Literatura académica sobre el tema "Circadian rhythms"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Circadian rhythms".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Circadian rhythms"

1

DOYLE, SUSAN E., MICHAEL S. GRACE, WILSON McIVOR y MICHAEL MENAKER. "Circadian rhythms of dopamine in mouse retina: The role of melatonin". Visual Neuroscience 19, n.º 5 (septiembre de 2002): 593–601. http://dx.doi.org/10.1017/s0952523802195058.

Texto completo
Resumen
Both dopamine and melatonin are important for the regulation of retinal rhythmicity, and substantial evidence suggests that these two substances are mutually inhibitory factors that act as chemical analogs of day and night. A circadian oscillator in the mammalian retina regulates melatonin synthesis. Here we show a circadian rhythm of retinal dopamine content in the mouse retina, and examine the role of melatonin in its control. Using high-performance liquid chromatography (HPLC), we measured levels of dopamine and its two major metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in retinas of C3H+/+ mice (which make melatonin) and C57BL/6J mice that are genetically incapable of melatonin synthesis. In a light/dark cycle both strains of mice exhibited daily rhythms of retinal dopamine, DOPAC, and HVA content. However, after 10 days in constant darkness (DD), a circadian rhythm in dopamine levels was present in C3H, but not in C57 mice. C57 mice given ten daily injections of melatonin in DD exhibited a robust circadian rhythm of retinal dopamine content whereas no such rhythm was present in saline-injected controls. Our results demonstrate that (1) a circadian clock generates rhythms of dopamine content in the C3H mouse retina, (2) mice lacking melatonin also lack circadian rhythms of dopamine content, and (3) dopamine rhythms can be generated in these mice by cyclic administration of exogenous melatonin. Our results also indicate that circadian rhythms of retinal dopamine depend upon the rhythmic presence of melatonin, but that cyclic light can drive dopamine rhythms in the absence of melatonin.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Brzezinski, Amnon, Seema Rai, Adyasha Purohit y Seithikurippu R. Pandi-Perumal. "Melatonin, Clock Genes, and Mammalian Reproduction: What Is the Link?" International Journal of Molecular Sciences 22, n.º 24 (8 de diciembre de 2021): 13240. http://dx.doi.org/10.3390/ijms222413240.

Texto completo
Resumen
Physiological processes and behaviors in many mammals are rhythmic. Recently there has been increasing interest in the role of circadian rhythmicity in the control of reproductive function. The circadian rhythm of the pineal hormone melatonin plays a role in synchronizing the reproductive responses of animals to environmental light conditions. There is some evidence that melatonin may have a role in the biological regulation of circadian rhythms and reproduction in humans. Moreover, circadian rhythms and clock genes appear to be involved in optimal reproductive performance. These rhythms are controlled by an endogenous molecular clock within the suprachiasmatic nucleus (SCN) in the hypothalamus, which is entrained by the light/dark cycle. The SCN synchronizes multiple subsidiary oscillators (clock genes) existing in various tissues throughout the body. The basis for maintaining the circadian rhythm is a molecular clock consisting of transcriptional/translational feedback loops. Circadian rhythms and clock genes appear to be involved in optimal reproductive performance. This mini review summarizes the current knowledge regarding the interrelationships between melatonin and the endogenous molecular clocks and their involvement in reproductive physiology (e.g., ovulation) and pathophysiology (e.g., polycystic ovarian syndrome).
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Powell, Weston T., Lucille M. Rich, Elizabeth R. Vanderwall, Maria P. White y Jason S. Debley. "Temperature synchronisation of circadian rhythms in primary human airway epithelial cells from children". BMJ Open Respiratory Research 9, n.º 1 (octubre de 2022): e001319. http://dx.doi.org/10.1136/bmjresp-2022-001319.

