Artículos de revistas sobre el tema "Cluster [Fe-S]"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Cluster [Fe-S].

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Cluster [Fe-S]".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Rydz, Leszek, Maria Wróbel y Halina Jurkowska. "Sulfur Administration in Fe–S Cluster Homeostasis". Antioxidants 10, n.º 11 (29 de octubre de 2021): 1738. http://dx.doi.org/10.3390/antiox10111738.

Texto completo
Resumen
Mitochondria are the key organelles of Fe–S cluster synthesis. They contain the enzyme cysteine desulfurase, a scaffold protein, iron and electron donors, and specific chaperons all required for the formation of Fe–S clusters. The newly formed cluster can be utilized by mitochondrial Fe–S protein synthesis or undergo further transformation. Mitochondrial Fe–S cluster biogenesis components are required in the cytosolic iron–sulfur cluster assembly machinery for cytosolic and nuclear cluster supplies. Clusters that are the key components of Fe–S proteins are vulnerable and prone to degradation whenever exposed to oxidative stress. However, once degraded, the Fe–S cluster can be resynthesized or repaired. It has been proposed that sulfurtransferases, rhodanese, and 3-mercaptopyruvate sulfurtransferase, responsible for sulfur transfer from donor to nucleophilic acceptor, are involved in the Fe–S cluster formation, maturation, or reconstitution. In the present paper, we attempt to sum up our knowledge on the involvement of sulfurtransferases not only in sulfur administration but also in the Fe–S cluster formation in mammals and yeasts, and on reconstitution-damaged cluster or restoration of enzyme’s attenuated activity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Frazzon, J., J. R. Fick y D. R. Dean. "Biosynthesis of iron-sulphur clusters is a complex and highly conserved process". Biochemical Society Transactions 30, n.º 4 (1 de agosto de 2002): 680–85. http://dx.doi.org/10.1042/bst0300680.

Texto completo
Resumen
Iron-sulphur ([Fe-S]) clusters are simple inorganic prosthetic groups that are contained in a variety of proteins having functions related to electron transfer, gene regulation, environmental sensing and substrate activation. In spite of their simple structures, biological [Fe-S] clusters are not formed spontaneously. Rather, a consortium of highly conserved proteins is required for both the formation of [Fe-S] clusters and their insertion into various protein partners. Among the [Fe-S] cluster biosynthetic proteins are included a pyridoxal phosphate-dependent enzyme (NifS) that is involved in the activation of sulphur from L-cysteine, and a molecular scaffold protein (NifU) upon which [Fe-S] cluster precursors are formed. The formation or transfer of [Fe-S] clusters appears to require an electron-transfer step. Another complexity is that molecular chaperones homologous to DnaJ and DnaK are involved in some aspect of the maturation of [Fe-S]-cluster-containing proteins. It appears that the basic biochemical features of [Fe-S] cluster formation are strongly conserved in Nature, since organisms from all three life Kingdoms contain the same consortium of homologous proteins required for [Fe-S] cluster formation that were discovered in the eubacteria.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Bandyopadhyay, Sibali, Kala Chandramouli y Michael K. Johnson. "Iron–sulfur cluster biosynthesis". Biochemical Society Transactions 36, n.º 6 (19 de noviembre de 2008): 1112–19. http://dx.doi.org/10.1042/bst0361112.

Texto completo
Resumen
Iron–sulfur (Fe–S) clusters are present in more than 200 different types of enzymes or proteins and constitute one of the most ancient, ubiquitous and structurally diverse classes of biological prosthetic groups. Hence the process of Fe–S cluster biosynthesis is essential to almost all forms of life and is remarkably conserved in prokaryotic and eukaryotic organisms. Three distinct types of Fe–S cluster assembly machinery have been established in bacteria, termed the NIF, ISC and SUF systems, and, in each case, the overall mechanism involves cysteine desulfurase-mediated assembly of transient clusters on scaffold proteins and subsequent transfer of pre-formed clusters to apo proteins. A molecular level understanding of the complex processes of Fe–S cluster assembly and transfer is now beginning to emerge from the combination of in vivo and in vitro approaches. The present review highlights recent developments in understanding the mechanism of Fe–S cluster assembly and transfer involving the ubiquitous U-type scaffold proteins and the potential roles of accessory proteins such as Nfu proteins and monothiol glutaredoxins in the assembly, storage or transfer of Fe–S clusters.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

La, Ping, Valentina Ghiaccio, Jianbing Zhang y Stefano Rivella. "An Orchestrated Balance between Mitochondria Biogenesis, Iron-Sulfur Cluster Synthesis and Cellular Iron Acquisition". Blood 132, Supplement 1 (29 de noviembre de 2018): 1048. http://dx.doi.org/10.1182/blood-2018-99-112198.

Texto completo
Resumen
Abstract Fe-S clusters are essential cofactors for mitochondria functions, and mitochondria are required for Fe-S cluster synthesis. Additionally, mitochondria biogenesis demands cellular iron uptake, which is negatively regulated by Fe-S clusters. Fe-S clusters are synthesized in the mitochondria and cytosol by two different machineries. However, cytosolic Fe-S cluster synthesis necessitates the mitochondrial Fe-S cluster assembly machinery. PGC-1α is a transcriptional coactivator and a master regulator of mitochondria biogenesis. We confirmed that overexpression of PGC-1α in adipocytes and hepatocytes stimulated mitochondria biogenesis, as measured by Mitotrack Green and Deep Red staining, which label total and alive mitochondria, respectively. We further measured Fe-S cluster synthesis by monitoring the gene expression of Fe-S cluster assembly machinery. By using RT-qPCR and Western Blot analyses, we confirmed that PGC-1α expression increases expression of ABCB7, ISCA1, ISCA2, ISD11, Nfu1 and ISCU, components of the Fe-S assembly machinery, suggesting a coordination between mitochondria biogenesis and Fe-S cluster synthesis. Iron Regulatory Proteins (IRP1 and IRP2) control iron metabolism by binding to specific non-coding sequences within an mRNA, known as iron-responsive elements (IRE). In the absence of Fe-S clusters, IRP1 acts as an aconitase (aka ACO1), while IRP2 is degraded by ubiquitination. Aconitases, represented by the cytosolic form ACO1 and mitochondrial form ACO2, catalyze the isomerization of citrate to isocitrate and require Fe-S clusters to be enzymatically active. PGC-1α overexpression enhanced aconitase activity but not their protein levels, corroborating the notion that Fe-S cluster synthesis was increased. To explore whether this coordination solely depends on PGC-1α, we evaluated the Fe-S cluster synthesis status during brown adipocyte maturation, which is characterized by enhanced mitochondria biogenesis and has been suggested to be PGC-1α-independent. We found that the synthesis of Fe-S cluster assembly machinery increased during maturation in both wild-type and PGC-1α-knockout brown adipocytes, indicating that Fe-S cluster synthesis coordinates with mitochondria biogenesis even in the absence of PGC-1α. To explore the impact of Fe-S cluster synthesis on iron acquisition under enhanced mitochondria biogenesis, we evaluated the expression of the iron importer transferrin receptor 1 (TfR1). TfR1 mRNA contains IREs in the 3' untranslated region (UTR). These 3'UTR IREs can be bound by IRPs and responsible for the subsequent stabilization of TfR1 mRNA. Therefore, if IRP1 associates with Fe-S cluster and converted into ACO1, it is expected that both TfR1 mRNA and protein levels would decrease. In contrast, we found that stimulated Fe-S cluster synthesis increased levels of the TfR1 protein, despite reduced IRP1 activity and destabilized TfR1 mRNA. This suggests that Fe-S cluster synthesis coordinates with mitochondria biogenesis but does not block iron uptake. Moreover, we extended our work to erythropoiesis by using murine erythroleukemia (MEL) cells. Stimulated mitochondria biogenesis enhanced expression of the Fe-S cluster assembly machinery and Fe-S cluster synthesis in these cells. TfR1 protein levels were increased despite elevated Fe-S cluster synthesis and reduced IRP activity. We also found increases in heme levels and the expression of aminolevulinic acid synthase 2 (ALAS2), the rate-limiting enzyme for erythroid heme synthesis. Of note, the ALAS2 mRNA contains IRE at the 5'UTR; binding of IRPs to the IRE inhibits translation while high Fe-S cluster levels lead to release. Moreover, as α- and β-globins chain expression is stimulated by increased heme availability, we also observed that mitochondria biogenesis was associated with increased synthesis of these two proteins and hemoglobinization. These data suggests that erythroid heme synthesis, hemoglobin expression and hemoglobinization coordinates with mitochondria biogenesis via Fe-S cluster synthesis. In conclusion, our data show that Fe-S cluster synthesis coordinates with mitochondria biogenesis but does not block cellular iron uptake, thus suggesting a potential unidentified iron regulator to ensure adequate iron for mitochondria biogenesis. Moreover, our work suggests a mechanism underlying the essential role of mitochondria biogenesis in erythropoiesis. Disclosures Rivella: Disc Medicine: Consultancy; MeiraGTx: Other: SAB; Ionis Pharmaceuticals, Inc: Consultancy; Protagonist: Consultancy.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Zhang, Yan, Elise R. Lyver, Eiko Nakamaru-Ogiso, Heeyong Yoon, Boominathan Amutha, Dong-Woo Lee, Erfei Bi et al. "Dre2, a Conserved Eukaryotic Fe/S Cluster Protein, Functions in Cytosolic Fe/S Protein Biogenesis". Molecular and Cellular Biology 28, n.º 18 (14 de julio de 2008): 5569–82. http://dx.doi.org/10.1128/mcb.00642-08.

