Literatura académica sobre el tema "Claim detection"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Claim detection".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Claim detection"
Prakosa, Hendri Kurniawan y Nur Rokhman. "Anomaly Detection in Hospital Claims Using K-Means and Linear Regression". IJCCS (Indonesian Journal of Computing and Cybernetics Systems) 15, n.º 4 (31 de octubre de 2021): 391. http://dx.doi.org/10.22146/ijccs.68160.
Texto completoIKUOMOLA, A. J. y O. E. Ojo. "AN EFFECTIVE HEALTH CARE INSURANCE FRAUD AND ABUSE DETECTION SYSTEM". Journal of Natural Sciences Engineering and Technology 15, n.º 2 (22 de noviembre de 2017): 1–12. http://dx.doi.org/10.51406/jnset.v15i2.1662.
Texto completoNortey, Ezekiel N. N., Reuben Pometsey, Louis Asiedu, Samuel Iddi y Felix O. Mettle. "Anomaly Detection in Health Insurance Claims Using Bayesian Quantile Regression". International Journal of Mathematics and Mathematical Sciences 2021 (23 de febrero de 2021): 1–11. http://dx.doi.org/10.1155/2021/6667671.
Texto completoBakeyalakshmi, P. y S. K. Mahendran. "Enhanced replica detection scheme for efficient analysis of intrusion detection in MANET". International Journal of Engineering & Technology 7, n.º 1.1 (21 de diciembre de 2017): 565. http://dx.doi.org/10.14419/ijet.v7i1.1.10169.
Texto completoRahayu, Tiny, Mia Rahma Tika y Sapta Lestariyowidodo. "Analysis Of Outside Claim Fragmentation On BPJS Claims In Hospital". KESANS : International Journal of Health and Science 1, n.º 1 (30 de octubre de 2021): 22–27. http://dx.doi.org/10.54543/kesans.v1i1.6.
Texto completoLomas, Dennis. "Representation of basic kinds: Not a case of evolutionary internalization of universal regularities". Behavioral and Brain Sciences 24, n.º 4 (agosto de 2001): 686–87. http://dx.doi.org/10.1017/s0140525x01500084.
Texto completoRicchetti-Masterson, Kristen, Molly Aldridge, John Logie, Nittaya Suppapanya y Suzanne F. Cook. "Exploring Methods to Measure the Prevalence of Ménière's Disease in the US Clinformatics™ Database, 2010-2012". Audiology and Neurotology 21, n.º 3 (2016): 172–77. http://dx.doi.org/10.1159/000441963.
Texto completoGlanz, J. "Papers Face Off Over Claim Of Neutrino Mass Detection". Science 269, n.º 5231 (22 de septiembre de 1995): 1671–72. http://dx.doi.org/10.1126/science.269.5231.1671.
Texto completoVIAENE, S., G. DEDENE y R. DERRIG. "Auto claim fraud detection using Bayesian learning neural networks". Expert Systems with Applications 29, n.º 3 (octubre de 2005): 653–66. http://dx.doi.org/10.1016/j.eswa.2005.04.030.
Texto completoHarrag, Fouzi y Mohamed Khalil Djahli. "Arabic Fake News Detection: A Fact Checking Based Deep Learning Approach". ACM Transactions on Asian and Low-Resource Language Information Processing 21, n.º 4 (31 de julio de 2022): 1–34. http://dx.doi.org/10.1145/3501401.
Texto completoTesis sobre el tema "Claim detection"
Alamri, Abdulaziz. "The detection of contradictory claims in biomedical abstracts". Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/15893/.
Texto completoYang, Li. "A comparison of unsupervised learning techniques for detection of medical abuse in automobile claims". California State University, Long Beach, 2013.
Buscar texto completoRoberts, Terisa. "The use of credit scorecard design, predictive modelling and text mining to detect fraud in the insurance industry / Terisa Roberts". Thesis, North-West University, 2011. http://hdl.handle.net/10394/10347.
Texto completoPhD, Operational Research, North-West University, Vaal Triangle Campus, 2011
Ceglia, Cesarina. "A comparison of parametric and non-parametric methods for detecting fraudulent automobile insurance claims". Thesis, California State University, Long Beach, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10147317.
Texto completoFraudulent automobile insurance claims are not only a loss for insurance companies, but also for their policyholders. In order for insurance companies to prevent significant loss from false claims, they must raise their premiums for the policyholders. The goal of this research is to develop a decision making algorithm to determine whether a claim is classified as fraudulent based on the observed characteristics of a claim, which can in turn help prevent future loss. The data includes 923 cases of false claims, 14,497 cases of true claims and 33 describing variables from the years 1994 to 1996. To achieve the goal of this research, parametric and nonparametric methods are used to determine what variables play a major role in detecting fraudulent claims. These methods include logistic regression, the LASSO (least absolute shrinkage and selection operator) method, and Random Forests. This research concluded that a non-parametric Random Forests model classified fraudulent claims with the highest accuracy and best balance between sensitivity and specificity. Variable selection and importance are also implemented to improve the performance at which fraudulent claims are accurately classified.