Texto completo
Resumen
IntroductionCellular circadian rhythms regulate immune pathways and inflammatory responses that mediate human disease such as asthma. Circadian rhythms in the lung may also contribute to exacerbations of chronic diseases such as asthma by regulating observed rhythms in mucus production, bronchial reactivity, airway inflammation and airway resistance. Primary human airway epithelial cells (AECs) are commonly used to model human lung diseases, such as asthma, with circadian symptoms, but a method for synchronising circadian rhythms in AECs has not been developed, and the presence of circadian rhythms in human AECs remains uninvestigated.MethodsWe used temperature cycling to synchronise circadian rhythms in undifferentiated and differentiated primary human AECs. Reverse transcriptase-quantitative PCR was used to measure expression of the core circadian clock genes ARNTL, CLOCK, CRY1, CRY2, NR1D1, NR1D2, PER1 and PER2.ResultsFollowing temperature synchronisation, the core circadian genes ARNTL, CRY1, CRY2, NR1D1, NR1D2, PER1 and PER2 maintained endogenous 24-hour rhythms under constant conditions. Following serum shock, the core circadian genes ARNTL, NR1D1 and NR1D2 demonstrated rhythmic expression. Following temperature synchronisation, CXCL8 demonstrated rhythmic circadian expression.ConclusionsTemperature synchronised circadian rhythms in AECs differentiated at an air–liquid interface can serve as a model to investigate circadian rhythms in pulmonary diseases.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Gubareva, Yekaterina, Mikhail Maydin, Margarita Tyndyk, Irina Vinogradova y Andrey Panchenko. "CIRCADIAN RHYTHM OF PROLIFERATION IN INTESTINAL EPITHELIUM AND MAMMARY TUMORS IN HER-2/NEU TRANSGENIC AND FVB/N WILD TYPE MICE; THEIR CORRECTION WITH MELATONIN". Problems in oncology 65, n.º 1 (1 de enero de 2019): 154–58. http://dx.doi.org/10.37469/0507-3758-2019-65-1-154-158.

Texto completo
Resumen
Circadian rhythms and tumor development are interconnected as the factors like light pollution which disrupt circadian rhythms increase the risk of cancer, and oncological diseases are associated with changes in organism’s circadian rhythms. Circadian changes in intestinal epithelium and mammary tumors proliferation and apoptosis in HER-2/neu overexpressing FVB/N mice and assessment of melatonin’s influence on these parameters were studied in this work. It was shown by us that intestinal epithelium in mice exhibits circadian rhythm of proliferation with the peak in the morning and in tumor-bearing mice this rhythm is disrupted. Exogenous melatonin contributes to circadian rhythm of intestinal epithelium proliferation. Circadian changes in mammary tumors proliferation rate depend on melatonin secretion or supplementation time. Thus, melatonin may be considered as a perspective drug in anticancer therapy modulating circadian rhythms in cancerous and normal tissues.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Yamanaka, Yujiro. "Basic concepts and unique features of human circadian rhythms: implications for human health". Nutrition Reviews 78, Supplement_3 (26 de noviembre de 2020): 91–96. http://dx.doi.org/10.1093/nutrit/nuaa072.

Texto completo
Resumen
Abstract Most physiological functions and behaviors exhibit a robust approximately 24-hour rhythmicity (circadian rhythm) in the real world. These rhythms persist under constant conditions, but the period is slightly longer than 24 hours, suggesting that circadian rhythms are endogenously driven by an internal, self-sustained oscillator. In mammals, including humans, the central circadian pacemaker is located in the hypothalamic suprachiasmatic nucleus. The primary zeitgeber for this pacemaker is bright sunlight, but nonphotic time cues also affect circadian rhythms. The human circadian system uniquely exhibits spontaneous internal desynchronization between the sleep-wake cycle and core body temperature rhythm under constant conditions and partial entrainment of the sleep-wake cycle in response to nonphotic time cues. Experimental and clinical studies of human circadian rhythms must take into account these unique features. This review covers the basic concepts and unique features of the human circadian system, the mechanisms underlying phase adjustment of the circadian rhythms by light and nonphotic time cues (eg, physical exercise), and the effects of eating behavior (eg, chewing frequency) on the circadian rhythm of glucose metabolism.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Zamoshchina, T. A., M. V. Meleshko, S. V. Logvinov, A. V. Matveуenko, L. N. Novitskaya y Ye V. Ivanova. "The suprahiazmatic nucleus of the forward hypothalamus destruction and circadian rhythms of moving activity, body temperature and renal excretion of Nа+, Cа2+, K+, Li+ in rats in summer solstice". Bulletin of Siberian Medicine 10, n.º 5 (28 de octubre de 2011): 50–55. http://dx.doi.org/10.20538/1682-0363-2011-5-50-55.