Texto completo
Resumen
ABSTRACT In a forward genetic screen for interaction with mitochondrial iron carrier proteins in Saccharomyces cerevisiae, a hypomorphic mutation of the essential DRE2 gene was found to confer lethality when combined with Δmrs3 and Δmrs4. The dre2 mutant or Dre2-depleted cells were deficient in cytosolic Fe/S cluster protein activities while maintaining mitochondrial Fe/S clusters. The Dre2 amino acid sequence was evolutionarily conserved, and cysteine motifs (CX2CXC and twin CX2C) in human and yeast proteins were perfectly aligned. The human Dre2 homolog (implicated in blocking apoptosis and called CIAPIN1 or anamorsin) was able to complement the nonviability of a Δdre2 deletion strain. The Dre2 protein with triple hemagglutinin tag was located in the cytoplasm and in the mitochondrial intermembrane space. Yeast Dre2 overexpressed and purified from bacteria was brown and exhibited signature absorption and electron paramagnetic resonance spectra, indicating the presence of both [2Fe-2S] and [4Fe-4S] clusters. Thus, Dre2 is an essential conserved Fe/S cluster protein implicated in extramitochondrial Fe/S cluster assembly, similar to other components of the so-called CIA (cytoplasmic Fe/S cluster assembly) pathway although partially localized to the mitochondrial intermembrane space.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Mendel, Ralf R., Thomas W. Hercher, Arkadiusz Zupok, Muhammad A. Hasnat y Silke Leimkühler. "The Requirement of Inorganic Fe-S Clusters for the Biosynthesis of the Organometallic Molybdenum Cofactor". Inorganics 8, n.º 7 (16 de julio de 2020): 43. http://dx.doi.org/10.3390/inorganics8070043.

Texto completo
Resumen
Iron-sulfur (Fe-S) clusters are essential protein cofactors. In enzymes, they are present either in the rhombic [2Fe-2S] or the cubic [4Fe-4S] form, where they are involved in catalysis and electron transfer and in the biosynthesis of metal-containing prosthetic groups like the molybdenum cofactor (Moco). Here, we give an overview of the assembly of Fe-S clusters in bacteria and humans and present their connection to the Moco biosynthesis pathway. In all organisms, Fe-S cluster assembly starts with the abstraction of sulfur from l-cysteine and its transfer to a scaffold protein. After formation, Fe-S clusters are transferred to carrier proteins that insert them into recipient apo-proteins. In eukaryotes like humans and plants, Fe-S cluster assembly takes place both in mitochondria and in the cytosol. Both Moco biosynthesis and Fe-S cluster assembly are highly conserved among all kingdoms of life. Moco is a tricyclic pterin compound with molybdenum coordinated through its unique dithiolene group. Moco biosynthesis begins in the mitochondria in a Fe-S cluster dependent step involving radical/S-adenosylmethionine (SAM) chemistry. An intermediate is transferred to the cytosol where the dithiolene group is formed, to which molybdenum is finally added. Further connections between Fe-S cluster assembly and Moco biosynthesis are discussed in detail.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Ayala-Castro, Carla, Avneesh Saini y F. Wayne Outten. "Fe-S Cluster Assembly Pathways in Bacteria". Microbiology and Molecular Biology Reviews 72, n.º 1 (marzo de 2008): 110–25. http://dx.doi.org/10.1128/mmbr.00034-07.

Texto completo
Resumen
SUMMARY Iron-sulfur (Fe-S) clusters are required for critical biochemical pathways, including respiration, photosynthesis, and nitrogen fixation. Assembly of these iron cofactors is a carefully controlled process in cells to avoid toxicity from free iron and sulfide. Multiple Fe-S cluster assembly pathways are present in bacteria to carry out basal cluster assembly, stress-responsive cluster assembly, and enzyme-specific cluster assembly. Although biochemical and genetic characterization is providing a partial picture of in vivo Fe-S cluster assembly, a number of mechanistic questions remain unanswered. Furthermore, new factors involved in Fe-S cluster assembly and repair have recently been identified and are expanding the complexity of current models. Here we attempt to summarize recent advances and to highlight new avenues of research in the field of Fe-S cluster assembly.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Johnson, D. C., P. C. Dos Santos y D. R. Dean. "NifU and NifS are required for the maturation of nitrogenase and cannot replace the function of isc-gene products in Azotobacter vinelandii". Biochemical Society Transactions 33, n.º 1 (1 de febrero de 2005): 90–93. http://dx.doi.org/10.1042/bst0330090.

Texto completo
Resumen
In recent years, it has become evident that [Fe-S] proteins, such as hydrogenase, nitrogenase and aconitase, require a complex machinery to assemble and insert their associated [Fe-S] clusters. So far, three different types of [Fe-S] cluster biosynthetic systems have been identified and these have been designated nif, isc and suf. In the present work, we show that the nif-specific [Fe-S] cluster biosynthetic system from Azotobacter vinelandii, which is required for nitrogenase maturation, cannot functionally replace the isc [Fe-S] cluster system used for the maturation of other [Fe-S] proteins, such as aconitase. The results indicate that, in certain cases, [Fe-S] cluster biosynthetic machineries have evolved to perform only specialized functions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Srour, Batoul, Sylvain Gervason, Beata Monfort y Benoit D’Autréaux. "Mechanism of Iron–Sulfur Cluster Assembly: In the Intimacy of Iron and Sulfur Encounter". Inorganics 8, n.º 10 (3 de octubre de 2020): 55. http://dx.doi.org/10.3390/inorganics8100055.

Texto completo
Resumen
Iron–sulfur (Fe–S) clusters are protein cofactors of a multitude of enzymes performing essential biological functions. Specialized multi-protein machineries present in all types of organisms support their biosynthesis. These machineries encompass a scaffold protein on which Fe–S clusters are assembled and a cysteine desulfurase that provides sulfur in the form of a persulfide. The sulfide ions are produced by reductive cleavage of the persulfide, which involves specific reductase systems. Several other components are required for Fe–S biosynthesis, including frataxin, a key protein of controversial function and accessory components for insertion of Fe–S clusters in client proteins. Fe–S cluster biosynthesis is thought to rely on concerted and carefully orchestrated processes. However, the elucidation of the mechanisms of their assembly has remained a challenging task due to the biochemical versatility of iron and sulfur and the relative instability of Fe–S clusters. Nonetheless, significant progresses have been achieved in the past years, using biochemical, spectroscopic and structural approaches with reconstituted system in vitro. In this paper, we review the most recent advances on the mechanism of assembly for the founding member of the Fe–S cluster family, the [2Fe2S] cluster that is the building block of all other Fe–S clusters. The aim is to provide a survey of the mechanisms of iron and sulfur insertion in the scaffold proteins by examining how these processes are coordinated, how sulfide is produced and how the dinuclear [2Fe2S] cluster is formed, keeping in mind the question of the physiological relevance of the reconstituted systems. We also cover the latest outcomes on the functional role of the controversial frataxin protein in Fe–S cluster biosynthesis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Dos Santos, Patricia C., Archer D. Smith, Jeverson Frazzon, Valerie L. Cash, Michael K. Johnson y Dennis R. Dean. "Iron-Sulfur Cluster Assembly". Journal of Biological Chemistry 279, n.º 19 (1 de marzo de 2004): 19705–11. http://dx.doi.org/10.1074/jbc.m400278200.

Texto completo
Resumen
The NifU protein is a homodimer that is proposed to provide a molecular scaffold for the assembly of [Fe-S] clusters uniquely destined for the maturation of the nitrogenase catalytic components. There are three domains contained within NifU, with the N-terminal domain exhibiting a high degree of primary sequence similarity to a related family of [Fe-S] cluster biosynthetic scaffolds designated IscU. The C-terminal domain of NifU exhibits sequence similarity to a second family of proposed [Fe-S] cluster biosynthetic scaffolds designated Nfu. Genetic experiments described here involving amino acid substitutions within the N-terminal and C-terminal domains of NifU indicate that both domains can separately participate in nitrogenase-specific [Fe-S] cluster formation, although the N-terminal domain appears to have the dominant function. Thesein vivoexperiments were supported byin vitro[Fe-S] cluster assembly and transfer experiments involving the activation of an apo-form of the nitrogenase Fe protein.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Jain, Anshika, Anamika Singh, Nunziata Maio y Tracey A. Rouault. "Assembly of the [4Fe–4S] cluster of NFU1 requires the coordinated donation of two [2Fe–2S] clusters from the scaffold proteins, ISCU2 and ISCA1". Human Molecular Genetics 29, n.º 19 (8 de agosto de 2020): 3165–82. http://dx.doi.org/10.1093/hmg/ddaa172.

Texto completo
Resumen
Abstract NFU1, a late-acting iron–sulfur (Fe–S) cluster carrier protein, has a key role in the pathogenesis of the disease, multiple mitochondrial dysfunctions syndrome. In this work, using genetic and biochemical approaches, we identified the initial scaffold protein, mitochondrial ISCU (ISCU2) and the secondary carrier, ISCA1, as the direct donors of Fe–S clusters to mitochondrial NFU1, which appears to dimerize and reductively mediate the formation of a bridging [4Fe–4S] cluster, aided by ferredoxin 2. By monitoring the abundance of target proteins that acquire their Fe–S clusters from NFU1, we characterized the effects of several novel pathogenic NFU1 mutations. We observed that NFU1 directly interacts with each of the Fe–S cluster scaffold proteins known to ligate [2Fe–2S] clusters, ISCU2 and ISCA1, and we mapped the site of interaction to a conserved hydrophobic patch of residues situated at the end of the C-terminal alpha-helix of NFU1. Furthermore, we showed that NFU1 lost its ability to acquire its Fe–S cluster when mutagenized at the identified site of interaction with ISCU2 and ISCA1, which thereby adversely affected biochemical functions of proteins that are thought to acquire their Fe–S clusters directly from NFU1, such as lipoic acid synthase, which supports the Fe–S-dependent process of lipoylation of components of multiple key enzyme complexes, including pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase and the glycine cleavage complex.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Raza, Md, Vivian Jeyachandran y Sania Bashir. "Investigating Iron-Sulfur Proteins in Infectious Diseases: A Review of Characterization Techniques". Inorganics 12, n.º 1 (7 de enero de 2024): 25. http://dx.doi.org/10.3390/inorganics12010025.