Azu, Irina Mateko. "Creating a green baloney detection kit for green claims made in the CNW report : Dust to Dust : the energy cost of new vehicles : from concept to disposal". Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45787.
Texto completoIncludes bibliographical references (p. 16).
In order to assess the veracity of a green claim made by CNW marketing research Inc., I created a green baloney detection kit. It will serve as a guiding post by which anyone can assess the potential environmental impact of any action taken on the basis of the claims made by CNW in their dust to dust report. In their report they state that after doing an extensive life cycle analysis of several cars sold in the United States in 2005, they found that high fuel economy did not necessarily correlate to a smaller environmental impact, but rather the biggest contribution to the environmental impact of automobiles is in their end-of-life disposal. My green baloney detection kit will be an adaptation of Carl Sagan's original baloney detection kit, which is a series of probes which serve as a pillar for detecting fallacious arguments or claims. My enquiries show that the Dust to Dust report does not pass the green baloney detection kit and with it nontechnical environmentally conscious automotive consumers can determine that the claims made by CNW are not scientifically sound and so their decisions should be based on those claims.
by Irina Mateko Azu.
S.B.
Mukkananchery, Abey. "Iterative Methods for the Reconstruction of Tomographic Images with Unconventional Source-detector Configurations". VCU Scholars Compass, 2005. http://scholarscompass.vcu.edu/etd/1244.
Texto completoCHEN, YAN. "Comparisons and Applications of Quantitative Signal Detections for Adverse Drug Reactions (ADRs): An Empirical Study Based On The Food And Drug Administration (FDA) Adverse Event Reporting System (AERS) And A Large Medical Claims Database". University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1203534085.
Texto completoChen, Yan. "Comparisons and applications of quantitative signal detections for adverse drug reactions (ADRs) an empirical study based On The food And drug administration (FDA) adverse event reporting system (AERS) and a large medical claims database /". Cincinnati, Ohio : University of Cincinnati, 2008. http://www.ohiolink.edu/etd/view.cgi?acc_num=ucin1203534085.
Texto completoAdvisor: Jeff Guo PhD. Title from electronic thesis title page (viewed May 9, 2008). Keywords: data mining algorithms; adverse drug reactions; adverse event reporting system; signal detection; case-control study; antipsychotic; bipolar disorder. Includes abstract. Includes bibliographical references.
BARACCHI, DANIELE. "Novel neural networks for structured data". Doctoral thesis, 2018. http://hdl.handle.net/2158/1113665.
Texto completoGuimaraes, Amanda De Azevedo. "Digital transformation in the insurance industry: applications of artificial intelligence in fraud detection". Master's thesis, 2020. http://hdl.handle.net/10362/108422.
Texto completoLibros sobre el tema "Claim detection"
Caldwell, Laura. Claim of innocence. Don Mills, Ont: Mira Books, 2011.
Buscar texto completoJoseph, Hansen. Death claims. Harpenden [England]: No Exit Press, 1996.
Buscar texto completoJoseph, Hansen. Death claims. Los Angeles, Calif: Alyson Books, 2001.
Buscar texto completoKiker, Douglas. Murder on Clam Pond. Thorndike, Me: Thorndike Press, 1986.
Buscar texto completoKiker, Douglas. Murder on Clam Pond. New York: Random House, 1986.
Buscar texto completoPronzini, Bill. Crazybone: A "nameless detective" novel. Thorndike, Me: Thorndike Press, 2000.
Buscar texto completoPronzini, Bill. Crazy bone: A "nameless detective" novel. New York: Carroll & Graf, 2000.
Buscar texto completoPhelan, Twist. Family claims: A Pinnacle Peak mystery. Scottsdale, AZ: Poisoned Pen Press, 2006.
Buscar texto completoHoltschlag, David J. Detection of conveyance changes in St. Clair River using historical water-level and flow data with inverse one-dimensional hydrodynamic modeling. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2009.
Buscar texto completoHoltschlag, David J. Detection of conveyance changes in St. Clair River using historical water-level and flow data with inverse one-dimensional hydrodynamic modeling. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2009.
Buscar texto completoCapítulos de libros sobre el tema "Claim detection"
Duan, Xueyu, Mingxue Liao, Xinwei Zhao, Wenda Wu y Pin Lv. "An Unsupervised Joint Model for Claim Detection". En Communications in Computer and Information Science, 197–209. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7983-3_18.
Texto completoPecher, Branislav, Ivan Srba, Robert Moro, Matus Tomlein y Maria Bielikova. "FireAnt: Claim-Based Medical Misinformation Detection and Monitoring". En Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track, 555–59. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67670-4_38.
Texto completoLippi, Marco, Francesca Lagioia, Giuseppe Contissa, Giovanni Sartor y Paolo Torroni. "Claim Detection in Judgments of the EU Court of Justice". En Lecture Notes in Computer Science, 513–27. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00178-0_35.
Texto completoAllein, Liesbeth y Marie-Francine Moens. "Checkworthiness in Automatic Claim Detection Models: Definitions and Analysis of Datasets". En Disinformation in Open Online Media, 1–17. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61841-4_1.
Texto completoIskender, Neslihan, Robin Schaefer, Tim Polzehl y Sebastian Möller. "Argument Mining in Tweets: Comparing Crowd and Expert Annotations for Automated Claim and Evidence Detection". En Natural Language Processing and Information Systems, 275–88. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80599-9_25.
Texto completoMohan, Thanusree y K. Praveen. "Fraud Detection in Medical Insurance Claim with Privacy Preserving Data Publishing in TLS-N Using Blockchain". En Communications in Computer and Information Science, 211–20. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9939-8_19.
Texto completo(Mary) Tai, Hsueh-Yung. "Applications of Big Data and Artificial Intelligence". En Digital Health Care in Taiwan, 207–17. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05160-9_11.
Texto completoAzam, Kazi Sultana Farhana, Farhin Farhad Riya y Shah Tuhin Ahmed. "Leaf Detection Using Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP), and Classifying with SVM Utilizing Claim Dataset". En Intelligent Data Communication Technologies and Internet of Things, 313–23. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9509-7_27.
Texto completoSmith, Robert B. "Will Claims Workers Dislike a Fraud Detector?" En Multilevel Modeling of Social Problems, 225–56. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9855-9_9.
Texto completoDiez, P. F., A. Garcés Correa y E. Laciar Leber. "SSVEP Detection Using Adaptive Filters". En V Latin American Congress on Biomedical Engineering CLAIB 2011 May 16-21, 2011, Habana, Cuba, 1154–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-21198-0_293.
Texto completoActas de conferencias sobre el tema "Claim detection"
Levy, Ran, Shai Gretz, Benjamin Sznajder, Shay Hummel, Ranit Aharonov y Noam Slonim. "Unsupervised corpus–wide claim detection". En Proceedings of the 4th Workshop on Argument Mining. Stroudsburg, PA, USA: Association for Computational Linguistics, 2017. http://dx.doi.org/10.18653/v1/w17-5110.
Texto completoWoloszyn, Vinicius, Joseph Kobti y Vera Schmitt. "Towards Automatic Green Claim Detection". En FIRE 2021: Forum for Information Retrieval Evaluation. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3503162.3503163.
Texto completoCheema, Gullal Singh, Sherzod Hakimov, Abdul Sittar, Eric Müller-Budack, Christian Otto y Ralph Ewerth. "MM-Claims: A Dataset for Multimodal Claim Detection in Social Media". En Findings of the Association for Computational Linguistics: NAACL 2022. Stroudsburg, PA, USA: Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.findings-naacl.72.
Texto completoWührl, Amelie y Roman Klinger. "Claim Detection in Biomedical Twitter Posts". En Proceedings of the 20th Workshop on Biomedical Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.bionlp-1.15.
Texto completoWright, Dustin y Isabelle Augenstein. "Claim Check-Worthiness Detection as Positive Unlabelled Learning". En Findings of the Association for Computational Linguistics: EMNLP 2020. Stroudsburg, PA, USA: Association for Computational Linguistics, 2020. http://dx.doi.org/10.18653/v1/2020.findings-emnlp.43.
Texto completoVyas, Sandip y Shilpa Serasiya. "Fraud Detection in Insurance Claim System: A Review". En 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). IEEE, 2022. http://dx.doi.org/10.1109/icais53314.2022.9742984.
Texto completoUrunkar, Abhijeet, Amruta Khot, Rashmi Bhat y Nandinee Mudegol. "Fraud Detection and Analysis for Insurance Claim using Machine Learning". En 2022 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES). IEEE, 2022. http://dx.doi.org/10.1109/spices52834.2022.9774071.
Texto completoBlokker, Nico, Erenay Dayanik, Gabriella Lapesa y Sebastian Padó. "Swimming with the Tide? Positional Claim Detection across Political Text Types". En Proceedings of the Fourth Workshop on Natural Language Processing and Computational Social Science. Stroudsburg, PA, USA: Association for Computational Linguistics, 2020. http://dx.doi.org/10.18653/v1/2020.nlpcss-1.3.
Texto completoLin, Hongzhan, Jing Ma, Mingfei Cheng, Zhiwei Yang, Liangliang Chen y Guang Chen. "Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks". En Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.emnlp-main.786.
Texto completoVyas, Sandip, Shilpa Serasiya y Archana Vyas. "Combined Approach of ML and Blockchain for Fraudulent Detection in Insurance Claim". En 2022 International Conference on Edge Computing and Applications (ICECAA). IEEE, 2022. http://dx.doi.org/10.1109/icecaa55415.2022.9936353.
Texto completo