Texto completo
Resumen
In summer solstice it was established that right or left suprachiazmatic nucleus lesion breaks circadian rhythms of rat's moving activity in «open field» and lithium urine excretion. Damage of the left nuclei in a greater degree affects formation circadian rhythm of sodium renal excretion, destruction of the right nuclei - the calcium rhythm organization. The rhythms of body temperature and potassium urine excretion find weak sensitivity to reenergizing right or left suprachiazmatic nucleus. At destruction right or left suprachiazmatic nucleus are formed rhythm's desynchronization, character and expressiveness are defined by an illumination mode.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Farr, Lynne, Catherine Todero y Lonna Boen. "Reducing Disruption of Circadian Temperature Rhythm Following Surgery". Biological Research For Nursing 2, n.º 4 (abril de 2001): 257–66. http://dx.doi.org/10.1177/109980040100200405.

Texto completo
Resumen
Temperature and other circadian rhythms are disrupted following surgery and other traumatic events. During recovery, coordination between temperature rhythms and other rhythmic physiologic processes is reduced. Studies of animals and humans have shown that return of synchrony is not immediate, but that it is important in the recovery process. The purpose of this study was to test a combination of cues that have been shown to adjust the timing of circadian temperature rhythm. The combined cues consisted of timed ingestion of caffeine and protein foods and adjustment of the sleep/wake cycle. The intervention was tested in 26 age-and gender-matched maxillofacial surgery patients. Patients were randomly assigned to control or experimental groups. Circadian temperature rhythm was measured by continuous monitoring with axillary probes and miniature recorders before and after surgery. Following surgery, both experimental and control subjects displayed 24-hour circadian temperature rhythms; however, the peak-to-trough difference was decreased more following surgery in the control subjects than in the subjects who had prepared for surgery by practicing the intervention. Control subjects also had less day-to-day stability in the phase of their rhythms following surgery. These results suggest that the intervention reduced circadian disruption following surgery and provides a way for patients to prepare themselves to resist rhythm changes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Areshidze, D. A. y L. V. Kakturskiy. "Circadian Rhythms of the Liver and Their Sexual Dimorphism: Current State of the Problem". Innovative Medicine of Kuban, n.º 2 (29 de abril de 2024): 108–14. http://dx.doi.org/10.35401/2541-9897-2024-9-2-108-114.

Texto completo
Resumen
The rhythmicity of life functioning processes at the cellular, organ, and system levels is one of the fundamental properties of living things. Among the wide range of biorhythms, circadian rhythms are the most important for mammals. In mammals, circadian rhythms coordinate a wide range of physiological processes with constantly changing environmental conditions, primarily with light conditions. Data on the characteristics of the circadian rhythms of the liver (the most important organ for maintaining homeostasis) are limited and sometimes even contradictory. We aim to analyze modern literature investigating the organization of circadian rhythms at the gene, cellular, and organ levels. Over the past decades, it has become known that disruption of the normal circadian rhythm of the liver underlies the development of several pathologies. This article highlights some aspects of the normal circadian rhythm functioning and the role of circadian dysfunction in the occurrence of specific pathologies. We also focus on the little-explored issue of sex differences in the circadian rhythms of the mammalian liver.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Xiao, Yangbo, Ye Yuan, Mariana Jimenez, Neeraj Soni y Swathi Yadlapalli. "Clock proteins regulate spatiotemporal organization of clock genes to control circadian rhythms". Proceedings of the National Academy of Sciences 118, n.º 28 (7 de julio de 2021): e2019756118. http://dx.doi.org/10.1073/pnas.2019756118.

Texto completo
Resumen
Circadian clocks regulate ∼24-h oscillations in gene expression, behavior, and physiology. While the genetic and molecular mechanisms of circadian rhythms are well characterized, what remains poorly understood are the intracellular dynamics of circadian clock components and how they affect circadian rhythms. Here, we elucidate how spatiotemporal organization and dynamics of core clock proteins and genes affect circadian rhythms in Drosophila clock neurons. Using high-resolution imaging and DNA-fluorescence in situ hybridization techniques, we demonstrate that Drosophila clock proteins (PERIOD and CLOCK) are organized into a few discrete foci at the nuclear envelope during the circadian repression phase and play an important role in the subnuclear localization of core clock genes to control circadian rhythms. Specifically, we show that core clock genes, period and timeless, are positioned close to the nuclear periphery by the PERIOD protein specifically during the repression phase, suggesting that subnuclear localization of core clock genes might play a key role in their rhythmic gene expression. Finally, we show that loss of Lamin B receptor, a nuclear envelope protein, leads to disruption of PER foci and per gene peripheral localization and results in circadian rhythm defects. These results demonstrate that clock proteins play a hitherto unexpected role in the subnuclear reorganization of core clock genes to control circadian rhythms, revealing how clocks function at the subcellular level. Our results further suggest that clock protein foci might regulate dynamic clustering and spatial reorganization of clock-regulated genes over the repression phase to control circadian rhythms in behavior and physiology.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Depres-Brummer, P., F. Levi, G. Metzger y Y. Touitou. "Light-induced suppression of the rat circadian system". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 268, n.º 5 (1 de mayo de 1995): R1111—R1116. http://dx.doi.org/10.1152/ajpregu.1995.268.5.r1111.