Texto completo
Resumen
Iron-sulfur [Fe-S] clusters, comprising coordinated iron and sulfur atoms arranged in diverse configurations, play a pivotal role in redox reactions and various biological processes. Diverse structural variants of [Fe-S] clusters exist, each possessing distinct attributes and functions. Recent discovery of [Fe-S] clusters in infectious pathogens, such as Mycobacterium tuberculosis, and in viruses, such as rotavirus, polyomavirus, hepatitis virus, mimivirus, and coronavirus, have sparked interest in them being a potential therapeutics target. Recent findings have associated these [Fe-S] cluster proteins playing a critical role in structural and host protein activity. However, for a very long time, metalloenzymes containing iron-sulfur clusters have been prone to destabilization in the presence of oxygen, which led to a delayed understanding of [Fe-S] proteins compared to other non-heme iron-containing proteins. Consequently, working with [Fe-S] proteins require specialized equipment, such as anaerobic chambers to maintain cofactor integrity, and tools like ultraviolet visible (UV-Vis) spectroscopy, mass spectrometry, X-ray crystallography, nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), Mössbauer spectroscopy and electrochemical characterization. Many of these [Fe-S] cluster proteins have been misannotated as Zinc-binding proteins when purified aerobically. Moreover, the assembly of these iron-sulfur cluster cofactors have not been fully understood since it is a multi-step assembly process. Additionally, disruptions in this assembly process have been linked to human diseases. With rapid advancements in anaerobic gloveboxes and spectroscopic techniques, characterization of these [Fe-S] cluster-containing proteins that are essential for the pathogens can open up new avenues for diagnostics and therapeutics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Vernis, Laurence, Nadine El Banna, Dorothée Baïlle, Elie Hatem, Amélie Heneman y Meng-Er Huang. "Fe-S Clusters Emerging as Targets of Therapeutic Drugs". Oxidative Medicine and Cellular Longevity 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/3647657.

Texto completo
Resumen
Fe-S centers exhibit strong electronic plasticity, which is of importance for insuring fine redox tuning of protein biological properties. In accordance, Fe-S clusters are also highly sensitive to oxidation and can be very easily alteredin vivoby different drugs, either directly or indirectly due to catabolic by-products, such as nitric oxide species (NOS) or reactive oxygen species (ROS). In case of metal ions, Fe-S cluster alteration might be the result of metal liganding to the coordinating sulfur atoms, as suggested for copper. Several drugs presented through this review are either capable of direct interaction with Fe-S clusters or of secondary Fe-S clusters alteration following ROS or NOS production. Reactions leading to Fe-S cluster disruption are also reported. Due to the recent interest and progress in Fe-S biology, it is very likely that an increasing number of drugs already used in clinics will emerge as molecules interfering with Fe-S centers in the near future. Targeting Fe-S centers could also become a promising strategy for drug development.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Albrecht, Alexander G., Daili J. A. Netz, Marcus Miethke, Antonio J. Pierik, Olaf Burghaus, Florian Peuckert, Roland Lill y Mohamed A. Marahiel. "SufU Is an Essential Iron-Sulfur Cluster Scaffold Protein in Bacillus subtilis". Journal of Bacteriology 192, n.º 6 (22 de enero de 2010): 1643–51. http://dx.doi.org/10.1128/jb.01536-09.

Texto completo
Resumen
ABSTRACT Bacteria use three distinct systems for iron-sulfur (Fe/S) cluster biogenesis: the ISC, SUF, and NIF machineries. The ISC and SUF systems are widely distributed, and many bacteria possess both of them. In Escherichia coli, ISC is the major and constitutive system, whereas SUF is induced under iron starvation and/or oxidative stress. Genomic analysis of the Fe/S cluster biosynthesis genes in Bacillus subtilis suggests that this bacterium's genome encodes only a SUF system consisting of a sufCDSUB gene cluster and a distant sufA gene. Mutant analysis of the putative Fe/S scaffold genes sufU and sufA revealed that sufU is essential for growth under minimal standard conditions, but not sufA. The drastic growth retardation of a conditional mutant depleted of SufU was coupled with a severe reduction of aconitase and succinate dehydrogenase activities in total-cell lysates, suggesting a crucial function of SufU in Fe/S protein biogenesis. Recombinant SufU was devoid of Fe/S clusters after aerobic purification. Upon in vitro reconstitution, SufU bound an Fe/S cluster with up to ∼1.5 Fe and S per monomer. The assembled Fe/S cluster could be transferred from SufU to the apo form of isopropylmalate isomerase Leu1, rapidly forming catalytically active [4Fe-4S]-containing holo-enzyme. In contrast to native SufU, its D43A variant carried a Fe/S cluster after aerobic purification, indicating that the cluster is stabilized by this mutation. Further, we show that apo-SufU is an activator of the cysteine desulfurase SufS by enhancing its activity about 40-fold in vitro. SufS-dependent formation of holo-SufU suggests that SufU functions as an Fe/S cluster scaffold protein tightly cooperating with the SufS cysteine desulfurase.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Wang, Xufeng, Xufeng Gao, Zhibo Lai, Zongen Han y Yungang Li. "Molecular Dynamics Research on Fe Precipitation Behavior of Cu95Fe5 Alloys during Rapid Cooling". Metals 14, n.º 2 (13 de febrero de 2024): 228. http://dx.doi.org/10.3390/met14020228.

Texto completo
Resumen
To investigate structural changes, the Cu95Fe5 alloy system was subjected to cooling rates of 1 × 1013 K/s, 2 × 1012 K/s, 2 × 1011 K/s, and 2 × 1010 K/s using the molecular dynamics simulation method. The results revealed that decreasing the cooling rate caused an increase in the phase transition temperature. Further, the structure of the alloy system exhibited a tendency towards increased stability following cooling at lower cooling rates. The Fe precipitation behavior of the Cu95Fe5 alloys during cooling at the rate of 2 × 1010 K/s was further explored, with the results suggesting that the formation and growth of the Fe cluster is a continuous process governed by the nucleation and growth mechanism. The size and number of Fe clusters formed at different stages were found to be affected by three factors, namely, the interaction force between the Fe atoms, the diffusion ability of the Fe atoms, and the interfacial energy between the Fe cluster and Cu matrix. When the alloy temperature exceeded 1400 K, the accumulation of the Fe atoms was facilitated by their strong interaction. However, the high temperatures and the large diffusion coefficient of the Fe atoms acted as inhibitors to the growth of Fe clusters, despite the intense thermal activities. As the temperature was reduced from 1400 K to 1050 K, the Fe atoms moved with a reduced intensity in a narrower area, and both the number of Fe atoms in the largest cluster and the number of clusters increased due to the action of the interaction force between the Fe atoms. Upon lowering the temperature from 1050 K to 887 K, the size of the largest Fe cluster increased rapidly, while the number of clusters decreased gradually. The growth of the largest Fe cluster could be partly attributed to the diffusion of single Fe atoms into the cluster under the action of the interaction force between the Fe atoms, in addition to the gathering and combination of multiple clusters. When the temperature was lowered from 967 K to 887 K, the diffusion coefficient of the Fe atoms approached 0, indicating that the non-diffusive local structure rearrangements of atoms dominated in the system structure change process. The interface energy governed the combination of the Fe clusters in this stage. At a temperature below 887 K, the alloy crystallized, the activities of the Fe atoms were reduced due to a low temperature, and the movement range of the Fe atoms was small at a fast cooling rate. As such, both the size and number of Fe clusters showed no obvious changes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Berteau, Olivier. "A missed Fe-S cluster handoff causes a metabolic shakeup". Journal of Biological Chemistry 293, n.º 21 (25 de mayo de 2018): 8312–13. http://dx.doi.org/10.1074/jbc.h118.002883.

Texto completo
Resumen
The general framework of pathways by which iron–sulfur (Fe-S) clusters are assembled in cells is well-known, but the cellular consequences of disruptions to that framework are not fully understood. Crooks et al. report a novel cellular system that creates an acute Fe-S cluster deficiency, using mutants of ISCU, the main scaffold protein for Fe-S cluster assembly. Surprisingly, the resultant metabolic reprogramming leads to the accumulation of lipid droplets, a situation encountered in many poorly understood pathological conditions, highlighting unanticipated links between Fe-S assembly machinery and human disease.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Azam, Tamanna, Jonathan Przybyla-Toscano, Florence Vignols, Jérémy Couturier, Nicolas Rouhier y Michael K. Johnson. "[4Fe-4S] cluster trafficking mediated by Arabidopsis mitochondrial ISCA and NFU proteins". Journal of Biological Chemistry 295, n.º 52 (29 de octubre de 2020): 18367–78. http://dx.doi.org/10.1074/jbc.ra120.015726.

Texto completo
Resumen
Numerous iron-sulfur (Fe-S) proteins with diverse functions are present in the matrix and respiratory chain complexes of mitochondria. Although [4Fe-4S] clusters are the most common type of Fe-S cluster in mitochondria, the molecular mechanism of [4Fe-4S] cluster assembly and insertion into target proteins by the mitochondrial iron-sulfur cluster (ISC) maturation system is not well-understood. Here we report a detailed characterization of two late-acting Fe-S cluster-carrier proteins from Arabidopsis thaliana, NFU4 and NFU5. Yeast two-hybrid and bimolecular fluorescence complementation studies demonstrated interaction of both the NFU4 and NFU5 proteins with the ISCA class of Fe-S carrier proteins. Recombinant NFU4 and NFU5 were purified as apo-proteins after expression in Escherichia coli. In vitro Fe-S cluster reconstitution led to the insertion of one [4Fe-4S]2+ cluster per homodimer as determined by UV-visible absorption/CD, resonance Raman and EPR spectroscopy, and analytical studies. Cluster transfer reactions, monitored by UV-visible absorption and CD spectroscopy, showed that a [4Fe-4S]2+ cluster-bound ISCA1a/2 heterodimer is effective in transferring [4Fe-4S]2+ clusters to both NFU4 and NFU5 with negligible back reaction. In addition, [4Fe-4S]2+ cluster-bound ISCA1a/2, NFU4, and NFU5 were all found to be effective [4Fe-4S]2+ cluster donors for maturation of the mitochondrial apo-aconitase 2 as assessed by enzyme activity measurements. The results demonstrate rapid, unidirectional, and quantitative [4Fe-4S]2+ cluster transfer from ISCA1a/2 to NFU4 or NFU5 that further delineates their respective positions in the plant ISC machinery and their contributions to the maturation of client [4Fe-4S] cluster-containing proteins.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Yu, Qian, Xu Han y Da-Li Tian. "Deficiency of Functional Iron-Sulfur Domains in ABCE1 Inhibits the Proliferation and Migration of Lung Adenocarcinomas By Regulating the Biogenesis of Beta-Actin In Vitro". Cellular Physiology and Biochemistry 44, n.º 2 (2017): 554–66. http://dx.doi.org/10.1159/000485090.

