Literatura académica sobre el tema "Classification des réseaux de neurones"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Classification des réseaux de neurones".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Classification des réseaux de neurones"
Postadjian, Tristan, Arnaud Le Bris, Hichem Sahbi y Clément Mallet. "Classification à très large échelle d'images satellites à très haute résolution spatiale par réseaux de neurones convolutifs". Revue Française de Photogrammétrie et de Télédétection, n.º 217-218 (21 de septiembre de 2018): 73–86. http://dx.doi.org/10.52638/rfpt.2018.418.
Texto completoEl kharki, Omar. "Panorama sur les méthodes de classification des images satellites et techniques d'amélioration de la précision de la classification". Revue Française de Photogrammétrie et de Télédétection, n.º 210 (7 de abril de 2015): 23–38. http://dx.doi.org/10.52638/rfpt.2015.259.
Texto completoKerkeni, N., R. Ben Cheikh, M. H. Bedoui, F. Alexandre y M. Dogui. "Classification des stades de sommeil par des réseaux de neurones artificiels hiérarchiques". IRBM 33, n.º 1 (febrero de 2012): 35–40. http://dx.doi.org/10.1016/j.irbm.2011.12.006.
Texto completoLe Bris, Arnaud, Cyril Wendl, Nesrine Chehata, Anne Puissant y Tristan Postadjian. "Fusion tardive d'images SPOT-6/7 et de données multi-temporelles Sentinel-2 pour la détection de la tâche urbaine". Revue Française de Photogrammétrie et de Télédétection, n.º 217-218 (21 de septiembre de 2018): 87–97. http://dx.doi.org/10.52638/rfpt.2018.415.
Texto completoAristizábal, Maria Clara. "Evaluación asimétrica de una red neuronal: aplicación al caso de la inflación en Colombia". Lecturas de Economía, n.º 65 (29 de octubre de 2009): 73–116. http://dx.doi.org/10.17533/udea.le.n65a2641.
Texto completoRuan, S., P. Decazes y R. Modzelewski. "Contribution des cartes d’activation de classe des réseaux de neurones profonds pour la classification des tumeurs primaires en TEP-FDG". Médecine Nucléaire 44, n.º 2 (marzo de 2020): 133. http://dx.doi.org/10.1016/j.mednuc.2020.01.080.
Texto completoKatlane, Faten y Mohamed Saber Naceur. "La combinaison d'indicateurs de changement pour le suivi de l'évolution de l'occupation du sol à partir d'imagerie satellitales". Revue Française de Photogrammétrie et de Télédétection, n.º 203 (8 de abril de 2014): 43–48. http://dx.doi.org/10.52638/rfpt.2013.29.
Texto completoFortin, V., T. B. M. J. Ouarda, P. F. Rasmussen y B. Bobée. "Revue bibliographique des méthodes de prévision des débits". Revue des sciences de l'eau 10, n.º 4 (12 de abril de 2005): 461–87. http://dx.doi.org/10.7202/705289ar.
Texto completo-BORNE, Pierre. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, n.º 08 (2006): 31. http://dx.doi.org/10.3845/ree.2006.074.
Texto completo-BORNE, Pierre. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, n.º 08 (2006): 37. http://dx.doi.org/10.3845/ree.2006.075.
Texto completoTesis sobre el tema "Classification des réseaux de neurones"
Biela, Philippe. "Classification automatique d'observations multidimensionnelles par réseaux de neurones compétitifs". Lille 1, 1999. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/1999/50376-1999-469.pdf.
Texto completoChakik, Fadi El. "Maximum d'entropie et réseaux de neurones pour la classification". Grenoble INPG, 1998. http://www.theses.fr/1998INPG0091.
Texto completoAyache, Mohammad. "Application des réseaux de neurones à la classification automatisée des grades placentaires". Tours, 2007. http://www.theses.fr/2007TOUR3315.
Texto completoThe placenta is a temporary organ joins the mother and the fœtus, which transfers oxygen from the mother to the foetus, allows the evacuation of the carbon dioxide and the products of foetus metabolism. The goal of our work is to study the transfer function of placental development using ultrasound images. A new approach is developed during this work to classify the placental development by image processing techniques based on supervised neural network. The realized model by the wavelet transform based on MLP neural network, represents an effective tool answering our criteria and adapted to our applications concerning the study of placental maturation. The realized model application in the event of placental image processing opens interesting doors in terms of placental grades classification in order to identify the stages of maturation, authorizing the definition of a normal maturation and an abnormal maturation
Zaki, Sabit Fawzi Philippe. "Classification par réseaux de neurones dans le cadre de la scattérométrie ellipsométrique". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSES070/document.
Texto completoThe miniaturization of components in the micro-electronics industry involves the need of fast reliable technique of characterization with lower cost. Optical methods such as scatterometry are today promising alternative to this technological need. However, scatterometric method requires a certain number of hypothesis to ensure the resolution of an inverse problem, in particular the knowledge of the geometrical shape of the structure under test. The assumed model of the structure determines the quality of the characterization. In this thesis, we propose the use of neural networks as decision-making tools upstream of any characterization method. We validated the use of neural networks in the context of recognition of the geometrical shapes of the sample under testing by the use of optical signature in any scatterometric characterization process. First, the case of lithographic defect due to the presence of a resist residual layer at the bottom of the grooves is studied. Then, we carry out an analysis of model defect in the inverse problem resolution. Finally, we report results in the context of selection of geometric models by neural networks upstream of a classical scatterometric characterization process. This thesis has demonstrated that neural networks can well answer the problem of classification in ellipsometric scatterometry and their use can improve this optical characterization technique
Gatet, Laurent. "Intégration de Réseaux de Neurones pour la Télémétrie Laser". Phd thesis, Toulouse, INPT, 2007. http://oatao.univ-toulouse.fr/7595/1/gatet.pdf.
Texto completoDelsert, Stéphane. "Classification interactive non supervisée de données multidimensionnelles par réseaux de neurones à apprentissage cométitif". Lille 1, 1996. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/1996/50376-1996-214.pdf.
Texto completoBouaziz, Mohamed. "Réseaux de neurones récurrents pour la classification de séquences dans des flux audiovisuels parallèles". Thesis, Avignon, 2017. http://www.theses.fr/2017AVIG0224/document.
Texto completoIn the same way as TV channels, data streams are represented as a sequence of successive events that can exhibit chronological relations (e.g. a series of programs, scenes, etc.). For a targeted channel, broadcast programming follows the rules defined by the channel itself, but can also be affected by the programming of competing ones. In such conditions, event sequences of parallel streams could provide additional knowledge about the events of a particular stream. In the sphere of machine learning, various methods that are suited for processing sequential data have been proposed. Long Short-Term Memory (LSTM) Recurrent Neural Networks have proven its worth in many applications dealing with this type of data. Nevertheless, these approaches are designed to handle only a single input sequence at a time. The main contribution of this thesis is about developing approaches that jointly process sequential data derived from multiple parallel streams. The application task of our work, carried out in collaboration with the computer science laboratory of Avignon (LIA) and the EDD company, seeks to predict the genre of a telecast. This prediction can be based on the histories of previous telecast genres in the same channel but also on those belonging to other parallel channels. We propose a telecast genre taxonomy adapted to such automatic processes as well as a dataset containing the parallel history sequences of 4 French TV channels. Two original methods are proposed in this work in order to take into account parallel stream sequences. The first one, namely the Parallel LSTM (PLSTM) architecture, is an extension of the LSTM model. PLSTM simultaneously processes each sequence in a separate recurrent layer and sums the outputs of each of these layers to produce the final output. The second approach, called MSE-SVM, takes advantage of both LSTM and Support Vector Machines (SVM) methods. Firstly, latent feature vectors are independently generated for each input stream, using the output event of the main one. These new representations are then merged and fed to an SVM algorithm. The PLSTM and MSE-SVM approaches proved their ability to integrate parallel sequences by outperforming, respectively, the LSTM and SVM models that only take into account the sequences of the main stream. The two proposed approaches take profit of the information contained in long sequences. However, they have difficulties to deal with short ones. Though MSE-SVM generally outperforms the PLSTM approach, the problem experienced with short sequences is more pronounced for MSE-SVM. Finally, we propose to extend this approach by feeding additional information related to each event in the input sequences (e.g. the weekday of a telecast). This extension, named AMSE-SVM, has a remarkably better behavior with short sequences without affecting the performance when processing long ones
Carpentier, Mathieu. "Classification fine par réseau de neurones à convolution". Master's thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/35835.
Texto completoArtificial intelligence is a relatively recent research domain. With it, many breakthroughs were made on a number of problems that were considered very hard. Fine-grained classification is one of those problems. However, a relatively small amount of research has been done on this task even though itcould represent progress on a scientific, commercial and industrial level. In this work, we talk about applying fine-grained classification on concrete problems such as tree bark classification and mould classification in culture. We start by presenting fundamental deep learning concepts at the root of our solution. Then, we present multiple experiments made in order to try to solve the tree bark classification problem and we detail the novel dataset BarkNet 1.0 that we made for this project. With it, we were able to develop a method that obtains an accuracy of 93.88% on singlecrop in a single image, and an accuracy of 97.81% using a majority voting approach on all the images of a tree. We conclude by demonstrating the feasibility of applying our method on new problems by showing two concrete applications on which we tried our approach, industrial tree classification and mould classification.
Mercadier, Yves. "Classification automatique de textes par réseaux de neurones profonds : application au domaine de la santé". Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTS068.
Texto completoThis Ph.D focuses on the analysis of textual data in the health domain and in particular on the supervised multi-class classification of data from biomedical literature and social media.One of the major difficulties when exploring such data by supervised learning methods is to have a sufficient number of data sets for models training. Indeed, it is generally necessary to label manually the data before performing the learning step. The large size of the data sets makes this labellisation task very expensive, which should be reduced with semi-automatic systems.In this context, active learning, in which the Oracle intervenes to choose the best examples to label, is promising. The intuition is as follows: by choosing the smartly the examples and not randomly, the models should improve with less effort for the oracle and therefore at lower cost (i.e. with less annotated examples). In this PhD, we will evaluate different active learning approaches combined with recent deep learning models.In addition, when small annotated data set is available, one possibility of improvement is to artificially increase the data quantity during the training phase, by automatically creating new data from existing data. More precisely, we inject knowledge by taking into account the invariant properties of the data with respect to certain transformations. The augmented data can thus cover an unexplored input space, avoid overfitting and improve the generalization of the model. In this Ph.D, we will propose and evaluate a new approach for textual data augmentation.These two contributions will be evaluated on different textual datasets in the medical domain
Personnaz, Léon. "Etude des réseaux de neurones formels : conception, propriétés et applications". Paris 6, 1986. http://www.theses.fr/1986PA066569.
Texto completoLibros sobre el tema "Classification des réseaux de neurones"
Personnaz, L. Réseaux de neurones formels pour la modélisation, la commande et la classification. Paris: CNRS Editions, 2003.
Buscar texto completoMichel, Verleysen, ed. Les réseaux de neurones artificiels. Paris: Presses universitaires de France, 1996.
Buscar texto completoKamp, Yves. Réseaux de neurones récursifs pour mémoires associatives. Lausanne: Presses polytechniques et universitaires romandes, 1990.
Buscar texto completoRollet, Guy. Les RÉSEAUX DE NEURONES DE LA CONSCIENCE - Approche multidisciplinaire du phénomène. Paris: Editions L'Harmattan, 2013.
Buscar texto completoAmat, Jean-Louis. Techniques avancées pour le traitement de l'information: Réseaux de neurones, logique floue, algorithmes génétiques. 2a ed. Toulouse: Cépaduès-Ed., 2002.
Buscar texto completoJournées d'électronique (1989 Lausanne, Switzerland). Réseaux de neurones artificiels: Comptes rendus des Journées d'électronique 1989, Lausanne, 10-12 october 1983. Lausanne: Presses polytechniques romande, 1989.
Buscar texto completoSeidou, Ousmane. Modélisation de la croissance de glace de lac par réseaux de neurones artificiels et estimation du volume de la glace abandonnée sur les berges des réservoirs hydroélectriques pendant les opérations d'hiver. Québec, QC: INRS--ETE, 2005.
Buscar texto completoSuzanne, Tyc-Dumont, ed. Le neurone computationnel: Histoire d'un siècle de recherches. Paris: CNRS, 2005.
Buscar texto completoBiophysics of computation: Information processing in single neurons. New York: Oxford University Press, 1999.
Buscar texto completoK, Kaczmarek Leonard, ed. The neuron: Cell and molecular biology. 3a ed. Oxford: Oxford University Press, 2002.
Buscar texto completoCapítulos de libros sobre el tema "Classification des réseaux de neurones"
Martaj, Dr Nadia y Dr Mohand Mokhtari. "Réseaux de neurones". En MATLAB R2009, SIMULINK et STATEFLOW pour Ingénieurs, Chercheurs et Etudiants, 807–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11764-0_17.
Texto completoKipnis, C. y E. Saada. "Un lien entre réseaux de neurones et systèmes de particules: Un modele de rétinotopie". En Lecture Notes in Mathematics, 55–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0094641.
Texto completoQuenet, B., J. M. Devaud, J. Gascuel y C. Masson. "Is a Classification of Honeybee Antennal Lobe Neurones Grown in Culture Possible ? - Yes!" En The Neurobiology of Computation, 123–28. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2235-5_20.
Texto completoMOLINIER, Matthieu, Jukka MIETTINEN, Dino IENCO, Shi QIU y Zhe ZHU. "Analyse de séries chronologiques d’images satellitaires optiques pour des applications environnementales". En Détection de changements et analyse des séries temporelles d’images 2, 125–74. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9057.ch4.
Texto completoATTO, Abdourrahmane M., Héla HADHRI, Flavien VERNIER y Emmanuel TROUVÉ. "Apprentissage multiclasse multi-étiquette de changements d’état à partir de séries chronologiques d’images". En Détection de changements et analyse des séries temporelles d’images 2, 247–71. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9057.ch6.
Texto completoZHANG, Hanwei, Teddy FURON, Laurent AMSALEG y Yannis AVRITHIS. "Attaques et défenses de réseaux de neurones profonds : le cas de la classification d’images". En Sécurité multimédia 1, 51–85. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9026.ch2.
Texto completo"4. Les réseaux de neurones artificiels". En L'intelligence artificielle, 91–112. EDP Sciences, 2021. http://dx.doi.org/10.1051/978-2-7598-2580-6.c006.
Texto completoBYTYN, Andreas, René AHLSDORF y Gerd ASCHEID. "Systèmes multiprocesseurs basés sur un ASIP pour l’efficacité des CNN". En Systèmes multiprocesseurs sur puce 1, 93–111. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9021.ch4.
Texto completoBENMAMMAR, Badr y Asma AMRAOUI. "Application de l’intelligence artificielle dans les réseaux de radio cognitive". En Gestion et contrôle intelligents des réseaux, 233–60. ISTE Group, 2020. http://dx.doi.org/10.51926/iste.9008.ch9.
Texto completoCOGRANNE, Rémi, Marc CHAUMONT y Patrick BAS. "Stéganalyse : détection d’information cachée dans des contenus multimédias". En Sécurité multimédia 1, 261–303. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9026.ch8.
Texto completoActas de conferencias sobre el tema "Classification des réseaux de neurones"
Fourcade, A. "Apprentissage profond : un troisième oeil pour les praticiens". En 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601014.
Texto completoKim, Lila y Cédric Gendrot. "Classification automatique de voyelles nasales pour une caractérisation de la qualité de voix des locuteurs par des réseaux de neurones convolutifs". En XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-82.
Texto completoGresse, Adrien, Richard Dufour, Vincent Labatut, Mickael Rouvier y Jean-François Bonastre. "Mesure de similarité fondée sur des réseaux de neurones siamois pour le doublage de voix". En XXXIIe Journées d’Études sur la Parole. ISCA: ISCA, 2018. http://dx.doi.org/10.21437/jep.2018-2.
Texto completoORLIANGES, Jean-Christophe, Younes El Moustakime, Aurelian Crunteanu STANESCU, Ricardo Carrizales Juarez y Oihan Allegret. "Retour vers le perceptron - fabrication d’un neurone synthétique à base de composants électroniques analogiques simples". En Les journées de l'interdisciplinarité 2023. Limoges: Université de Limoges, 2024. http://dx.doi.org/10.25965/lji.761.
Texto completoWalid, Tazarki, Fareh Riadh y Chichti Jameleddine. "La Prevision Des Crises Bancaires: Un essai de modélisation par la méthode des réseaux de neurones [Not available in English]". En International Conference on Information and Communication Technologies from Theory to Applications - ICTTA'08. IEEE, 2008. http://dx.doi.org/10.1109/ictta.2008.4529985.
Texto completoGendrot, Cedric, Emmanuel Ferragne y Anaïs Chanclu. "Analyse phonétique de la variation inter-locuteurs au moyen de réseaux de neurones convolutifs : voyelles seules et séquences courtes de parole". En XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-94.
Texto completoQuintas, Sebastião, Alberto Abad, Julie Mauclair, Virginie Woisard y Julien Pinquier. "Utilisation de réseaux de neurones profonds avec attention pour la prédiction de l’intelligibilité de la parole de patients atteints de cancers ORL". En XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-7.
Texto completo