Texto completo
Resumen
In a constant environment, circadian rhythms persist with slightly altered period lengths. Results of studies with continuous light exposure are less clear, because of short exposure durations and single-variable monitoring. This study sought to characterize properties of the oscillator(s) controlling the rat's circadian system by monitoring both body temperature and locomotor activity. We observed that prolonged exposure of male Sprague-Dawley rats to continuous light (LL) systematically induced complete suppression of body temperature and locomotor activity circadian rhythms and their replacement by ultradian rhythms. This was preceded by a transient loss of coupling between both functions. Continuous darkness (DD) restored circadian synchronization of temperature and activity circadian rhythms within 1 wk. The absence of circadian rhythms in LL coincided with a mean sixfold decrease in plasma melatonin and a marked dampening but no abolition of its circadian rhythmicity. Restoration of temperature and activity circadian rhythms in DD was associated with normalization of melatonin rhythm. These results demonstrated a transient internal desynchronization of two simultaneously monitored functions in the rat and suggested the existence of two or more circadian oscillators. Such a hypothesis was further strengthened by the observation of a circadian rhythm in melatonin, despite complete suppression of body temperature and locomotor activity rhythms. This rat model should be useful for investigating the physiology of the circadian timing system as well as to identify agents and schedules having specific pharmacological actions on this system.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Circadian rhythms"

1

Reilly, Thomas P. "Circadian rhythms and exercise". Thesis, Liverpool John Moores University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297911.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Otway, Daniella Theresia. "Circadian rhythms in adipose tissue". Thesis, University of Surrey, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511108.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Jasper, Isabelle. "Circadian rhythms in sensorimotor control". Tönning Lübeck Marburg Der Andere Verl, 2009. http://d-nb.info/997031034/04.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Pearson, Kristen A. "Circadian rhythms, fatigue, and manpower scheduling". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Dec%5FPearson.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

MORBIATO, ELISA. "Modulation of circadian rhythms by glucocorticoids". Doctoral thesis, Università degli studi di Ferrara, 2020. http://hdl.handle.net/11392/2478787.