Texto completo
Resumen
Background/Aims: ATP-binding cassette transporter E1 (ABCE1), a unique ABC superfamily member that bears two Fe-S clusters, is essential for metastatic progression in lung cancer. Fe-S clusters within ABCE1 are crucial for ribosome dissociation and translation reinitiation; however, whether these clusters promote tumor proliferation and migration is unclear. Methods: The interaction between ABCE1 and β-actin was confirmed using GST pull-down. The lung adenocarcinoma (LUAD) cell line A549 was transduced with lentiviral packaging vectors overexpressing either wild-type ABCE1 or ABCE1 with Fe-S cluster deletions (ΔABCE1). The role of Fe-S clusters in the viability and migration of cancer cells was evaluated using clonogenic, MTT, Transwell and wound healing assays. Cytoskeletal rearrangement was determined using immunofluorescent techniques. Results: Fe-S clusters were the key domains in ABCE1 involved in binding to β-actin. The proliferative and migratory capacity increased in cells overexpressing ABCE1. However, the absence of Fe-S clusters reversed these effects. A549 cells overexpressing ABCE1 exhibited irregular morphology and increased levels of cytoskeletal polymerization as indicated by the immunofluorescence images. In contrast, cells expressing the Fe-S cluster deletion mutant presented opposing effects. Conclusion: These results demonstrate the indispensable role of Fe-S clusters when ABCE1 participates in the proliferation and migration of LUADs by interacting with β-actin. The Fe-S clusters of ABCE1 may be potential targets for the prevention of lung cancer metastasis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Amutha, Boominathan, Donna M. Gordon, Yajuan Gu, Elise R. Lyver, Andrew Dancis y Debkumar Pain. "GTP Is Required for Iron-Sulfur Cluster Biogenesis in Mitochondria". Journal of Biological Chemistry 283, n.º 3 (19 de noviembre de 2007): 1362–71. http://dx.doi.org/10.1074/jbc.m706808200.

Texto completo
Resumen
Iron-sulfur (Fe-S) cluster biogenesis in mitochondria is an essential process and is conserved from yeast to humans. Several proteins with Fe-S cluster cofactors reside in mitochondria, including aconitase [4Fe-4S] and ferredoxin [2Fe-2S]. We found that mitochondria isolated from wild-type yeast contain a pool of apoaconitase and machinery capable of forming new clusters and inserting them into this endogenous apoprotein pool. These observations allowed us to develop assays to assess the role of nucleotides (GTP and ATP) in cluster biogenesis in mitochondria. We show that Fe-S cluster biogenesis in isolated mitochondria is enhanced by the addition of GTP and ATP. Hydrolysis of both GTP and ATP is necessary, and the addition of ATP cannot circumvent processes that require GTP hydrolysis. Both in vivo and in vitro experiments suggest that GTP must enter into the matrix to exert its effects on cluster biogenesis. Upon import into isolated mitochondria, purified apoferredoxin can also be used as a substrate by the Fe-S cluster machinery in a GTP-dependent manner. GTP is likely required for a common step involved in the cluster biogenesis of aconitase and ferredoxin. To our knowledge this is the first report demonstrating a role of GTP in mitochondrial Fe-S cluster biogenesis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Lill, Roland. "From the discovery to molecular understanding of cellular iron-sulfur protein biogenesis". Biological Chemistry 401, n.º 6-7 (26 de mayo de 2020): 855–76. http://dx.doi.org/10.1515/hsz-2020-0117.

Texto completo
Resumen
AbstractProtein cofactors often are the business ends of proteins, and are either synthesized inside cells or are taken up from the nutrition. A cofactor that strictly needs to be synthesized by cells is the iron-sulfur (Fe/S) cluster. This evolutionary ancient compound performs numerous biochemical functions including electron transfer, catalysis, sulfur mobilization, regulation and protein stabilization. Since the discovery of eukaryotic Fe/S protein biogenesis two decades ago, more than 30 biogenesis factors have been identified in mitochondria and cytosol. They support the synthesis, trafficking and target-specific insertion of Fe/S clusters. In this review, I first summarize what led to the initial discovery of Fe/S protein biogenesis in yeast. I then discuss the function and localization of Fe/S proteins in (non-green) eukaryotes. The major part of the review provides a detailed synopsis of the three major steps of mitochondrial Fe/S protein biogenesis, i.e. the de novo synthesis of a [2Fe-2S] cluster on a scaffold protein, the Hsp70 chaperone-mediated transfer of the cluster and integration into [2Fe-2S] recipient apoproteins, and the reductive fusion of [2Fe-2S] to [4Fe-4S] clusters and their subsequent assembly into target apoproteins. Finally, I summarize the current knowledge of the mechanisms underlying the maturation of cytosolic and nuclear Fe/S proteins.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Iwasaki, Toshio. "Iron-Sulfur World in Aerobic and Hyperthermoacidophilic ArchaeaSulfolobus". Archaea 2010 (2010): 1–14. http://dx.doi.org/10.1155/2010/842639.

Texto completo
Resumen
The general importance of the Fe-S cluster prosthetic groups in biology is primarily attributable to specific features of iron and sulfur chemistry, and the assembly and interplay of the Fe-S cluster core with the surrounding protein is the key to in-depth understanding of the underlying mechanisms. In the aerobic and thermoacidophilic archaea, zinc-containing ferredoxin is abundant in the cytoplasm, functioning as a key electron carrier, and many Fe-S enzymes are produced to participate in the central metabolic and energetic pathways.De novoformation of intracellular Fe-S clusters does not occur spontaneously but most likely requires the operation of a SufBCD complex of the SUF machinery, which is the only Fe-S cluster biosynthesis system conserved in these archaea. In this paper, a brief introduction to the buildup and maintenance of the intracellular Fe-S world in aerobic and hyperthermoacidophilic crenarchaeotes, mainlySulfolobus, is given in the biochemical, genetic, and evolutionary context.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Ishizaka, Masato, Minghao Chen, Shun Narai, Yoshikazu Tanaka, Toyoyuki Ose, Masaki Horitani y Min Yao. "Quick and Spontaneous Transformation between [3Fe–4S] and [4Fe–4S] Iron–Sulfur Clusters in the tRNA-Thiolation Enzyme TtuA". International Journal of Molecular Sciences 24, n.º 1 (3 de enero de 2023): 833. http://dx.doi.org/10.3390/ijms24010833.

Texto completo
Resumen
Iron–sulfur (Fe–S) clusters are essential cofactors for enzyme activity. These Fe–S clusters are present in structurally diverse forms, including [4Fe–4S] and [3Fe–4S]. Type-identification of the Fe–S cluster is indispensable in understanding the catalytic mechanism of enzymes. However, identifying [4Fe–4S] and [3Fe–4S] clusters in particular is challenging because of their rapid transformation in response to oxidation–reduction events. In this study, we focused on the relationship between the Fe–S cluster type and the catalytic activity of a tRNA-thiolation enzyme (TtuA). We reconstituted [4Fe–4S]-TtuA, prepared [3Fe–4S]-TtuA by oxidizing [4Fe–4S]-TtuA under strictly anaerobic conditions, and then observed changes in the Fe–S clusters in the samples and the enzymatic activity in the time-course experiments. Electron paramagnetic resonance analysis revealed that [3Fe–4S]-TtuA spontaneously transforms into [4Fe–4S]-TtuA in minutes to one hour without an additional free Fe source in the solution. Although the TtuA immediately after oxidation of [4Fe–4S]-TtuA was inactive [3Fe–4S]-TtuA, its activity recovered to a significant level compared to [4Fe–4S]-TtuA after one hour, corresponding to an increase of [4Fe–4S]-TtuA in the solution. Our findings reveal that [3Fe–4S]-TtuA is highly inactive and unstable. Moreover, time-course analysis of structural changes and activity under strictly anaerobic conditions further unraveled the Fe–S cluster type used by the tRNA-thiolation enzyme.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Wollers, Silke, Gunhild Layer, Ricardo Garcia-Serres, Luca Signor, Martin Clemancey, Jean-Marc Latour, Marc Fontecave y Sandrine Ollagnier de Choudens. "Iron-Sulfur (Fe-S) Cluster Assembly". Journal of Biological Chemistry 285, n.º 30 (11 de mayo de 2010): 23331–41. http://dx.doi.org/10.1074/jbc.m110.127449.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Skovran, Elizabeth y Diana M. Downs. "Lack of the ApbC or ApbE Protein Results in a Defect in Fe-S Cluster Metabolism in Salmonella enterica Serovar Typhimurium". Journal of Bacteriology 185, n.º 1 (1 de enero de 2003): 98–106. http://dx.doi.org/10.1128/jb.185.1.98-106.2003.

Texto completo
Resumen
ABSTRACT The isc genes function in the assembly of Fe-S clusters and are conserved in many prokaryotic and eukaryotic organisms. In most bacteria studied, the isc operon can be deleted without loss of cell viability, indicating that additional systems for Fe-S cluster assembly must exist. Several laboratories have described nutritional and biochemical defects resulting from mutations in the isc operon. Here we demonstrate that null mutations in two genes of unknown function, apbC and apbE, result in similar cellular deficiencies. Exogenous ferric chloride suppressed these deficiencies in the apbC and apbE mutants, distinguishing them from previously described isc mutants. The deficiencies caused by the apbC and isc mutations were additive, which is consistent with Isc and ApbC's having redundant functions or with Isc and ApbC's functioning in different areas of Fe-S cluster metabolism (e.g., Fe-S cluster assembly and Fe-S cluster repair). Both the ApbC and ApbE proteins are similar in sequence to proteins that function in metal cofactor assembly. Like the enzymes with sequence similarity to ApbC, purified ApbC protein was able to hydrolyze ATP. The data herein are consistent with the hypothesis that the ApbC and ApbE proteins function in Fe-S cluster metabolism in vivo.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Hendricks, Amber L., Christine Wachnowsky, Brian Fries, Insiya Fidai y James A. Cowan. "Characterization and Reconstitution of Human Lipoyl Synthase (LIAS) Supports ISCA2 and ISCU as Primary Cluster Donors and an Ordered Mechanism of Cluster Assembly". International Journal of Molecular Sciences 22, n.º 4 (5 de febrero de 2021): 1598. http://dx.doi.org/10.3390/ijms22041598.

