Artículos de revistas sobre el tema "Classification of biomedical time series"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Classification of biomedical time series".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Ramanujam, E. y S. Padmavathi. "Genetic time series motif discovery for time series classification". International Journal of Biomedical Engineering and Technology 31, n.º 1 (2019): 47. http://dx.doi.org/10.1504/ijbet.2019.101051.
Texto completoJin, Lin-peng y Jun Dong. "Ensemble Deep Learning for Biomedical Time Series Classification". Computational Intelligence and Neuroscience 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/6212684.
Texto completoIvaturi, Praharsh, Matteo Gadaleta, Amitabh C. Pandey, Michael Pazzani, Steven R. Steinhubl y Giorgio Quer. "A Comprehensive Explanation Framework for Biomedical Time Series Classification". IEEE Journal of Biomedical and Health Informatics 25, n.º 7 (julio de 2021): 2398–408. http://dx.doi.org/10.1109/jbhi.2021.3060997.
Texto completoWang, Jin, Ping Liu, Mary F. H. She, Saeid Nahavandi y Abbas Kouzani. "Bag-of-words representation for biomedical time series classification". Biomedical Signal Processing and Control 8, n.º 6 (noviembre de 2013): 634–44. http://dx.doi.org/10.1016/j.bspc.2013.06.004.
Texto completoKu-Maldonado, Carlos Alejandro y Erik Molino-Minero-Re. "Performance Evaluation of Biomedical Time Series Transformation Methods for Classification Tasks". Revista Mexicana de Ingeniería Biomédica 44, n.º 4 (17 de agosto de 2023): 105–16. http://dx.doi.org/10.17488/rmib.44.4.7.
Texto completoGupta, R., A. Mittal, K. Singh, V. Narang y S. Roy. "Time-series approach to protein classification problem". IEEE Engineering in Medicine and Biology Magazine 28, n.º 4 (julio de 2009): 32–37. http://dx.doi.org/10.1109/memb.2009.932903.
Texto completoWang, Will Ke, Ina Chen, Leeor Hershkovich, Jiamu Yang, Ayush Shetty, Geetika Singh, Yihang Jiang et al. "A Systematic Review of Time Series Classification Techniques Used in Biomedical Applications". Sensors 22, n.º 20 (20 de octubre de 2022): 8016. http://dx.doi.org/10.3390/s22208016.
Texto completoLemus, Mariano, João P. Beirão, Nikola Paunković, Alexandra M. Carvalho y Paulo Mateus. "Information-Theoretical Criteria for Characterizing the Earliness of Time-Series Data". Entropy 22, n.º 1 (30 de diciembre de 2019): 49. http://dx.doi.org/10.3390/e22010049.
Texto completoAthavale, Yashodhan, Sridhar Krishnan y Aziz Guergachi. "Pattern Classification of Signals Using Fisher Kernels". Mathematical Problems in Engineering 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/467175.
Texto completoCarreiro, André V., Orlando Anunciação, João A. Carriço y Sara C. Madeira. "Prognostic Prediction through Biclustering-Based Classification of Clinical Gene Expression Time Series". Journal of Integrative Bioinformatics 8, n.º 3 (1 de diciembre de 2011): 73–89. http://dx.doi.org/10.1515/jib-2011-175.
Texto completoPiepjohn, Patricia, Christin Bald, Gregor Kuhlenbäumer, Jos Steffen Becktepe, Günther Deuschl y Gerhard Schmidt. "Real-time classification of movement patterns of tremor patients". Biomedical Engineering / Biomedizinische Technik 67, n.º 2 (24 de febrero de 2022): 119–30. http://dx.doi.org/10.1515/bmt-2021-0140.
Texto completoFulcher, Ben D., Max A. Little y Nick S. Jones. "Highly comparative time-series analysis: the empirical structure of time series and their methods". Journal of The Royal Society Interface 10, n.º 83 (6 de junio de 2013): 20130048. http://dx.doi.org/10.1098/rsif.2013.0048.
Texto completoGamidullaeva, Leyla Ayvarovna y Vsevolod Chernyshenko. "Using Decision-Making Block of Computer-Based Intelligent Biomedical Avatar for Applied Research in Bioinformatics". International Journal of Applied Research in Bioinformatics 9, n.º 2 (julio de 2019): 24–34. http://dx.doi.org/10.4018/ijarb.2019070102.
Texto completoAlarcón, Ángel Serrano, Natividad Martínez Madrid, Ralf Seepold y Juan Antonio Ortega Ramirez. "Main requirements of end-to-end deep learning models for biomedical time series classification in healthcare environments". Procedia Computer Science 207 (2022): 3038–46. http://dx.doi.org/10.1016/j.procs.2022.09.532.
Texto completoCarreiro, André V., Artur J. Ferreira, Mário A. T. Figueiredo y Sara C. Madeira. "Towards a Classification Approach using Meta-Biclustering: Impact of Discretization in the Analysis of Expression Time Series". Journal of Integrative Bioinformatics 9, n.º 3 (1 de diciembre de 2012): 105–20. http://dx.doi.org/10.1515/jib-2012-207.
Texto completoZhang, Yinghui, Fengyuan Zhang, Yantong Cui y Ruoci Ning. "CLASSIFICATION OF BIOMEDICAL IMAGES USING CONTENT BASED IMAGE RETRIEVAL SYSTEMS". International Journal of Engineering Technologies and Management Research 5, n.º 2 (8 de febrero de 2020): 181–89. http://dx.doi.org/10.29121/ijetmr.v5.i2.2018.161.
Texto completoLipponen, Jukka A. y Mika P. Tarvainen. "A robust algorithm for heart rate variability time series artefact correction using novel beat classification". Journal of Medical Engineering & Technology 43, n.º 3 (3 de abril de 2019): 173–81. http://dx.doi.org/10.1080/03091902.2019.1640306.
Texto completoJackson, Rhydon, Debra Knisley, Cecilia McIntosh y Phillip Pfeiffer. "Predicting Flavonoid UGT Regioselectivity". Advances in Bioinformatics 2011 (30 de junio de 2011): 1–15. http://dx.doi.org/10.1155/2011/506583.
Texto completoJO, YONG-UN y DO-CHANG OH. "REAL-TIME HAND GESTURE CLASSIFICATION USING CRNN WITH SCALE AVERAGE WAVELET TRANSFORM". Journal of Mechanics in Medicine and Biology 20, n.º 10 (diciembre de 2020): 2040028. http://dx.doi.org/10.1142/s021951942040028x.
Texto completoGao, Yongxiang, Zhi Zhao, Yimin Chen, Gehendra Mahara, Jialing Huang, Zhuochen Lin y Jinxin Zhang. "Automatic epileptic seizure classification in multichannel EEG time series with linear discriminant analysis". Technology and Health Care 28, n.º 1 (13 de enero de 2020): 23–33. http://dx.doi.org/10.3233/thc-181548.
Texto completoChambon, Stanislas, Mathieu N. Galtier, Pierrick J. Arnal, Gilles Wainrib y Alexandre Gramfort. "A Deep Learning Architecture for Temporal Sleep Stage Classification Using Multivariate and Multimodal Time Series". IEEE Transactions on Neural Systems and Rehabilitation Engineering 26, n.º 4 (abril de 2018): 758–69. http://dx.doi.org/10.1109/tnsre.2018.2813138.
Texto completoArami, Arash, Antonios Poulakakis-Daktylidis, Yen F. Tai y Etienne Burdet. "Prediction of Gait Freezing in Parkinsonian Patients: A Binary Classification Augmented With Time Series Prediction". IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, n.º 9 (septiembre de 2019): 1909–19. http://dx.doi.org/10.1109/tnsre.2019.2933626.
Texto completoDursun, Gizem, Dunja Bijelić, Neşe Ayşit, Burcu Kurt Vatandaşlar, Lidija Radenović, Abdulkerim Çapar, Bilal Ersen Kerman, Pavle R. Andjus, Andrej Korenić y Ufuk Özkaya. "Combined segmentation and classification-based approach to automated analysis of biomedical signals obtained from calcium imaging". PLOS ONE 18, n.º 2 (6 de febrero de 2023): e0281236. http://dx.doi.org/10.1371/journal.pone.0281236.
Texto completoLiu, Chenxi, Israel Cohen, Rotem Vishinkin y Hossam Haick. "Nanomaterial-Based Sensor Array Signal Processing and Tuberculosis Classification Using Machine Learning". Journal of Low Power Electronics and Applications 13, n.º 2 (29 de mayo de 2023): 39. http://dx.doi.org/10.3390/jlpea13020039.
Texto completoArunachalam, S. P., S. Kapa, S. K. Mulpuru, P. A. Friedman y E. G. Tolkacheva. "Improved Multiscale Entropy Technique with Nearest-Neighbor Moving-Average Kernel for Nonlinear and Nonstationary Short-Time Biomedical Signal Analysis". Journal of Healthcare Engineering 2018 (2018): 1–13. http://dx.doi.org/10.1155/2018/8632436.
Texto completoTripathy, R. K. y U. Rajendra Acharya. "Use of features from RR-time series and EEG signals for automated classification of sleep stages in deep neural network framework". Biocybernetics and Biomedical Engineering 38, n.º 4 (2018): 890–902. http://dx.doi.org/10.1016/j.bbe.2018.05.005.
Texto completoCuesta-Frau, David, Juan Pablo Murillo-Escobar, Diana Alexandra Orrego y Edilson Delgado-Trejos. "Embedded Dimension and Time Series Length. Practical Influence on Permutation Entropy and Its Applications". Entropy 21, n.º 4 (10 de abril de 2019): 385. http://dx.doi.org/10.3390/e21040385.
Texto completoWang, Jialing, Shiwei Cheng, Jieming Tian y Yuefan Gao. "A 2D CNN-LSTM hybrid algorithm using time series segments of EEG data for motor imagery classification". Biomedical Signal Processing and Control 83 (mayo de 2023): 104627. http://dx.doi.org/10.1016/j.bspc.2023.104627.
Texto completoBAI, G. MERCY y P. VENKADESH. "TAYLOR–MONARCH BUTTERFLY OPTIMIZATION-BASED SUPPORT VECTOR MACHINE FOR ACUTE LYMPHOBLASTIC LEUKEMIA CLASSIFICATION WITH BLOOD SMEAR MICROSCOPIC IMAGES". Journal of Mechanics in Medicine and Biology 21, n.º 06 (21 de junio de 2021): 2150041. http://dx.doi.org/10.1142/s021951942150041x.
Texto completoChang, Yuan-Hsiang, Kuniya Abe, Hideo Yokota, Kazuhiro Sudo, Yukio Nakamura y Ming-Dar Tsai. "HUMAN INDUCED PLURIPOTENT STEM CELL REGION DETECTION IN BRIGHT-FIELD MICROSCOPY IMAGES USING CONVOLUTIONAL NEURAL NETWORKS". Biomedical Engineering: Applications, Basis and Communications 31, n.º 02 (abril de 2019): 1950009. http://dx.doi.org/10.4015/s1016237219500091.
Texto completoResta, Michele, Anna Monreale y Davide Bacciu. "Occlusion-Based Explanations in Deep Recurrent Models for Biomedical Signals". Entropy 23, n.º 8 (17 de agosto de 2021): 1064. http://dx.doi.org/10.3390/e23081064.
Texto completoDissanayake, W. M. N. D. y Maheshi B. Dissanayake. "A Novel LSTM-based Data Synthesis Approach for Performance Improvement in Detecting Epileptic Seizures". WSEAS TRANSACTIONS ON BIOLOGY AND BIOMEDICINE 20 (10 de octubre de 2023): 132–39. http://dx.doi.org/10.37394/23208.2023.20.13.
Texto completoZhu, Mengyun, Ximin Fan, Weijing Liu, Jianying Shen, Wei Chen, Yawei Xu y Xuejing Yu. "Artificial Intelligence-Based Echocardiographic Left Atrial Volume Measurement with Pulmonary Vein Comparison". Journal of Healthcare Engineering 2021 (6 de diciembre de 2021): 1–11. http://dx.doi.org/10.1155/2021/1336762.
Texto completoSzigeti, Balázs, Ajinkya Deogade y Barbara Webb. "Searching for motifs in the behaviour of larval Drosophila melanogaster and Caenorhabditis elegans reveals continuity between behavioural states". Journal of The Royal Society Interface 12, n.º 113 (diciembre de 2015): 20150899. http://dx.doi.org/10.1098/rsif.2015.0899.
Texto completoChatterjee, Shre Kumar, Saptarshi Das, Koushik Maharatna, Elisa Masi, Luisa Santopolo, Stefano Mancuso y Andrea Vitaletti. "Exploring strategies for classification of external stimuli using statistical features of the plant electrical response". Journal of The Royal Society Interface 12, n.º 104 (marzo de 2015): 20141225. http://dx.doi.org/10.1098/rsif.2014.1225.
Texto completoUyulan, Caglar, Türker Tekin Ergüzel y Nevzat Tarhan. "Entropy-based feature extraction technique in conjunction with wavelet packet transform for multi-mental task classification". Biomedical Engineering / Biomedizinische Technik 64, n.º 5 (25 de septiembre de 2019): 529–42. http://dx.doi.org/10.1515/bmt-2018-0105.
Texto completoMakhir, Abdelmalek, My Hachem El Yousfi Alaoui y Larbi Belarbi. "Comprehensive Cardiac Ischemia Classification Using Hybrid CNN-Based Models". International Journal of Online and Biomedical Engineering (iJOE) 20, n.º 03 (27 de febrero de 2024): 154–65. http://dx.doi.org/10.3991/ijoe.v20i03.45769.
Texto completoCuesta-Frau, David, Jakub Schneider, Eduard Bakštein, Pavel Vostatek, Filip Spaniel y Daniel Novák. "Classification of Actigraphy Records from Bipolar Disorder Patients Using Slope Entropy: A Feasibility Study". Entropy 22, n.º 11 (1 de noviembre de 2020): 1243. http://dx.doi.org/10.3390/e22111243.
Texto completoKhorasani, Abed, Mohammad Reza Daliri y Mohammad Pooyan. "Recognition of amyotrophic lateral sclerosis disease using factorial hidden Markov model". Biomedical Engineering / Biomedizinische Technik 61, n.º 1 (1 de febrero de 2016): 119–26. http://dx.doi.org/10.1515/bmt-2014-0089.
Texto completoBALOGLU, ULAS BARAN y ÖZAL YILDIRIM. "CONVOLUTIONAL LONG-SHORT TERM MEMORY NETWORKS MODEL FOR LONG DURATION EEG SIGNAL CLASSIFICATION". Journal of Mechanics in Medicine and Biology 19, n.º 01 (febrero de 2019): 1940005. http://dx.doi.org/10.1142/s0219519419400050.
Texto completoBogdanov, M. R., G. R. Shakhmametova y N. N. Oskin. "Possibility of Using the Attention Mechanism in Multimodal Recognition of Cardiovascular Diseases". Programmnaya Ingeneria 15, n.º 11 (18 de noviembre de 2024): 578–88. http://dx.doi.org/10.17587/prin.15.578-588.
Texto completoAmarantidis, Lampros Chrysovalantis y Daniel Abásolo. "Interpretation of Entropy Algorithms in the Context of Biomedical Signal Analysis and Their Application to EEG Analysis in Epilepsy". Entropy 21, n.º 9 (27 de agosto de 2019): 840. http://dx.doi.org/10.3390/e21090840.
Texto completoZhu, Lingxia, Zhiping Xu y Ting Fang. "Analysis of Cardiac Ultrasound Images of Critically Ill Patients Using Deep Learning". Journal of Healthcare Engineering 2021 (27 de octubre de 2021): 1–8. http://dx.doi.org/10.1155/2021/6050433.
Texto completoJing, Junyuan, Jing Zhang, Aiping Liu, Min Gao, Ruobing Qian y Xun Chen. "ECG-Based Multiclass Arrhythmia Classification Using Beat-Level Fusion Network". Journal of Healthcare Engineering 2023 (29 de noviembre de 2023): 1–10. http://dx.doi.org/10.1155/2023/1755121.
Texto completoHeo, Suncheol, Jae Yong Yu, Eun Ae Kang, Hyunah Shin, Kyeongmin Ryu, Chungsoo Kim, Yebin Chegal et al. "Development and Verification of Time-Series Deep Learning for Drug-Induced Liver Injury Detection in Patients Taking Angiotensin II Receptor Blockers: A Multicenter Distributed Research Network Approach". Healthcare Informatics Research 29, n.º 3 (31 de julio de 2023): 246–55. http://dx.doi.org/10.4258/hir.2023.29.3.246.
Texto completoNigat, Tsedenya Debebe, Tilahun Melak Sitote y Berihun Molla Gedefaw. "Fungal Skin Disease Classification Using the Convolutional Neural Network". Journal of Healthcare Engineering 2023 (30 de mayo de 2023): 1–9. http://dx.doi.org/10.1155/2023/6370416.
Texto completoCuesta-Frau, David, Daniel Novák, Vacláv Burda, Daniel Abasolo, Tricia Adjei, Manuel Varela, Borja Vargas et al. "Influence of Duodenal–Jejunal Implantation on Glucose Dynamics: A Pilot Study Using Different Nonlinear Methods". Complexity 2019 (14 de febrero de 2019): 1–10. http://dx.doi.org/10.1155/2019/6070518.
Texto completoAhammed, Kawser y Mosabber Uddin Ahmed. "QUANTIFICATION OF MENTAL STRESS USING COMPLEXITY ANALYSIS OF EEG SIGNALS". Biomedical Engineering: Applications, Basis and Communications 32, n.º 02 (abril de 2020): 2050011. http://dx.doi.org/10.4015/s1016237220500118.
Texto completoAlrowais, Fadwa, Faiz Abdullah Alotaibi, Abdulkhaleq Q. A. Hassan, Radwa Marzouk, Mrim M. Alnfiai y Ahmed Sayed. "Enhanced Pelican Optimization Algorithm with Deep Learning-Driven Mitotic Nuclei Classification on Breast Histopathology Images". Biomimetics 8, n.º 7 (10 de noviembre de 2023): 538. http://dx.doi.org/10.3390/biomimetics8070538.
Texto completoMaheshwari, Saumil, Aman Agarwal, Anupam Shukla y Ritu Tiwari. "A comprehensive evaluation for the prediction of mortality in intensive care units with LSTM networks: patients with cardiovascular disease". Biomedical Engineering / Biomedizinische Technik 65, n.º 4 (27 de agosto de 2020): 435–46. http://dx.doi.org/10.1515/bmt-2018-0206.
Texto completo