acid Transport Proteins". Analytical Biochemistry 285, n.º 1 (octubre de 2000): 21–32. http://dx.doi.org/10.1006/abio.2000.4705.
Texto completoDoms, R. W., G. Russ y J. W. Yewdell. "Brefeldin A redistributes resident and itinerant Golgi proteins to the endoplasmic reticulum." Journal of Cell Biology 109, n.º 1 (1 de julio de 1989): 61–72. http://dx.doi.org/10.1083/jcb.109.1.61.
Texto completoTisdale, E. J., J. R. Bourne, R. Khosravi-Far, C. J. Der y W. E. Balch. "GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex." Journal of Cell Biology 119, n.º 4 (15 de noviembre de 1992): 749–61. http://dx.doi.org/10.1083/jcb.119.4.749.
Texto completoZolotarev, A. S., R. R. Townsend, A. Stuart-Tilley y S. L. Alper. "HCO3(-)-dependent conformational change in gastric parietal cell AE2, a glycoprotein naturally lacking sialic acid". American Journal of Physiology-Gastrointestinal and Liver Physiology 271, n.º 2 (1 de agosto de 1996): G311—G321. http://dx.doi.org/10.1152/ajpgi.1996.271.2.g311.
Texto completoAnba-Mondoloni, Jamila, Stéphane Chaillou, Monique Zagorec y Marie-Christine Champomier-Vergès. "Catabolism ofN-Acetylneuraminic Acid, a Fitness Function of the Food-Borne Lactic Acid Bacterium Lactobacillus sakei, Involves Two Newly Characterized Proteins". Applied and Environmental Microbiology 79, n.º 6 (18 de enero de 2013): 2012–18. http://dx.doi.org/10.1128/aem.03301-12.
Texto completoПыко, К. В., Ю. А. Беспалов y С. С. Осочук. "The Role of Sialic Acid and Red Blood Cells Zeta Potential in Oxygen Transport from Bloodstream to Vital Organs and Tissues: Review of Current Data". Лабораторная диагностика. Восточная Европа, n.º 3 (22 de septiembre de 2022): 339–48. http://dx.doi.org/10.34883/pi.2022.11.3.009.
Texto completoHobman, T. C., L. Woodward y M. G. Farquhar. "Targeting of a heterodimeric membrane protein complex to the Golgi: rubella virus E2 glycoprotein contains a transmembrane Golgi retention signal." Molecular Biology of the Cell 6, n.º 1 (enero de 1995): 7–20. http://dx.doi.org/10.1091/mbc.6.1.7.
Texto completoAhuja, Shivani, James Cahill, Kimberly Hartfield y Matthew R. Whorton. "Inhibition of CMP-sialic acid transport by endogenous 5-methyl CMP". PLOS ONE 16, n.º 6 (3 de junio de 2021): e0249905. http://dx.doi.org/10.1371/journal.pone.0249905.
Texto completoMoreira, Lílian de Oliveira, Arnaldo Feitosa Braga Andrade, Márcio Damasceno Vale, Sônia Maria Silva Souza, Raphael Hirata, Lídia Maria Oliveira Buarque Asad, Nasser Ribeiro Asad, Luiz Henrique Monteiro-Leal, José Osvaldo Previato y Ana Luiza Mattos-Guaraldi. "Effects of Iron Limitation on Adherence and Cell Surface Carbohydrates of Corynebacterium diphtheriae Strains". Applied and Environmental Microbiology 69, n.º 10 (octubre de 2003): 5907–13. http://dx.doi.org/10.1128/aem.69.10.5907-5913.2003.
Texto completoTakashima, Shou, Junichi Seino, Takeshi Nakano, Kazuhito Fujiyama, Masafumi Tsujimoto, Nobuhiro Ishida y Yasuhiro Hashimoto. "Analysis of CMP-sialic acid transporter-like proteins in plants". Phytochemistry 70, n.º 17-18 (diciembre de 2009): 1973–81. http://dx.doi.org/10.1016/j.phytochem.2009.09.017.
Texto completoJohnston, P. A., A. Stieber y N. K. Gonatas. "A hypothesis on the traffic of MG160, a medial Golgi sialoglycoprotein, from the trans-Golgi network to the Golgi cisternae". Journal of Cell Science 107, n.º 3 (1 de marzo de 1994): 529–37. http://dx.doi.org/10.1242/jcs.107.3.529.
Texto completoMa, Cheng, Hong-Yuan Tsai, Qi Zhang, Lakmini Senavirathna, Lian Li, Lih-Shen Chin, Ru Chen y Sheng Pan. "An Integrated Proteomic and Glycoproteomic Investigation Reveals Alterations in the N-Glycoproteomic Network Induced by 2-Deoxy-D-Glucose in Colorectal Cancer Cells". International Journal of Molecular Sciences 23, n.º 15 (26 de julio de 2022): 8251. http://dx.doi.org/10.3390/ijms23158251.
Texto completoAbdel-Motal, Ussama, Shixia Wang, Shan Lu, Kim Wigglesworth y Uri Galili. "Increased Immunogenicity of Human Immunodeficiency Virus gp120 Engineered To Express Galα1-3Galβ1-4GlcNAc-R Epitopes". Journal of Virology 80, n.º 14 (15 de julio de 2006): 6943–51. http://dx.doi.org/10.1128/jvi.00310-06.
Texto completoMohamed, M., A. Ashikov, M. Guillard, J. H. Robben, S. Schmidt, B. van den Heuvel, A. P. M. de Brouwer et al. "Intellectual disability and bleeding diathesis due to deficient CMP-sialic acid transport". Neurology 81, n.º 7 (19 de julio de 2013): 681–87. http://dx.doi.org/10.1212/wnl.0b013e3182a08f53.
Texto completoChiaramonte, Molly, Jennifer L. Koviach, Chad Moore, Vidhya V. Iyer, Carston R. Wagner, Randall L. Halcomb, Wayne Miller, Paul Melançon y Robert D. Kuchta. "Inhibition of CMP-Sialic Acid Transport into Golgi Vesicles by Nucleoside Monophosphates†". Biochemistry 40, n.º 47 (noviembre de 2001): 14260–67. http://dx.doi.org/10.1021/bi011262w.
Texto completoPowell, L. D., S. W. Whiteheart y G. W. Hart. "Cell surface sialic acid influences tumor cell recognition in the mixed lymphocyte reaction." Journal of Immunology 139, n.º 1 (1 de julio de 1987): 262–70. http://dx.doi.org/10.4049/jimmunol.139.1.262.
Texto completoLiao, Si-Ming, Bo Lu, Xue-Hui Liu, Zhi-Long Lu, Shi-Jie Liang, Dong Chen, Frederic A. Troy, Ri-Bo Huang y Guo-Ping Zhou. "Molecular Interactions of the Polysialytransferase Domain (PSTD) in ST8Sia IV with CMP-Sialic Acid and Polysialic Acid Required for Polysialylation of the Neural Cell Adhesion Molecule Proteins: An NMR Study". International Journal of Molecular Sciences 21, n.º 5 (26 de febrero de 2020): 1590. http://dx.doi.org/10.3390/ijms21051590.
Texto completoChammas, R., J. M. McCaffery, A. Klein, Y. Ito, L. Saucan, G. Palade, M. G. Farquhar y A. Varki. "Uptake and incorporation of an epitope-tagged sialic acid donor into intact rat liver Golgi compartments. Functional localization of sialyltransferase overlaps with beta-galactosyltransferase but not with sialic acid O-acetyltransferase." Molecular Biology of the Cell 7, n.º 11 (noviembre de 1996): 1691–707. http://dx.doi.org/10.1091/mbc.7.11.1691.
Texto completoHarvey, B. E. y P. Thomas. "Inhibition of CMP-Sialic Acid Transport in Human Liver and Colorectal Cancer Cell Lines by a Sialic Acid Nucleoside Conjugate (KI-8110)". Biochemical and Biophysical Research Communications 190, n.º 2 (enero de 1993): 571–75. http://dx.doi.org/10.1006/bbrc.1993.1086.
Texto completoMilla, M. E. y C. B. Hirschberg. "Reconstitution of Golgi vesicle CMP-sialic acid and adenosine 3'-phosphate 5'-phosphosulfate transport into proteoliposomes." Proceedings of the National Academy of Sciences 86, n.º 6 (1 de marzo de 1989): 1786–90. http://dx.doi.org/10.1073/pnas.86.6.1786.
Texto completoIgarashi, Michihiro, Yoshiaki Komiya y Masanori Kurokawa. "Fluorographic analyses of the axonal transport of CMP-sialic acid and gangliosides in frog sciatic nerve". Neuroscience Research Supplements 3 (enero de 1986): S102. http://dx.doi.org/10.1016/0921-8696(86)90216-1.
Texto completoWattenberg, B. W. "Glycolipid and glycoprotein transport through the Golgi complex are similar biochemically and kinetically. Reconstitution of glycolipid transport in a cell free system." Journal of Cell Biology 111, n.º 2 (1 de agosto de 1990): 421–28. http://dx.doi.org/10.1083/jcb.111.2.421.
Texto completoHurtado-Ziola, Nancy, Justin L. Sonnenburg y Ajit Varki. "Differential Expression and Function of the CD33-Related Siglecs between Humans and Great Apes." Blood 104, n.º 11 (16 de noviembre de 2004): 1466. http://dx.doi.org/10.1182/blood.v104.11.1466.1466.
Texto completoJackson, Ronald J., Diana F. Hall y Peter J. Kerr. "Myxoma Virus Encodes an α2,3-Sialyltransferase That Enhances Virulence". Journal of Virology 73, n.º 3 (1999): 2376–84. http://dx.doi.org/10.1128/jvi.73.3.2376-2384.1999.
Texto completoAhuja, Shivani y Matthew R. Whorton. "Structural basis for mammalian nucleotide sugar transport". eLife 8 (15 de abril de 2019). http://dx.doi.org/10.7554/elife.45221.
Texto completoBohlender, Lennard L., Juliana Parsons, Sebastian N. W. Hoernstein, Christine Rempfer, Natalia Ruiz-Molina, Timo Lorenz, Fernando Rodríguez Jahnke et al. "Stable Protein Sialylation in Physcomitrella". Frontiers in Plant Science 11 (18 de diciembre de 2020). http://dx.doi.org/10.3389/fpls.2020.610032.
Texto completoReinke, Stefan O., Gerhard Lehmer, Stephan Hinderlich y Werner Reutter. "Regulation and pathophysiological implications of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) as the key enzyme of sialic acid biosynthesis". Biological Chemistry 390, n.º 7 (1 de julio de 2009). http://dx.doi.org/10.1515/bc.2009.073.
Texto completoBarnard, Karen N., Brynn K. Alford-Lawrence, David W. Buchholz, Brian R. Wasik, Justin R. LaClair, Hai Yu, Rebekah Honce et al. "Modified Sialic Acids on Mucus and Erythrocytes Inhibit Influenza A Virus Hemagglutinin and Neuraminidase Functions". Journal of Virology 94, n.º 9 (12 de febrero de 2020). http://dx.doi.org/10.1128/jvi.01567-19.
Texto completo