Texto completo
Resumen
Lipoyl synthase (LIAS) is an iron–sulfur cluster protein and a member of the radical S-adenosylmethionine (SAM) superfamily that catalyzes the final step of lipoic acid biosynthesis. The enzyme contains two [4Fe–4S] centers (reducing and auxiliary clusters) that promote radical formation and sulfur transfer, respectively. Most information concerning LIAS and its mechanism has been determined from prokaryotic enzymes. Herein, we detail the expression, isolation, and characterization of human LIAS, its reactivity, and evaluation of natural iron–sulfur (Fe–S) cluster reconstitution mechanisms. Cluster donation by a number of possible cluster donor proteins and heterodimeric complexes has been evaluated. [2Fe–2S]-cluster-bound forms of human ISCU and ISCA2 were found capable of reconstituting human LIAS, such that complete product turnover was enabled for LIAS, as monitored via a liquid chromatography–mass spectrometry (LC–MS) assay. Electron paramagnetic resonance (EPR) studies of native LIAS and substituted derivatives that lacked the ability to bind one or the other of LIAS’s two [4Fe–4S] clusters revealed a likely order of cluster addition, with the auxiliary cluster preceding the reducing [4Fe–4S] center. These results detail the trafficking of Fe–S clusters in human cells and highlight differences with respect to bacterial LIAS analogs. Likely in vivo Fe–S cluster donors to LIAS are identified, with possible connections to human disease states, and a mechanistic ordering of [4Fe–4S] cluster reconstitution is evident.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Netz, Daili J. A., Antonio J. Pierik, Martin Stümpfig, Eckhard Bill, Anil K. Sharma, Leif J. Pallesen, William E. Walden y Roland Lill. "A Bridging [4Fe-4S] Cluster and Nucleotide Binding Are Essential for Function of the Cfd1-Nbp35 Complex as a Scaffold in Iron-Sulfur Protein Maturation". Journal of Biological Chemistry 287, n.º 15 (23 de febrero de 2012): 12365–78. http://dx.doi.org/10.1074/jbc.m111.328914.

Texto completo
Resumen
The essential P-loop NTPases Cfd1 and Nbp35 of the cytosolic iron-sulfur (Fe-S) protein assembly machinery perform a scaffold function for Fe-S cluster synthesis. Both proteins contain a nucleotide binding motif of unknown function and a C-terminal motif with four conserved cysteine residues. The latter motif defines the Mrp/Nbp35 subclass of P-loop NTPases and is suspected to be involved in transient Fe-S cluster binding. To elucidate the function of these two motifs, we first created cysteine mutant proteins of Cfd1 and Nbp35 and investigated the consequences of these mutations by genetic, cell biological, biochemical, and spectroscopic approaches. The two central cysteine residues (CPXC) of the C-terminal motif were found to be crucial for cell viability, protein function, coordination of a labile [4Fe-4S] cluster, and Cfd1-Nbp35 hetero-tetramer formation. Surprisingly, the two proximal cysteine residues were dispensable for all these functions, despite their strict evolutionary conservation. Several lines of evidence suggest that the C-terminal CPXC motifs of Cfd1-Nbp35 coordinate a bridging [4Fe-4S] cluster. Upon mutation of the nucleotide binding motifs Fe-S clusters could no longer be assembled on these proteins unless wild-type copies of Cfd1 and Nbp35 were present in trans. This result indicated that Fe-S cluster loading on these scaffold proteins is a nucleotide-dependent step. We propose that the bridging coordination of the C-terminal Fe-S cluster may be ideal for its facile assembly, labile binding, and efficient transfer to target Fe-S apoproteins, a step facilitated by the cytosolic iron-sulfur (Fe-S) protein assembly proteins Nar1 and Cia1 in vivo.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Tripathi, Ashutosh, Kushi Anand, Mayashree Das, Ruchika Annie O’Niel, Sabarinath P. S, Chandrani Thakur, Raghunatha Reddy R. L. et al. "Mycobacterium tuberculosis requires SufT for Fe-S cluster maturation, metabolism, and survival in vivo". PLOS Pathogens 18, n.º 4 (15 de abril de 2022): e1010475. http://dx.doi.org/10.1371/journal.ppat.1010475.

Texto completo
Resumen
Iron-sulfur (Fe-S) cluster proteins carry out essential cellular functions in diverse organisms, including the human pathogen Mycobacterium tuberculosis (Mtb). The mechanisms underlying Fe-S cluster biogenesis are poorly defined in Mtb. Here, we show that Mtb SufT (Rv1466), a DUF59 domain-containing essential protein, is required for the Fe-S cluster maturation. Mtb SufT homodimerizes and interacts with Fe-S cluster biogenesis proteins; SufS and SufU. SufT also interacts with the 4Fe-4S cluster containing proteins; aconitase and SufR. Importantly, a hyperactive cysteine in the DUF59 domain mediates interaction of SufT with SufS, SufU, aconitase, and SufR. We efficiently repressed the expression of SufT to generate a SufT knock-down strain in Mtb (SufT-KD) using CRISPR interference. Depleting SufT reduces aconitase’s enzymatic activity under standard growth conditions and in response to oxidative stress and iron limitation. The SufT-KD strain exhibited defective growth and an altered pool of tricarboxylic acid cycle intermediates, amino acids, and sulfur metabolites. Using Seahorse Extracellular Flux analyzer, we demonstrated that SufT depletion diminishes glycolytic rate and oxidative phosphorylation in Mtb. The SufT-KD strain showed defective survival upon exposure to oxidative stress and nitric oxide. Lastly, SufT depletion reduced the survival of Mtb in macrophages and attenuated the ability of Mtb to persist in mice. Altogether, SufT assists in Fe-S cluster maturation and couples this process to bioenergetics of Mtb for survival under low and high demand for Fe-S clusters.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Crooks, Daniel R., Nunziata Maio, Andrew N. Lane, Michal Jarnik, Richard M. Higashi, Ronald G. Haller, Ye Yang, Teresa W.-M. Fan, W. Marston Linehan y Tracey A. Rouault. "Acute loss of iron–sulfur clusters results in metabolic reprogramming and generation of lipid droplets in mammalian cells". Journal of Biological Chemistry 293, n.º 21 (9 de marzo de 2018): 8297–311. http://dx.doi.org/10.1074/jbc.ra118.001885.

Texto completo
Resumen
Iron–sulfur (Fe-S) clusters are ancient cofactors in cells and participate in diverse biochemical functions, including electron transfer and enzymatic catalysis. Although cell lines derived from individuals carrying mutations in the Fe-S cluster biogenesis pathway or siRNA-mediated knockdown of the Fe-S assembly components provide excellent models for investigating Fe-S cluster formation in mammalian cells, these experimental strategies focus on the consequences of prolonged impairment of Fe-S assembly. Here, we constructed and expressed dominant–negative variants of the primary Fe-S biogenesis scaffold protein iron–sulfur cluster assembly enzyme 2 (ISCU2) in human HEK293 cells. This approach enabled us to study the early metabolic reprogramming associated with loss of Fe-S–containing proteins in several major cellular compartments. Using multiple metabolomics platforms, we observed a ∼12-fold increase in intracellular citrate content in Fe-S–deficient cells, a surge that was due to loss of aconitase activity. The excess citrate was generated from glucose-derived acetyl-CoA, and global analysis of cellular lipids revealed that fatty acid biosynthesis increased markedly relative to cellular proliferation rates in Fe-S–deficient cells. We also observed intracellular lipid droplet accumulation in both acutely Fe-S–deficient cells and iron-starved cells. We conclude that deficient Fe-S biogenesis and acute iron deficiency rapidly increase cellular citrate concentrations, leading to fatty acid synthesis and cytosolic lipid droplet formation. Our findings uncover a potential cause of cellular steatosis in nonadipose tissues.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Balk, Janneke, Daili J. Aguilar Netz, Katharina Tepper, Antonio J. Pierik y Roland Lill. "The Essential WD40 Protein Cia1 Is Involved in a Late Step of Cytosolic and Nuclear Iron-Sulfur Protein Assembly". Molecular and Cellular Biology 25, n.º 24 (15 de diciembre de 2005): 10833–41. http://dx.doi.org/10.1128/mcb.25.24.10833-10841.2005.

Texto completo
Resumen
ABSTRACT The assembly of cytosolic and nuclear iron-sulfur (Fe/S) proteins in yeast is dependent on the iron-sulfur cluster assembly and export machineries in mitochondria and three recently identified extramitochondrial proteins, the P-loop NTPases Cfd1 and Nbp35 and the hydrogenase-like Nar1. However, the molecular mechanism of Fe/S protein assembly in the cytosol is far from being understood, and more components are anticipated to take part in this process. Here, we have identified and functionally characterized a novel WD40 repeat protein, designated Cia1, as an essential component required for Fe/S cluster assembly in vivo on cytosolic and nuclear, but not mitochondrial, Fe/S proteins. Surprisingly, Nbp35 and Nar1, themselves Fe/S proteins, could assemble their Fe/S clusters in the absence of Cia1, demonstrating that these components act before Cia1. Consequently, Cia1 is involved in a late step of Fe/S cluster incorporation into target proteins. Coimmunoprecipitation assays demonstrated a specific interaction between Cia1 and Nar1. In contrast to the mostly cytosolic Nar1, Cia1 is preferentially localized to the nucleus, suggesting an additional function of Cia1. Taken together, our results indicate that Cia1 is a new member of the cytosolic Fe/S protein assembly (CIA) machinery participating in a step after Nbp35 and Nar1.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Bai, Y., T. Chen, T. Happe, Y. Lu y A. Sawyer. "Iron–sulphur cluster biogenesisviathe SUF pathway". Metallomics 10, n.º 8 (2018): 1038–52. http://dx.doi.org/10.1039/c8mt00150b.

Texto completo
Resumen
Iron–sulphur (Fe–S) clusters are versatile cofactors, which are essential for key metabolic processes in cells, such as respiration and photosynthesis, and which may have also played a crucial role in establishing life on Earth. This review focuses on the most ancient Fe–S cluster assembly system, the sulphur utilization factor (SUF) mechanism.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Murari, Anjaneyulu, Venkata Ramana Thiriveedi, Fareed Mohammad, Viswamithra Vengaldas, Madhavi Gorla, Prasad Tammineni, Thanuja Krishnamoorthy y Naresh Babu V. Sepuri. "Human mitochondrial MIA40 (CHCHD4) is a component of the Fe–S cluster export machinery". Biochemical Journal 471, n.º 2 (2 de octubre de 2015): 231–41. http://dx.doi.org/10.1042/bj20150012.

Texto completo
Resumen
Human MIA40 harbours oxidative-sensitive Fe–S clusters and functions in the cellular iron homoeostasis pathway. Our study suggests that hMIA40 is an important component of the Fe–S cluster export machinery of mitochondria.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Vivas, E., E. Skovran y D. M. Downs. "Salmonella enterica Strains Lacking the Frataxin Homolog CyaY Show Defects in Fe-S Cluster Metabolism In Vivo". Journal of Bacteriology 188, n.º 3 (1 de febrero de 2006): 1175–79. http://dx.doi.org/10.1128/jb.188.3.1175-1179.2006.

Texto completo
Resumen
ABSTRACT In Salmonella enterica, the isc operon contains genes necessary for the synthesis of Fe-S clusters and strains lacking this operon have severe defects in a variety of cellular processes. Other cellular loci that impact Fe-S cluster synthesis to a lesser extent have been described. The cyaY locus encodes a frataxin homolog, and it is shown here that lesions in this locus affect Fe-S cluster metabolism. When present in combination with other lesions, mutations in cyaY can result in a strain with more severe defects than those lacking the isc locus.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Balk, J., A. J. Pierik, D. J. Aguilar Netz, U. Mühlenhoff y R. Lill. "Nar1p, a conserved eukaryotic protein with similarity to Fe-only hydrogenases, functions in cytosolic iron-sulphur protein biogenesis". Biochemical Society Transactions 33, n.º 1 (1 de febrero de 2005): 86–89. http://dx.doi.org/10.1042/bst0330086.

Texto completo
Resumen
The genome of the yeast Saccharomyces cerevisiae encodes the essential protein Nar1p that is conserved in virtually all eukaryotes and exhibits striking sequence similarity to bacterial iron-only hydrogenases. Previously, we have shown that Nar1p is an Fe-S protein and that assembly of its co-factors depends on the mitochondrial Fe-S cluster biosynthesis apparatus. Using functional studies in vivo, we demonstrated that Nar1p has an essential role in the maturation of cytosolic and nuclear, but not of mitochondrial, Fe-S proteins [Balk, Pierik, Aguilar Netz, Mühlenhoff and Lill (2004) EMBO J. 23, 2105–2115]. Here we provide further spectroscopic evidence that Nar1p possesses two Fe-S clusters. We also show that Nar1p is required for Fe-S cluster assembly on the P-loop NTPase Nbp35p, another newly identified component of the cytosolic Fe-S protein assembly machinery. These data suggest a complex biochemical pathway of extra-mitochondrial Fe-S protein biogenesis involving unique eukaryotic proteins.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Roland, Mélanie, Jonathan Przybyla-Toscano, Florence Vignols, Nathalie Berger, Tamanna Azam, Loick Christ, Véronique Santoni et al. "The plastidial Arabidopsis thaliana NFU1 protein binds and delivers [4Fe-4S] clusters to specific client proteins". Journal of Biological Chemistry 295, n.º 6 (6 de enero de 2020): 1727–42. http://dx.doi.org/10.1074/jbc.ra119.011034.

Texto completo
Resumen
Proteins incorporating iron–sulfur (Fe-S) co-factors are required for a plethora of metabolic processes. Their maturation depends on three Fe-S cluster assembly machineries in plants, located in the cytosol, mitochondria, and chloroplasts. After de novo formation on scaffold proteins, transfer proteins load Fe-S clusters onto client proteins. Among the plastidial representatives of these transfer proteins, NFU2 and NFU3 are required for the maturation of the [4Fe-4S] clusters present in photosystem I subunits, acting upstream of the high-chlorophyll fluorescence 101 (HCF101) protein. NFU2 is also required for the maturation of the [2Fe-2S]-containing dihydroxyacid dehydratase, important for branched-chain amino acid synthesis. Here, we report that recombinant Arabidopsis thaliana NFU1 assembles one [4Fe-4S] cluster per homodimer. Performing co-immunoprecipitation experiments and assessing physical interactions of NFU1 with many [4Fe-4S]-containing plastidial proteins in binary yeast two-hybrid assays, we also gained insights into the specificity of NFU1 for the maturation of chloroplastic Fe-S proteins. Using bimolecular fluorescence complementation and in vitro Fe-S cluster transfer experiments, we confirmed interactions with two proteins involved in isoprenoid and thiamine biosynthesis, 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase and 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate synthase, respectively. An additional interaction detected with the scaffold protein SUFD enabled us to build a model in which NFU1 receives its Fe-S cluster from the SUFBC2D scaffold complex and serves in the maturation of specific [4Fe-4S] client proteins. The identification of the NFU1 partner proteins reported here more clearly defines the role of NFU1 in Fe-S client protein maturation in Arabidopsis chloroplasts among other SUF components.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Ye, Hong y Tracey A. Rouault. "Erythropoiesis and Iron Sulfur Cluster Biogenesis". Advances in Hematology 2010 (2010): 1–8. http://dx.doi.org/10.1155/2010/329394.

Texto completo
Resumen
Erythropoiesis in animals is a synchronized process of erythroid cell differentiation that depends on successful acquisition of iron. Heme synthesis depends on iron through its dependence on iron sulfur (Fe-S) cluster biogenesis. Here, we review the relationship between Fe-S biogenesis and heme synthesis in erythropoiesis, with emphasis on the proteins, GLRX5, ABCB7, ISCA, and C1orf69. These Fe-S biosynthesis proteins are highly expressed in erythroid tissues, and deficiency of each of these proteins has been shown to cause anemia in zebrafish model. GLRX5 is involved in the production and ABCB7 in the export of an unknown factor that may function as a gauge of mitochondrial iron status, which may indirectly modulate activity of iron regulatory proteins (IRPs). ALAS2, the enzyme catalyzing the first step in heme synthesis, is translationally controlled by IRPs. GLRX5 may also provide Fe-S cofactor for ferrochelatase, the last enzyme in heme synthesis. ISCA and C1orf69 are thought to assemble Fe-S clusters for mitochondrial aconitase and for lipoate synthase, the enzyme producing lipoate for pyruvate dehydrogenase complex (PDC). PDC and aconitase are involved in the production of succinyl-CoA, a substrate for heme biosynthesis. Thus, many steps of heme synthesis depend on Fe-S cluster assembly.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Uzarska, Marta A., Rafal Dutkiewicz, Sven-Andreas Freibert, Roland Lill y Ulrich Mühlenhoff. "The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation". Molecular Biology of the Cell 24, n.º 12 (15 de junio de 2013): 1830–41. http://dx.doi.org/10.1091/mbc.e12-09-0644.

Texto completo
Resumen
The mitochondrial Hsp70 chaperone Ssq1 plays a dedicated role in the maturation of iron–sulfur (Fe/S) proteins, an essential process of mitochondria. Similar to its bacterial orthologue HscA, Ssq1 binds to the scaffold protein Isu1, thereby facilitating dissociation of the newly synthesized Fe/S cluster on Isu1 and its transfer to target apoproteins. Here we use in vivo and in vitro approaches to show that Ssq1 also interacts with the monothiol glutaredoxin 5 (Grx5) at a binding site different from that of Isu1. Grx5 binding does not stimulate the ATPase activity of Ssq1 and is most pronounced for the ADP-bound form of Ssq1, which interacts with Isu1 most tightly. The vicinity of Isu1 and Grx5 on the Hsp70 chaperone facilitates rapid Fe/S cluster transfer from Isu1 to Grx5. Grx5 and its bound Fe/S cluster are required for maturation of all cellular Fe/S proteins, regardless of the type of bound Fe/S cofactor and subcellular localization. Hence Grx5 functions as a late-acting component of the core Fe/S cluster (ISC) assembly machinery linking the Fe/S cluster synthesis reaction on Isu1 with late assembly steps involving Fe/S cluster targeting to dedicated apoproteins.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Bernard, Delphine G., Daili J. A. Netz, Thibaut J. Lagny, Antonio J. Pierik y Janneke Balk. "Requirements of the cytosolic iron–sulfur cluster assembly pathway in Arabidopsis". Philosophical Transactions of the Royal Society B: Biological Sciences 368, n.º 1622 (19 de julio de 2013): 20120259. http://dx.doi.org/10.1098/rstb.2012.0259.

Texto completo
Resumen
The assembly of iron–sulfur (Fe–S) clusters requires dedicated protein factors inside the living cell. Striking similarities between prokaryotic and eukaryotic assembly proteins suggest that plant cells inherited two different pathways through endosymbiosis: the ISC pathway in mitochondria and the SUF pathway in plastids. Fe–S proteins are also found in the cytosol and nucleus, but little is known about how they are assembled in plant cells. Here, we show that neither plastid assembly proteins nor the cytosolic cysteine desulfurase ABA3 are required for the activity of cytosolic aconitase, which depends on a [4Fe–4S] cluster. In contrast, cytosolic aconitase activity depended on the mitochondrial cysteine desulfurase NFS1 and the mitochondrial transporter ATM3. In addition, we were able to complement a yeast mutant in the cytosolic Fe–S cluster assembly pathway, dre2 , with the Arabidopsis homologue AtDRE2 , but only when expressed together with the diflavin reductase AtTAH18 . Spectroscopic characterization showed that purified AtDRE2 could bind up to two Fe–S clusters. Purified AtTAH18 bound one flavin per molecule and was able to accept electrons from NAD(P)H. These results suggest that the proteins involved in cytosolic Fe–S cluster assembly are highly conserved, and that dependence on the mitochondria arose before the second endosymbiosis event leading to plastids.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Jeoung, Jae-Hun y Holger Dobbek. "ATP-dependent substrate reduction at an [Fe8S9] double-cubane cluster". Proceedings of the National Academy of Sciences 115, n.º 12 (5 de marzo de 2018): 2994–99. http://dx.doi.org/10.1073/pnas.1720489115.