Texto completo
Resumen
Il comportamento è concepito come una relazione dipendente stimolo-risposta tra un input sensoriale e una risposta motoria. Nel passaggio da input a output, l’omeostasi interna è continuamente modellata per mantenere un equilibrio ottimale della spesa energetica. Lo scopo ultimo di mantenere l’omeostasi in relazione al mondo circostante viene raggiunto attraverso la produzione di comportamenti adattativi che permettono di incrementare la fitness alla luce della selezione naturale. L’ambiente circostante può essere sia prevedibile sia imprevedibile. La prima condizione ha portato all’evoluzione del ritmo circadiano che promuove la fase di attività durante il momento più favorevole della giornata, mentre la seconda si serve dell’asse dei glucocorticoidi per affrontare le sfide imprevedibili. Quindi, un dialogo tra il sistema circadiano e il sistema dei glucocorticoidi è mantenuto allo scopo di ottenere una regolazione ottimale dell’attività animale. Il mio obiettivo è quello di capire il dialogo tra i due sistemi monitorando il comportamento giornaliero e circadiano, e la sua controparte molecolare, in fase a differenti cicli di luce e cibo. La mia specie modello è lo zebrafish (Danio rerio), in particolare, ho utilizzato un mutante costruito con la tecnica CRISPR/Cas9 che manca della capacità di coordinare la via di trascrizione dei glucocorticoidi a causa della mancata funzionalità del loro recettore cognato tale che l’interazione ligando recettore non è mantenuta. Di conseguenza, i livelli circolanti di glucocorticoidi restano elevati, conferendo al mutante un fenotipo ansioso. Zebrafish gr-/- è stato costruito e gentilmente fornito dal laboratorio della Prof.ssa Luisa Dalla Valle, Università degli studi di Padova. L’analisi sistematica del comportamento in larve e adulti di gr-/- ha mostrato che l’attività locomotoria sincronizzata alla luce mantiene le sue proprietà oscillatorie endogene. Tuttavia, l’attività locomotoria giornaliera insorge con un ritardo di un giorno nei mutanti rispetto ai wild type. Questa insorgenza ritardata è associata a un rallentamento nello sviluppo del tessuto muscolare striato, la normale densità delle fibre muscolari viene ripristinata nei gr-/- al sesto giorno dopo la fertilizzazione. Inoltre, le larve gr-/- hanno mostrato differenze nei livelli di espressione e nelle relative acrofasi di elementi positivi (arntl1a and clock1a) e negativi (per1, per2a and cry1a) dell’orologio molecolare. Al di là degli elementi del cuore dell’orologio circadiano, un’analisi nel fegato di adullti gr-/- rivela un’abolizione dell’espressione di pck2, un gene implicato nella gluconeogenesi. In aggiunta, srebp1 ha un’acrofase anticipata nei mutanti. La sincronizzazione circadiana al cibo fallisce nei gr-/-, sia larve sia adulti producono profili anomali dell’attività locomotoria. L’analisi molecolare non associa la disfunzionalità comportamentale a quella genetica, infatti i geni orologio non mostrano alterate oscillazioni a eccezione di cry1a. Questi dati suggeriscono l’esistenza di un confine sfuocato tra il sistema circadiano e quello dei glucocorticoidi e una complessa organizzazione dei due ha prodotto un alterato output comportamentale negli zebrafish gr-/-. La causa prossima del disallineamento tra lo stimolo alimentare e la locomozione non è stata chiarita sebbene un passo avanti verso una maggiore comprensione del dialogo tra glucocorticoidi e orologio circadiano getta le basi per un’indagine più profonda.
Behavior is conceived as a stimulus-response dependent relationship between a sensory input and a motor output. While moving from an input to an output, internal homeostasis is continuously shaped to maintain an optimal energies expenditure balance. The ultimate purpose of enabling animals to adjust their homeostasis with the surrounding world is by producing adaptive behaviors in order to increase their fitness in light of natural selection. The environment can be either predictable or unpredictable. The former condition led to the evolution of the circadian rhythm to promote an active behavior at the time you mostly benefit from, while the latter take advantage of glucocorticoids axis to face sudden challenges. Thus, a crosstalk between the circadian and the glucocorticoid systems allows a fine tuning of animal’s activity. My goal is to understand the circadian-glucocorticoids dialogue by monitoring the locomotor daily/circadian behavior and its molecular oscillation counterpart under differentially phased light and feeding cycle. My model species is the zebrafish, particularly, I utilized a CRISPR/Cas9 mutant lacking the capability to coordinate glucocorticoids transcription because it lacks functional receptors which permit a correct ligand-receptor interaction. As a result, level of circulating glucocorticoids stays raised conferring an anxiety-related phenotype to the mutant. Zebrafish gr-/- has been built and kindly provided by Dr. Luisa Dalla Valle, University of Padua. Systematic behavioral analysis in gr-/- larvae and adults showed that the light entrainable locomotor activity is synchronized to the zeitgeber and maintain its oscillatory properties in absence of any cue. The onset of daily locomotor activity occurred one day later in mutants with respects to the wild type. This delay is linked to the slower striated muscle development in the gr-/- which recover regular fiber density at 6 days post fertilization. Furthermore, gr-/- larvae showed differences in the expression levels or in the peak phase of positive (arntl1a and clock1a) and negative (per1, per2a and cry1a) elements of the molecular clock. Outside the core clock network, an analysis on gr-/- adult livers reported an abolished daily expression of pck2, a gene involved in gluconeogenesis. In addition, srebp1 expression level has an anticipated acrophase in gr-/-. Feeding entrainment fails to occur in the mutants. Larvae and adults produced abnormal profiles of circadian locomotor activity. Further molecular investigation revealed this behavioral disruption wasn’t associated with a breakdown of molecular rhythms in the core clock genes. Nevertheless, the molecular phenotypes observed during feeding entrainment underlined a cry1a lack of rhythmicity. These data suggest the existence of a blurred boundary between the circadian-glucocorticoids crosstalk. A complex organization of the two produces an altered behavioral output in a food entrained schedule in gr-/- zebrafish. The proximate cause of input and output misalignment underlying food entrained locomotion has not been provided, but a step towards a more exhaustive comprehension about the circadian-glucocorticoids interaction paves the way for an in-depth investigation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Trujillo, Jennifer L. "Relationships between circadian rhythms and ethanol intake in mice". Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3359855.

Texto completo
Resumen
Thesis (Ph. D.)--University of California, San Diego, 2009.
Title from first page of PDF file (viewed July 23, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 127-136).
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Power, Andrea. "Neuronal Regulation of Circadian Rhythms in Mice". Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501978.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Middleton, Benita. "Investigations of factors influencing human circadian rhythms". Thesis, University of Surrey, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265103.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

O'Neill, John Stuart. "The molecular biology of mammalian circadian rhythms". Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612807.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Ragsdale, Raven, Colin Shone, Madeleine Miller, Andrew Shields, Thomas C. Jones y Darrell Moore. "Circadian Resonance and Entrainment in Three Spider Species (Frontinella communis, Metazygia wittfeldae, and Cyclosa turbinata)". Digital Commons @ East Tennessee State University, 2019. https://dc.etsu.edu/asrf/2019/schedule/140.

Texto completo
Resumen
Circadian clocks are vital to the proper functioning of organisms’ internal processes and behavioral outputs and typically have endogenous periods that approximate (within 1-2 hours) the 24-hour solar day. Clocks that deviate significantly from about 24 hours are often associated with metabolic syndromes or other disease states. For instance, organisms with near-24-hour clocks have higher survivorship under 24-h light:dark (LD) cycles than with 22- or 26-hour cycles. Likewise, mutant organisms with 22-hour clocks survive better under 22-h cycles but fare poorly under 24- and 26-h cycles. In other words, organisms suffer if their circadian clocks do not “resonate” with environmental cycles. Organisms fail to synchronize (entrain) their activity with non-resonant LD cycles and this failure typically leads to a number of physiological disruptions. Interestingly, several spider species have endogenous circadian periods that deviate by several hours from the period of the Earth’s solar day. The object of the present study is to investigate whether the phenomenon of circadian resonance also pertains to these atypical spider circadian rhythms. We investigated three spider species, two of which have internal periods (τ) significantly different from 24 hours. Approximately 50 individuals of each species of spider (Frontinella communis: τ=29.05±0.62 hours; Metazygia wittfeldae: τ=22.74±0.24h; and Cyclosa turbinata: τ=18.54±0.28h) were placed into chambers with periods of 19 (9.5:9.5h L:D), 24 (12:12h L:D), or 29 hours (14.5:14.5h L:D). If resonance is pertinent for spiders, we would expect survivorship to decrease in non-resonant LD cycles. Instead, no spider species exhibited decreased longevity in non-resonant L:D cycles. These findings contradict all previous research into circadian resonance and suggest that spiders do not suffer the costs of extreme desynchronization. In a second experiment, 10-11 spiders from each species were placed into infrared activity monitors to determine if their locomotor activity could entrain to (synchronize with) the three different LD cycles. Individuals from all three spider species entrained to all LD period lengths, again in contrast with prior research in other species. These results indicate that spider circadian clocks have highly unusual limits of entrainment and suggest a remarkable level of plasticity in their release from the selective pressure to maintain an internal period of approximately 24 hours.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Circadian rhythms"

1

Ezio, Rosato. Circadian Rhythms. New Jersey: Humana Press, 2007. http://dx.doi.org/10.1385/1597452572.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Rosato, Ezio, ed. Circadian Rhythms. Totowa, NJ: Humana Press, 2007. http://dx.doi.org/10.1007/978-1-59745-257-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

1949-, Young Michael W., ed. Circadian rhythms. San Diego: Elsevier Academic Press, 2005.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Dworska, Karolina. Circadian Rhythms. [Lincoln, Lincolnshire, England]: the artist, 2016.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Refinetti, Roberto. Circadian physiology. 2a ed. Boca Raton, FL: CRC/Taylor & Francis, 2005.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Kramer, Achim y Martha Merrow. Circadian clocks. Heidelberg: Springer, 2013.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

V, Lignelli Alfredo, ed. Circadian rhythms and health research trends. New York: Nova Biomedical Books, 2007.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

S, Takahashi Joseph, Turek Fred W y Moore Robert Y, eds. Circadian clocks. New York: Kluwer Academic/Plenum Publishers, 2001.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Brody, Stuart. The genetics of circadian rhythms. San Diego, CA: Academic Press, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Anne-Laure, Léglise, ed. Progress in circadian rhythm research. New York: Nova Biomedical Books, 2008.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Circadian rhythms"

1

Lack, Leon C. "Circadian rhythms: Circadian rhythm disorders." En Encyclopedia of psychology, Vol. 2., 85–87. Washington: American Psychological Association, 2000. http://dx.doi.org/10.1037/10517-036.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Hargrove, James L. "Circadian Rhythms". En Dynamic Modeling in the Health Sciences, 211–18. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1644-5_20.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Diamond, Bruce J. y Walter Barr. "Circadian Rhythms". En Encyclopedia of Clinical Neuropsychology, 795–97. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-57111-9_546.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Hoyer, Daniel, Eric P. Zorrilla, Pietro Cottone, Sarah Parylak, Micaela Morelli, Nicola Simola, Nicola Simola et al. "Circadian Rhythms". En Encyclopedia of Psychopharmacology, 285–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68706-1_287.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Diamond, Bruce J. y Walter Barr. "Circadian Rhythms". En Encyclopedia of Clinical Neuropsychology, 1–3. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56782-2_546-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Lemmer, Björn. "Circadian Rhythms". En Encyclopedia of Psychopharmacology, 354–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-36172-2_287.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Page, Terry L. "Circadian Rhythms". En States of Brain and Mind, 17–20. Boston, MA: Birkhäuser Boston, 1988. http://dx.doi.org/10.1007/978-1-4899-6771-8_7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Kalmar, Jayne M., Brigid M. Lynch, Christine M. Friedenreich, Lee W. Jones, A. N. Bosch, Alessandro Blandino, Elisabetta Toso et al. "Circadian Rhythms". En Encyclopedia of Exercise Medicine in Health and Disease, 191–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_2232.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Andrews, D. F. y A. M. Herzberg. "Circadian Rhythms". En Springer Series in Statistics, 285–90. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5098-2_49.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Vitalini, Michael W., Jay C. Dunlap, Christian Heintzen, Yi Liu, Jennifer Loros y Deborah Bell-Pedersen. "Circadian Rhythms". En Cellular and Molecular Biology of Filamentous Fungi, 442–66. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555816636.ch29.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Circadian rhythms"

1

Figueiredo, Erika Ciconelli de y Maria Augusta Justi Pisani. "Office building typologies and circadian potential". En XVII ENCONTRO NACIONAL DE CONFORTO NO AMBIENTE CONSTRUÍDO. ANTAC, 2023. http://dx.doi.org/10.46421/encac.v17i1.3878.

Texto completo
Resumen
Circadian rhythms are internal manifestations of the solar day that allow adaptations to environmental-temporal changes. Mood disorders are often associated with disrupted circadian clock-controlled responses, whereas circadian rhythm disruption is correlated to jet lag, night-shift work, or to exposure to artificial light at night. Modern lifestyle patterns lead to circadian rhythm disruption, and it results in several diseases. Circadian rhythm disruption is one of the factors most often investigated, besides smoking, diet, fatigue and quality sleep, increased body mass index and obesity. Lack of enough daylight at daytime and the exposure to electric light at nighttime can disconnect people from the natural environment and lead to psychological issues. The aims of the current research are to analyze the circadian potential of three building models based on WELL Certification, to compare their performance, and to draw design guidelines about circadian rhythm and users’ well-being to be applied to office buildings in São Paulo City, São Paulo State, Brazil. Adaptive Lighting for Alertness (ALFA tool) was used to calculate the Equivalent Melanopic Lux for WELL Certification criteria in the investigated scenarios. Results have indicated that shallow office plans can benefit users by providing them with regular circadian rhythm o help improving their sleep quality, reducing their stress and preventing severe diseases.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Scheff, Jeremy D., Ioannis P. Androulakis, Steve E. Calvano y Stephen F. Lowry. "Modeling Circadian Rhythms in Inflammation". En 2010 IEEE International Conference on BioInformatics and BioEngineering. IEEE, 2010. http://dx.doi.org/10.1109/bibe.2010.39.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Takeuchi, T., T. Hinohara, K. Uchida y S. Shibata. "Control theoretic views on circadian rhythms". En 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. IEEE, 2006. http://dx.doi.org/10.1109/cacsd-cca-isic.2006.4776904.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Takeuchi, T., T. Hinohara, K. Uchida y S. Shibata. "Control Theoretic Views on Circadian Rhythms". En 2006 IEEE International Conference on Control Applications. IEEE, 2006. http://dx.doi.org/10.1109/cca.2006.286136.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Nasso, Rosarita, Valentina Pagliara, Antonio Ascione, Mariorosario Masullo y Rosaria Arcone. "Circadian rhythms, physical activity and longevity". En Journal of Human Sport and Exercise - 2019 - Summer Conferences of Sports Science. Universidad de Alicante, 2019. http://dx.doi.org/10.14198/jhse.2019.14.proc5.11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

GALLUZZI, MICHAEL. "Circadian rhythms as an organizational management consideration". En 4th Space Logistics Symposium. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-4108.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Stein, Phyllis K., Eric J. Lundequam, Daniel Clauw, Kenneth E. Freedland, Robert M. Carney y Peter P. Domitrovich. "Circadian and Ultradian Rhythms in Cardiac Autonomic Modulation". En Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.259558.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Stein, Phyllis K., Eric J. Lundequam, Daniel Clauw, Kenneth E. Freedland, Robert M. Carney y Peter P. Domitrovich. "Circadian and Ultradian Rhythms in Cardiac Autonomic Modulation". En Conference Proceedings. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2006. http://dx.doi.org/10.1109/iembs.2006.4397428.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Felten, M., S. Ferencik, C. Tan, E. Letsiou, N. W. Suttorp y M. Witzenrath. "Inflammation Impairs Circadian Rhythms in Alveolar Epithelial Cells". En American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a5589.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Chen, Hung-Wei, Chien-Yu Chen y Pei-Jung Wu. "The Influence of Lighting on Human Circadian Rhythms". En 2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS). IEEE, 2019. http://dx.doi.org/10.1109/sslchinaifws49075.2019.9019751.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Circadian rhythms"

1

Rajaratnam, Shanthakumar. Video: The power of circadian rhythms. Editado por Michael Joiner. Monash University, febrero de 2024. http://dx.doi.org/10.54377/5cc4-ba46.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Cassone, Vincent M. Melatonin, the Pineal Gland, and Circadian Rhythms. Fort Belvoir, VA: Defense Technical Information Center, febrero de 1994. http://dx.doi.org/10.21236/ada280467.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Bucan, Maja. A Genetic Approach to Mammalian Circadian Rhythms. Fort Belvoir, VA: Defense Technical Information Center, enero de 1995. http://dx.doi.org/10.21236/ada330711.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Cassone, Vincent M. Melatonin, The Pineal Gland and Circadian Rhythms. Fort Belvoir, VA: Defense Technical Information Center, abril de 1992. http://dx.doi.org/10.21236/ada250640.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Eskin, Arnold. Gene Regulation in Memory Formation and Circadian Rhythms. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1994. http://dx.doi.org/10.21236/ada280445.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Kelly, Tamsin L. Circadian Rhythms: Importance for Models of Cognitive Performance. Fort Belvoir, VA: Defense Technical Information Center, febrero de 1996. http://dx.doi.org/10.21236/ada310265.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Brandvold, Kristoffer, Sneha Couvillion, Teresa Gibbins y Kimberly Tyrrell. Illuminating gut microbiome signaling pathways that regulate host circadian rhythms. Office of Scientific and Technical Information (OSTI), septiembre de 2021. http://dx.doi.org/10.2172/1987412.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Blood, Mary. A comparison of circadian rhythms in day and night shift workers. Portland State University Library, enero de 2000. http://dx.doi.org/10.15760/etd.5875.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Boulos, Z. y M. C. Moore-Ede. Pharmacological Resetting of the Circadian Sleep-Wake Cycle Effects of Triazolam on Reentrainment of Circadian Rhythms in a Diurnal Primate. Fort Belvoir, VA: Defense Technical Information Center, junio de 1990. http://dx.doi.org/10.21236/ada224227.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Kennaway, David J. Disruption of the Circadian Rhythms of Gene Expression and the Development of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2009. http://dx.doi.org/10.21236/ada506316.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía