Literatura académica sobre el tema "Classification"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Classification".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Classification"
Thomas, Pravin, Anand Kumar, Ahamed Subir, Brian E. McGeeney, Madhav Raje, Divyani Garg, Chaithra D. Aroor, Arunmozhimaran Elavarasi y Kris Castle. "Classification of Head, Neck, and Face Pains First Edition (WHS-MCH1): Position paper of the WHS Classification Committee". Headache Medicine Connections 1, n.º 1 (20 de agosto de 2021): 1–108. http://dx.doi.org/10.52828/hmc.v1i1.classifications.
Texto completoWillatt, D. J., M. S. McCormick, R. P. Morton y P. M. Stell. "Staging of Maxillary Cancer". Annals of Otology, Rhinology & Laryngology 96, n.º 2 (marzo de 1987): 137–41. http://dx.doi.org/10.1177/000348948709600201.
Texto completoJacob, Elin K. "Proposal for a Classification of Classifications built on Beghtol’s Distinction between “Naïve Classification” and “Professional Classification”". KNOWLEDGE ORGANIZATION 37, n.º 2 (2010): 111–20. http://dx.doi.org/10.5771/0943-7444-2010-2-111.
Texto completoFeleke, Tekabe Legesse. "Ethiosemitic languages: Classifications and classification determinants". Ampersand 8 (2021): 100074. http://dx.doi.org/10.1016/j.amper.2021.100074.
Texto completoDozic, Slobodan, Dubravka Cvetkovic-Dozic, Milica Skender-Gazibara y Branko Dozic. "Review of the World Health Organization classification of tumors of the nervous system". Archive of Oncology 10, n.º 3 (2002): 175–77. http://dx.doi.org/10.2298/aoo0203175d.
Texto completoFedorova, Natalia. "BASIC CLASSIFIERS OF FORMAL CLASSIFICATION THEORY OF TECHNICAL SYSTEMS: HIERARCHIES, VECTORS AND MATRICES, BANDS". Vestnik of Astrakhan State Technical University. Series: Management, computer science and informatics 2021, n.º 3 (30 de julio de 2021): 28–40. http://dx.doi.org/10.24143/2072-9502-2021-3-28-40.
Texto completoVu, Catphuong y David Gendelberg. "Classifications in Brief: AO Thoracolumbar Classification System". Clinical Orthopaedics & Related Research 478, n.º 2 (9 de diciembre de 2019): 434–40. http://dx.doi.org/10.1097/corr.0000000000001086.
Texto completoDi Lauro, Salvatore, Mustafa R. Kadhim, David G. Charteris y J. Carlos Pastor. "Classifications for Proliferative Vitreoretinopathy (PVR): An Analysis of Their Use in Publications over the Last 15 Years". Journal of Ophthalmology 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/7807596.
Texto completoKozhanov, Anton L. y Oleg V. Voevodin. "ON RECLAMATION PUMPING STATIONS CLASSIFICATION". Land Reclamation and Hydraulic Engineering 14, n.º 3 (2024): 261–83. http://dx.doi.org/10.31774/2712-9357-2024-14-3-261-283.
Texto completoFortune, Nicola, Stephanie Short y Richard Madden. "Building a statistical classification: A new tool for classification development and testing". Statistical Journal of the IAOS 36, n.º 4 (25 de noviembre de 2020): 1213–21. http://dx.doi.org/10.3233/sji-200633.
Texto completoTesis sobre el tema "Classification"
Bogers, Toine, Willem Thoonen y den Bosch Antal van. "Expertise classification: Collaborative classification vs. automatic extraction". dLIST, 2006. http://hdl.handle.net/10150/105709.
Texto completoRavindra, Dilip. "Firmware and classification algorithm development for vehicle classification". Thesis, California State University, Long Beach, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1603749.
Texto completoVehicle classification is one of the active research topic in Intelligent Transport System. This project proposes an approach to classify the vehicles on freeway with respect to the size of the vehicle. This vehicle classification is based on threshold based algorithm. This system consists of two AMR magneto-resistive sensors connected to TI msp430 development board. The data collected from the two magneto resistive sensors is analyzed and supplied to threshold based algorithm to differentiate the vehicles. With the use of minimum number features extracted from the data it was possible to produce very efficient algorithm that is capable of differentiating the vehicles.
Phillips, Rhonda D. "A Probabilistic Classification Algorithm With Soft Classification Output". Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/26701.
Texto completoPh. D.
Матусевич, Олександр Павлович. "Classification Fonts". Thesis, Київський національний університет технологій та дизайну, 2017. https://er.knutd.edu.ua/handle/123456789/7344.
Texto completoЯрмак, Любов Павлівна, Любовь Павловна Ярмак, Liubov Pavlivna Yarmak, Оксана Робертівна Гладченко, Оксана Робертовна Гладченко y Oksana Robertivna Hladchenko. "Test classification". Thesis, Сумський державний університет, 2014. http://essuir.sumdu.edu.ua/handle/123456789/34677.
Texto completoTaylor, Paul Clifford. "Classification trees". Thesis, University of Bath, 1990. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306312.
Texto completoBonneau, Jean-Christophe. "La classification des contrats : essai d'une analyse systémique des classifications du Code civil". Grenoble, 2010. http://www.theses.fr/2010GREND017.
Texto completoThe classification of contracts as it is stated in the civil Code articles 1102 onwards structurally distinguishes itself from modern classifications having been added to it. Looking thoroughly at the matter of a global approach of classification, the classifications of the civil Code, separated from a legal regime which does not in fact depend on them and on notions which are foreign to it, such as the concept of “cause”, were considered in their connections of logic and complementarity. The existence of the chains of classifications, a new classification resulting from the coherent assembly of the various classifications provided for the civil Code, were brought to light thanks to a study aiming at understanding how these classifications are bound and harmonized. The features of the classification of contracts were then deducted from the very structure of the classifications of the civil Code combined in chains. These have for feature to reveal what constitutes the essence of the contract, by allowing to distinguish it from certain figures which try to assimilate to it but nevertheless distinguish themselves from it since the capacity of a legal object to become integrated into the chains of classifications is perceived as conditional on the contractual qualification itself. Considered as a preferred criterion of the definition of the contract, which can give rise to projects aiming at the elaboration of a body of European contract laws, the chains of classifications were then conceptualised in their connections with the variety of the named contracts. The chains of classifications absorb these contracts as well as their legal regime which can, consequently, be transposed into the unnamed contracts. Allowing a renewal of the groupings generally perceived, the chains of classifications bring a new light to the process of qualification of the contract. They contribute to specify the domain of the modification of the contract, and finally supply a foundation for the direct contractual action which is applied to the chains of contracts
Van, der Westhuizen Cornelius Stephanus. "Nearest hypersphere classification : a comparison with other classification techniques". Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95839.
Texto completoENGLISH ABSTRACT: Classification is a widely used statistical procedure to classify objects into two or more classes according to some rule which is based on the input variables. Examples of such techniques are Linear and Quadratic Discriminant Analysis (LDA and QDA). However, classification of objects with these methods can get complicated when the number of input variables in the data become too large ( ≪ ), when the assumption of normality is no longer met or when classes are not linearly separable. Vapnik et al. (1995) introduced the Support Vector Machine (SVM), a kernel-based technique, which can perform classification in cases where LDA and QDA are not valid. SVM makes use of an optimal separating hyperplane and a kernel function to derive a rule which can be used for classifying objects. Another kernel-based technique was proposed by Tax and Duin (1999) where a hypersphere is used for domain description of a single class. The idea of a hypersphere for a single class can be easily extended to classification when dealing with multiple classes by just classifying objects to the nearest hypersphere. Although the theory of hyperspheres is well developed, not much research has gone into using hyperspheres for classification and the performance thereof compared to other classification techniques. In this thesis we will give an overview of Nearest Hypersphere Classification (NHC) as well as provide further insight regarding the performance of NHC compared to other classification techniques (LDA, QDA and SVM) under different simulation configurations. We begin with a literature study, where the theory of the classification techniques LDA, QDA, SVM and NHC will be dealt with. In the discussion of each technique, applications in the statistical software R will also be provided. An extensive simulation study is carried out to compare the performance of LDA, QDA, SVM and NHC for the two-class case. Various data scenarios will be considered in the simulation study. This will give further insight in terms of which classification technique performs better under the different data scenarios. Finally, the thesis ends with the comparison of these techniques on real-world data.
AFRIKAANSE OPSOMMING: Klassifikasie is ’n statistiese metode wat gebruik word om objekte in twee of meer klasse te klassifiseer gebaseer op ’n reël wat gebou is op die onafhanklike veranderlikes. Voorbeelde van hierdie metodes sluit in Lineêre en Kwadratiese Diskriminant Analise (LDA en KDA). Wanneer die aantal onafhanklike veranderlikes in ’n datastel te veel raak, die aanname van normaliteit nie meer geld nie of die klasse nie meer lineêr skeibaar is nie, raak die toepassing van metodes soos LDA en KDA egter te moeilik. Vapnik et al. (1995) het ’n kern gebaseerde metode bekendgestel, die Steun Vektor Masjien (SVM), wat wel vir klassifisering gebruik kan word in situasies waar metodes soos LDA en KDA misluk. SVM maak gebruik van ‘n optimale skeibare hipervlak en ’n kern funksie om ’n reël af te lei wat gebruik kan word om objekte te klassifiseer. ’n Ander kern gebaseerde tegniek is voorgestel deur Tax and Duin (1999) waar ’n hipersfeer gebruik kan word om ’n gebied beskrywing op te stel vir ’n datastel met net een klas. Dié idee van ’n enkele klas wat beskryf kan word deur ’n hipersfeer, kan maklik uitgebrei word na ’n multi-klas klassifikasie probleem. Dit kan gedoen word deur slegs die objekte te klassifiseer na die naaste hipersfeer. Alhoewel die teorie van hipersfere goed ontwikkeld is, is daar egter nog nie baie navorsing gedoen rondom die gebruik van hipersfere vir klassifikasie nie. Daar is ook nog nie baie gekyk na die prestasie van hipersfere in vergelyking met ander klassifikasie tegnieke nie. In hierdie tesis gaan ons ‘n oorsig gee van Naaste Hipersfeer Klassifikasie (NHK) asook verdere insig in terme van die prestasie van NHK in vergelyking met ander klassifikasie tegnieke (LDA, KDA en SVM) onder sekere simulasie konfigurasies. Ons gaan begin met ‘n literatuurstudie, waar die teorie van die klassifikasie tegnieke LDA, KDA, SVM en NHK behandel gaan word. Vir elke tegniek gaan toepassings in die statistiese sagteware R ook gewys word. ‘n Omvattende simulasie studie word uitgevoer om die prestasie van die tegnieke LDA, KDA, SVM en NHK te vergelyk. Die vergelyking word gedoen vir situasies waar die data slegs twee klasse het. ‘n Verskeidenheid van data situasies gaan ook ondersoek word om verdere insig te toon in terme van wanneer watter tegniek die beste vaar. Die tesis gaan afsluit deur die genoemde tegnieke toe te pas op praktiese datastelle.
Olin, Per. "Evaluation of text classification techniques for log file classification". Thesis, Linköpings universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166641.
Texto completoAnteryd, Fredrik. "Information Classification in Swedish Governmental Agencies : Analysis of Classification Guidelines". Thesis, Högskolan i Skövde, Institutionen för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-11493.
Texto completoLibros sobre el tema "Classification"
Library of Congress. Subject Cataloging Division. Classification. 3a ed. Washington, D.C: The Library, 1989.
Buscar texto completoLibrary of Congress. Subject Cataloging Division. Classification. Washington: The Library, 1988.
Buscar texto completoSabzwari, Ghaniul Akram. Classification. Karachi: s.n., 2005.
Buscar texto completoLibrary of Congress. Cataloging Policy and Support Office. Classification. Washington: Library of Congress, 1993.
Buscar texto completoLibrary of Congress. Office for Subject Cataloging Policy. Classification. 5a ed. Washington, DC: Library of Congress, 1992.
Buscar texto completoHaroon, Mohammed. Music classification: Schedule for colon classification. New Delhi: Kanishka Publishers, Distributors, 2010.
Buscar texto completoHaroon, Mohammed. Music classification: Schedule for colon classification. New Delhi: Kanishka Publishers, Distributors, 2010.
Buscar texto completoJames, Mike. Classification algorithms. New York: Wiley, 1985.
Buscar texto completoBandyopadhyay, Sanghamitra y Sriparna Saha. Unsupervised Classification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32451-2.
Texto completoHerrera, Francisco, Francisco Charte, Antonio J. Rivera y María J. del Jesus. Multilabel Classification. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8.
Texto completoCapítulos de libros sobre el tema "Classification"
Herrera, Francisco, Francisco Charte, Antonio J. Rivera y María J. del Jesus. "Multilabel Classification". En Multilabel Classification, 17–31. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_2.
Texto completoHerrera, Francisco, Francisco Charte, Antonio J. Rivera y María J. del Jesus. "Introduction". En Multilabel Classification, 1–16. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_1.
Texto completoHerrera, Francisco, Francisco Charte, Antonio J. Rivera y María J. del Jesus. "Case Studies and Metrics". En Multilabel Classification, 33–63. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_3.
Texto completoHerrera, Francisco, Francisco Charte, Antonio J. Rivera y María J. del Jesus. "Transformation-Based Classifiers". En Multilabel Classification, 65–79. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_4.
Texto completoHerrera, Francisco, Francisco Charte, Antonio J. Rivera y María J. del Jesus. "Adaptation-Based Classifiers". En Multilabel Classification, 81–99. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_5.
Texto completoHerrera, Francisco, Francisco Charte, Antonio J. Rivera y María J. del Jesus. "Ensemble-Based Classifiers". En Multilabel Classification, 101–13. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_6.
Texto completoHerrera, Francisco, Francisco Charte, Antonio J. Rivera y María J. del Jesus. "Dimensionality Reduction". En Multilabel Classification, 115–31. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_7.
Texto completoHerrera, Francisco, Francisco Charte, Antonio J. Rivera y María J. del Jesus. "Imbalance in Multilabel Datasets". En Multilabel Classification, 133–51. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_8.
Texto completoHerrera, Francisco, Francisco Charte, Antonio J. Rivera y María J. del Jesus. "Multilabel Software". En Multilabel Classification, 153–91. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41111-8_9.
Texto completoAbe, Shigeo. "Introduction". En Pattern Classification, 3–20. London: Springer London, 2001. http://dx.doi.org/10.1007/978-1-4471-0285-4_1.
Texto completoActas de conferencias sobre el tema "Classification"
Besse, P., P. Boisson y J. McGregor. "What Classification Rules For The Future And What Future For Classification?" En Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.15.
Texto completoBień, Jan y Małgorzata Gładysz-Bień. "Multi-level Classification of Bridge Defects in Asset Management". En IABSE Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2019. http://dx.doi.org/10.2749/guimaraes.2019.1100.
Texto completoKhan, Mysha y Pushpa Bhat. "Higgs event classification using Machine Learning". En Higgs event classification using Machine Learning. US DOE, 2023. http://dx.doi.org/10.2172/1997111.
Texto completoFadaie, Gholamreza. "The Influence of Classification on World View and Epistemology". En InSITE 2008: Informing Science + IT Education Conference. Informing Science Institute, 2008. http://dx.doi.org/10.28945/3279.
Texto completoBruhns, H. "The New Imo Regulation For The Protection Of Fuel Tanks Affects Ship Designs". En Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.12.
Texto completoMotok, M. D. y J. Jovovic. "Wave Induced Shear Force And Bending Moment For Series Of Ships - Comparison & Some Interpolation Procedures". En Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.14.
Texto completoJankowski, J. y M. Bogdaniuk. "Risk Model Used To Develop Goal-Based Standards For Ship Structures Of Single Side Bulk Carrier". En Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.09.
Texto completoRizzo, C. M. y E. Rizzuto. "A Comparison Of Common Structural Rules With Previous Class Rules". En Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.01.
Texto completoCazzulo, R. y A. Alderson. "Performance Standards Of Coatings In Ballast Tanks - Where A Class Society Could Help". En Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.06.
Texto completoMoore, W., M. Arai, P. Besse, P. R. Birmingham, H. Boonstra, E. Bruenner, Y. Chen et al. "Goal-Based Standards (GBS): The International Ship & Offshore Structures Congress (ISSC) View". En Developments in Classification & International Regulation 2007. RINA, 2007. http://dx.doi.org/10.3940/rina.dcir.2007.04.
Texto completoInformes sobre el tema "Classification"
Robinson, David Gerald. Tissue Classification. Office of Scientific and Technical Information (OSTI), enero de 2015. http://dx.doi.org/10.2172/1177377.
Texto completoSHpinev, YU S. Investment classification. Институт государства и права РАН, 2020. http://dx.doi.org/10.18411/1311-1972-2020-00011.
Texto completoLi, C., O. Havel, A. Olariu, P. Martinez-Julia, J. Nobre y D. Lopez. Intent Classification. RFC Editor, octubre de 2022. http://dx.doi.org/10.17487/rfc9316.
Texto completoHersey, Anne, ed. ChEMBL Assay Classification. EMBL-EBI, junio de 2018. http://dx.doi.org/10.6019/chembl.assayclassification.
Texto completoSchau, M. Classification of granulites. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/128123.
Texto completoBrereton, S. J. Hazard classification methodology. Office of Scientific and Technical Information (OSTI), julio de 1996. http://dx.doi.org/10.2172/273808.
Texto completoDEPARTMENT OF THE ARMY WASHINGTON DC. Classification Management Tutorial. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2006. http://dx.doi.org/10.21236/ada458946.
Texto completoBogdanovic, D., B. Claise y C. Moberg. YANG Module Classification. RFC Editor, julio de 2017. http://dx.doi.org/10.17487/rfc8199.
Texto completoMarrs, Frank. Multiclass classification experiments. Office of Scientific and Technical Information (OSTI), septiembre de 2020. http://dx.doi.org/10.2172/1669069.
Texto completoAiken, Catherine. Classifying AI Systems. Center for Security and Emerging Technology, noviembre de 2021. http://dx.doi.org/10.51593/20200025.
Texto completo