Texto completo
Resumen
Chemically demanding reductive conversions in biology, such as the reduction of dinitrogen to ammonia or the Birch-type reduction of aromatic compounds, depend on Fe/S-cluster–containing ATPases. These reductions are typically catalyzed by two-component systems, in which an Fe/S-cluster–containing ATPase energizes an electron to reduce a metal site on the acceptor protein that drives the reductive reaction. Here, we show a two-component system featuring a double-cubane [Fe8S9]-cluster [{Fe4S4(SCys)3}2(μ2-S)]. The double-cubane–cluster-containing enzyme is capable of reducing small molecules, such as acetylene (C2H2), azide (N3−), and hydrazine (N2H4). We thus present a class of metalloenzymes akin in fold, metal clusters, and reactivity to nitrogenases.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

La, Ping, Silvia Pires Lourenco, Laura Breda y Stefano Rivella. "AMPK Regulates the Expression of the Fe-S Cluster Assembly Enzyme (ISCU) and ALAS2, Modulating Cellular Iron Metabolism and Increasing Hemoglobin Synthesis". Blood 132, Supplement 1 (29 de noviembre de 2018): 851. http://dx.doi.org/10.1182/blood-2018-99-112175.

Texto completo
Resumen
Abstract Iron-sulfur (Fe-S) clusters are iron-containing prosthetic groups and enzymatic cofactors. They are strong oxidants when unbound yet essential in many processes like facilitating ATP production in mitochondria, promoting DNA, RNA and protein syntheses during cell proliferation and enhancing DNA repair in antioxidant defense. In particular, Fe-S clusters are indispensable in erythropoiesis, where the majority of physiological iron is utilized and where Fe-S clusters are required for the heme synthesis. Deficient Fe-S cluster synthesis predisposes individual to various diseases, such as cancer, metabolic and neurodegeneration diseases and blood disorders. However, it is unclear how Fe-S cluster synthesis is regulated and coordinates with environmental and developmental needs to prevent oxidative damage. The 5' AMP-activated protein kinase (AMPK) is a kinase activated by oxidative stress and energy starvation and critical for maintaining redox and energy homeostasis. In this study, we investigated the role of AMPK on Fe-S clusters synthesis and function and extended our findings in normal and thalassemic erythroid cells. Through bioinformatic analysis, we found that the Fe-S cluster assembly enzyme (ISCU), a scaffold protein indispensable for Fe-S cluster biogenesis, contains putative AMPK phosphorylation motifs at serine (S) residues 14 and 29 (human numbering). Using the human cell line 293T, we confirmed that AMPK phosphorylates ISCU, while point mutations in these residues prevented this activity. Moreover, AMPK-mediated phosphorylation promoted ISCU binding to 14-3-3s, a family of proteins that, once associate with phosphorylated residues, modulates the stability and function of targeted proteins. Indeed, increased association with 14-3-3s stabilized ISCU proteins, corroborating the observation that AMPK promotes the activity of ISCU proteins. We extended our studies using A549 cells that do not have AMPK activity since they harbor a mutant LKB1 kinase, which is responsible for activating AMPK. By overexpression of wild type (WT)-LKB1 and LKB1 kinase-dead mutant (KDM), we found that only WT-LKB1 restored AMPK activity, binding of ISCU to 14-3-3s and stability of ISCU. Moreover, under hydrogen peroxide incubation and glucose starvation, ISCU protein levels and Fe-S cluster synthesis were both increased only in the presence of LKB1-WT, but not in cells harboring KMD. LKB1-WT overexpressed cells also survived hydrogen peroxide incubation and glucose starvation better than those with KMD. Together, these data suggest that AMPK activation stabilizes ISCU protein and preserves Fe-S cluster synthesis to maintain a healthy redox and energy homeostasis. We then explored the effect of AMPK on Fe-S cluster synthesis in erythropoiesis by using the drug AICAR, an AMPK activator, in murine erythroleukemia (MEL) cells. We found that in MEL cells, AICAR treatment stabilized ISCU, increased Fe-S cluster levels and promoted the synthesis of the aminolevulinic acid synthase 2 (ALAS2) protein, which represents the rate-limiting enzyme in erythroid heme synthesis. Furthermore, this was associated with increased heme and globin chain synthesis, with a trend in increasing β-globin mRNA and proteins more than α-globin. We further confirmed these observations in Human Umbilical Cord Blood-Derived Erythroid Progenitor (HUDEP-2) and CD34+ cells derived from peripheral blood isolated from both healthy individuals and ß-thalassemic patients. In these cells, we found that AMPK upregulation by AICAR administration not only increased ALAS2 expression and erythroid heme levels, but also enhanced the synthesis of both a- and ß-globin chains, though with a preference for increasing β-globin levels. Analysis using specimens from thalassemic mice is in progress. In conclusion, our work demonstrates that under redox and energetic stress, activated AMPK phosphorylates and stabilizes ISCU protein, thereby enhancing Fe-S cluster synthesis and maintaining their function. Moreover, AMPK activation with AICAR treatment increases erythroid heme synthesis and hemoglobin expression. Given that AMPK is the major kinase that responds to oxidative and energetic cues, our work provides a mechanistic explanation for how erythropoiesis responds to energy starvation and redox stress as well as a potential novel therapeutic target to treat blood and metabolic disorders. Disclosures Rivella: Ionis Pharmaceuticals, Inc: Consultancy; MeiraGTx: Other: SAB; Protagonist: Consultancy; Disc Medicine: Consultancy.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Wingert, Rebecca A., Bruce Barut, Helen Foott, Paula Fraenkel, Kimberly Dooley, Paul Kingsley, Jim Palis et al. "The Zebrafish Hypochromic Mutant [iItalic]Shiraz[/iItalic] Encodes a Novel Mitochondrial Glutaredoxin That Establishes a Link between Heme and Fe/S Production." Blood 104, n.º 11 (16 de noviembre de 2004): 51. http://dx.doi.org/10.1182/blood.v104.11.51.51.

Texto completo
Resumen
Abstract Iron is required in the mitochondria both to produce heme, which is used for hemoglobin synthesis, and to make iron-sulfur (Fe/S) clusters, which confer electron transfer or catalytic functions to proteins. Cellular iron utilization and Fe/S cluster production are thought to occur independently, yet the processes are coordinated through currently uncharacterized pathways. The shiraz (sir) zebrafish mutant manifests a hypochromic, microcytic anemia. Positional cloning of sir discovered a deletion at the locus that included the zebrafish orthologue to glutaredoxin 5 (grx5), a gene required in yeast for Fe/S cluster assembly. We found that grx5 is highly expressed in the developing blood and fetal liver of both zebrafish and mouse embryos. Antisense-mediated morpholino knockdown of grx5 prevented hemoglobin production, and overexpression of zebrafish, yeast, mouse, or human grx5 RNA in sir embryos completely rescued hemoglobin production, indicating that grx5 is the gene responsible for the sir phenotype. Expression of zebrafish grx5 was found to rescue Fe/S protein production in the yeast Δgrx5 strain, demonstrating that the role of grx5 in Fe/S cluster assembly is conserved among eukaryotes. The surprising finding that mutating a gene necessary for Fe/S cluster assembly caused a lack of hemoglobin synthesis suggested that we had discovered a connection between these pathways. In vertebrates, iron regulatory protein 1 (IRP1) acts as a sensor of intracellular iron levels and controls cellular iron homeostasis via posttranscriptional regulation of iron uptake, storage, and utilization genes. For instance, IRP1 binds to the 5′ iron response element (IRE) in the aminolevulinate synthase 2 (ALAS2) mRNA, blocking translation when cellular iron is low. However, when cellular iron is replete, IRP1 binds a Fe/S cluster and its RNA-binding activity is abolished. We hypothesized that the loss of Fe/S cluster assembly in sir would activate IRP1 and block ALAS2 synthesis, resulting in hypochromia. In support of this model, overexpression of ALAS2 RNA without the 5′ IRE rescued sir hypochromia, while overexpression of ALAS2 including the IRE did not facilitate rescue. Furthermore, antisense morpholino knockdowns of IRP1 caused rescue of hemoglobin synthesis in sir embryos. The combination of these data indicate that hemoglobin production in the differentiating red cell is monitored through Fe-S cluster assembly as a mechanism to gauge iron levels and accordingly direct heme synthesis. This finding illustrates a crucial role for the mitochondrial Fe/S cluster assembly machinery during hemoglobin production, and has broad implications for the role of such genes in human hypochromic anemias.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Ciofi-Baffoni, Simone y Claudia Andreini. "The Intriguing Role of Iron-Sulfur Clusters in the CIAPIN1 Protein Family". Inorganics 10, n.º 4 (13 de abril de 2022): 52. http://dx.doi.org/10.3390/inorganics10040052.

Texto completo
Resumen
Iron-sulfur (Fe/S) clusters are protein cofactors that play a crucial role in essential cellular functions. Their ability to rapidly exchange electrons with several redox active acceptors makes them an efficient system for fulfilling diverse cellular needs. They include the formation of a relay for long-range electron transfer in enzymes, the biosynthesis of small molecules required for several metabolic pathways and the sensing of cellular levels of reactive oxygen or nitrogen species to activate appropriate cellular responses. An emerging family of iron-sulfur cluster binding proteins is CIAPIN1, which is characterized by a C-terminal domain of about 100 residues. This domain contains two highly conserved cysteine-rich motifs, which are both involved in Fe/S cluster binding. The CIAPIN1 proteins have been described so far to be involved in electron transfer pathways, providing electrons required for the biosynthesis of important protein cofactors, such as Fe/S clusters and the diferric-tyrosyl radical, as well as in the regulation of cell death. Here, we have first investigated the occurrence of CIAPIN1 proteins in different organisms spanning the entire tree of life. Then, we discussed the function of this family of proteins, focusing specifically on the role that the Fe/S clusters play. Finally, we describe the nature of the Fe/S clusters bound to CIAPIN1 proteins and which are the cellular pathways inserting the Fe/S clusters in the two cysteine-rich motifs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Liu, X. L., H. L. Chen, F. M. Miao, L. C. Song y Q. M. Hu. "Structure of an Fe–S cluster complex". Acta Crystallographica Section C Crystal Structure Communications 47, n.º 10 (15 de octubre de 1991): 2199–201. http://dx.doi.org/10.1107/s0108270191003062.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Mettert, Erin L. y Patricia J. Kiley. "How Is Fe-S Cluster Formation Regulated?" Annual Review of Microbiology 69, n.º 1 (15 de octubre de 2015): 505–26. http://dx.doi.org/10.1146/annurev-micro-091014-104457.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Chen, O. S., S. Hemenway y J. Kaplan. "Inhibition of Fe-S cluster biosynthesis decreases mitochondrial iron export: Evidence that Yfh1p affects Fe-S cluster synthesis". Proceedings of the National Academy of Sciences 99, n.º 19 (9 de septiembre de 2002): 12321–26. http://dx.doi.org/10.1073/pnas.192449599.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Roret, Thomas, Bo Zhang, Anna Moseler, Tiphaine Dhalleine, Xing-Huang Gao, Jérémy Couturier, Stéphane D. Lemaire, Claude Didierjean, Michael K. Johnson y Nicolas Rouhier. "Atypical Iron-Sulfur Cluster Binding, Redox Activity and Structural Properties of Chlamydomonas reinhardtii Glutaredoxin 2". Antioxidants 10, n.º 5 (19 de mayo de 2021): 803. http://dx.doi.org/10.3390/antiox10050803.

Texto completo
Resumen
Glutaredoxins (GRXs) are thioredoxin superfamily members exhibiting thiol-disulfide oxidoreductase activity and/or iron-sulfur (Fe-S) cluster binding capacities. These properties are determined by specific structural factors. In this study, we examined the capacity of the class I Chlamydomonas reinhardtii GRX2 recombinant protein to catalyze both protein glutathionylation and deglutathionylation reactions using a redox sensitive fluorescent protein as a model protein substrate. We observed that the catalytic cysteine of the CPYC active site motif of GRX2 was sufficient for catalyzing both reactions in the presence of glutathione. Unexpectedly, spectroscopic characterization of the protein purified under anaerobiosis showed the presence of a [2Fe-2S] cluster despite having a presumably inadequate active site signature, based on past mutational analyses. The spectroscopic characterization of cysteine mutated variants together with modeling of the Fe–S cluster-bound GRX homodimer from the structure of an apo-GRX2 indicate the existence of an atypical Fe–S cluster environment and ligation mode. Overall, the results further delineate the biochemical and structural properties of conventional GRXs, pointing to the existence of multiple factors more complex than anticipated, sustaining the capacity of these proteins to bind Fe–S clusters.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Moseler, Anna, Inga Kruse, Andrew E. Maclean, Luca Pedroletti, Marina Franceschetti, Stephan Wagner, Regina Wehler et al. "The function of glutaredoxin GRXS15 is required for lipoyl-dependent dehydrogenases in mitochondria". Plant Physiology 186, n.º 3 (15 de abril de 2021): 1507–25. http://dx.doi.org/10.1093/plphys/kiab172.

Texto completo
Resumen
Abstract Iron–sulfur (Fe–S) clusters are ubiquitous cofactors in all life and are used in a wide array of diverse biological processes, including electron transfer chains and several metabolic pathways. Biosynthesis machineries for Fe–S clusters exist in plastids, the cytosol, and mitochondria. A single monothiol glutaredoxin (GRX) is involved in Fe–S cluster assembly in mitochondria of yeast and mammals. In plants, the role of the mitochondrial homolog GRXS15 has only partially been characterized. Arabidopsis (Arabidopsis thaliana) grxs15 null mutants are not viable, but mutants complemented with the variant GRXS15 K83A develop with a dwarf phenotype similar to the knockdown line GRXS15amiR. In an in-depth metabolic analysis of the variant and knockdown GRXS15 lines, we show that most Fe–S cluster-dependent processes are not affected, including biotin biosynthesis, molybdenum cofactor biosynthesis, the electron transport chain, and aconitase in the tricarboxylic acid (TCA) cycle. Instead, we observed an increase in most TCA cycle intermediates and amino acids, especially pyruvate, glycine, and branched-chain amino acids (BCAAs). Additionally, we found an accumulation of branched-chain α-keto acids (BCKAs), the first degradation products resulting from transamination of BCAAs. In wild-type plants, pyruvate, glycine, and BCKAs are all metabolized through decarboxylation by mitochondrial lipoyl cofactor (LC)-dependent dehydrogenase complexes. These enzyme complexes are very abundant, comprising a major sink for LC. Because biosynthesis of LC depends on continuous Fe–S cluster supply to lipoyl synthase, this could explain why LC-dependent processes are most sensitive to restricted Fe–S supply in grxs15 mutants.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Ogunkola, Moses, Lennart Wolff, Eric Asare Fenteng, Benjamin R. Duffus y Silke Leimkühler. "E. coli MnmA Is an Fe-S Cluster-Independent 2-Thiouridylase". Inorganics 12, n.º 3 (23 de febrero de 2024): 67. http://dx.doi.org/10.3390/inorganics12030067.

Texto completo
Resumen
All kingdoms of life have more than 150 different forms of RNA alterations, with tRNA accounting for around 80% of them. These chemical alterations include, among others, methylation, sulfuration, hydroxylation, and acetylation. These changes are necessary for the proper codon recognition and stability of tRNA. In Escherichia coli, sulfur modification at the wobble uridine (34) of lysine, glutamic acid, and glutamine is essential for codon and anticodon binding and prevents frameshifting during translation. Two important proteins that are involved in this thiolation modification are the L-cysteine desulfurase IscS, the initial sulfur donor, and tRNA-specific 2-thiouridylase MnmA, which adenylates and finally transfers the sulfur from IscS to the tRNA. tRNA-specific 2-thiouridylases are iron–sulfur clusters (Fe-S), either dependent or independent depending on the organism. Here, we dissect the controversy of whether the E. coli MnmA protein is an Fe-S cluster-dependent or independent protein. We show that when Fe-S clusters are bound to MnmA, tRNA thiolation is inhibited, making MnmA an Fe-S cluster-independent protein. We further show that 2-thiouridylase only binds to tRNA from its own organism.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Ezraty, Benjamin, Alexandra Vergnes, Manuel Banzhaf, Yohann Duverger, Allison Huguenot, Ana Rita Brochado, Shu-Yi Su et al. "Fe-S Cluster Biosynthesis Controls Uptake of Aminoglycosides in a ROS-Less Death Pathway". Science 340, n.º 6140 (27 de junio de 2013): 1583–87. http://dx.doi.org/10.1126/science.1238328.

Texto completo
Resumen
All bactericidal antibiotics were recently proposed to kill by inducing reactive oxygen species (ROS) production, causing destabilization of iron-sulfur (Fe-S) clusters and generating Fenton chemistry. We find that the ROS response is dispensable upon treatment with bactericidal antibiotics. Furthermore, we demonstrate that Fe-S clusters are required for killing only by aminoglycosides. In contrast to cells, using the major Fe-S cluster biosynthesis machinery, ISC, cells using the alternative machinery, SUF, cannot efficiently mature respiratory complexes I and II, resulting in impendence of the proton motive force (PMF), which is required for bactericidal aminoglycoside uptake. Similarly, during iron limitation, cells become intrinsically resistant to aminoglycosides by switching from ISC to SUF and down-regulating both respiratory complexes. We conclude that Fe-S proteins promote aminoglycoside killing by enabling their uptake.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Gerber, Jana, Karina Neumann, Corinna Prohl, Ulrich Mühlenhoff y Roland Lill. "The Yeast Scaffold Proteins Isu1p and Isu2p Are Required inside Mitochondria for Maturation of Cytosolic Fe/S Proteins". Molecular and Cellular Biology 24, n.º 11 (1 de junio de 2004): 4848–57. http://dx.doi.org/10.1128/mcb.24.11.4848-4857.2004.

Texto completo
Resumen
ABSTRACT Iron-sulfur (Fe/S) proteins are located in mitochondria, cytosol, and nucleus. Mitochondrial Fe/S proteins are matured by the iron-sulfur cluster (ISC) assembly machinery. Little is known about the formation of Fe/S proteins in the cytosol and nucleus. A function of mitochondria in cytosolic Fe/S protein maturation has been noted, but small amounts of some ISC components have been detected outside mitochondria. Here, we studied the highly conserved yeast proteins Isu1p and Isu2p, which provide a scaffold for Fe/S cluster synthesis. We asked whether the Isu proteins are needed for biosynthesis of cytosolic Fe/S clusters and in which subcellular compartment the Isu proteins are required. The Isu proteins were found to be essential for de novo biosynthesis of both mitochondrial and cytosolic Fe/S proteins. Several lines of evidence indicate that Isu1p and Isu2p have to be located inside mitochondria in order to perform their function in cytosolic Fe/S protein maturation. We were unable to mislocalize Isu1p to the cytosol due to the presence of multiple, independent mitochondrial targeting signals in this protein. Further, the bacterial homologue IscU and the human Isu proteins (partially) complemented the defects of yeast Isu protein-depleted cells in growth rate, Fe/S protein biogenesis, and iron homeostasis, yet only after targeting to mitochondria. Together, our data suggest that the Isu proteins need to be localized in mitochondria to fulfill their functional requirement in Fe/S protein maturation in the cytosol.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Petronek, Michael S., Douglas R. Spitz y Bryan G. Allen. "Iron–Sulfur Cluster Biogenesis as a Critical Target in Cancer". Antioxidants 10, n.º 9 (14 de septiembre de 2021): 1458. http://dx.doi.org/10.3390/antiox10091458.

Texto completo
Resumen
Cancer cells preferentially accumulate iron (Fe) relative to non-malignant cells; however, the underlying rationale remains elusive. Iron–sulfur (Fe–S) clusters are critical cofactors that aid in a wide variety of cellular functions (e.g., DNA metabolism and electron transport). In this article, we theorize that a differential need for Fe–S biogenesis in tumor versus non-malignant cells underlies the Fe-dependent cell growth demand of cancer cells to promote cell division and survival by promoting genomic stability via Fe–S containing DNA metabolic enzymes. In this review, we outline the complex Fe–S biogenesis process and its potential upregulation in cancer. We also discuss three therapeutic strategies to target Fe–S biogenesis: (i) redox manipulation, (ii) Fe chelation, and (iii) Fe mimicry.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía