Literatura académica sobre el tema "Cinétique de transition de phase"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Cinétique de transition de phase".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Cinétique de transition de phase"
Delmastro, A., A. Bachiorrini y M. Murat. "Desordre a courte distance dans les phases transitoires resultant de l'activation thermique des montmorillonites". Clay Minerals 24, n.º 1 (marzo de 1989): 43–52. http://dx.doi.org/10.1180/claymin.1989.024.1.04.
Texto completoSiméone, D., J. L. Béchade y D. Gosset. "Mise en évidence de la transition de phase de la zircone monoclinique implantée par des ions Bi et O de faible énergie cinétique". Le Journal de Physique IV 11, PR1 (abril de 2001): Pr1–165—Pr1–174. http://dx.doi.org/10.1051/jp4:2001116.
Texto completoLemaire, J., M. Niclause y M. Dzierzynski. "Cinétique D'Oxydation Photochimique de L'Heptaldéhyde en Phase Liquide". Bulletin des Sociétés Chimiques Belges 71, n.º 11-12 (2 de septiembre de 2010): 780. http://dx.doi.org/10.1002/bscb.19620711128.
Texto completoBoussofara, M., M. Hamdi, F. Klaai, M. Boussofara, M. Hamdi, F. Klaai y B. Jeribi. "Cinétique de la procalcitonémie durant la phase aiguë d’un traumatisme grave". Annales Françaises d'Anesthésie et de Réanimation 33 (septiembre de 2014): A174. http://dx.doi.org/10.1016/j.annfar.2014.07.292.
Texto completoRakovan, John. "Phase Transition". Rocks & Minerals 81, n.º 6 (enero de 2006): 467–69. http://dx.doi.org/10.3200/rmin.81.6.467-469.
Texto completoRothman, Tony. "Phase Transition". Scientific American 259, n.º 3 (septiembre de 1988): 30–31. http://dx.doi.org/10.1038/scientificamerican0988-30.
Texto completoMatte, Denise, Bernard Solastiouk, André Merlin y Xavier Deglise. "Étude cinétique de la N-chloration de l'acide cyanurique en phase aqueuse". Canadian Journal of Chemistry 68, n.º 2 (1 de febrero de 1990): 307–13. http://dx.doi.org/10.1139/v90-043.
Texto completoMatte, Denise, Bernard Solastiouk, André Merlin y Xavier Deglise. "Étude cinétique de la N-chloration de la succinimide en phase aqueuse". Canadian Journal of Chemistry 70, n.º 1 (1 de enero de 1992): 89–99. http://dx.doi.org/10.1139/v92-016.
Texto completoLepers, Romuald, A. X. Bigard, Christophe Hausswirth y Charles-Yannick Guézennec. "Modélisation de la transition natation-cyclisme en laboratoire, effet sur la cinétique du lactate". Les Cahiers de l'INSEP 20, n.º 1 (1997): 145. http://dx.doi.org/10.3406/insep.1997.1299.
Texto completoVacquier, G. y A. Casalot. "Etude thermodynamique et cinétique du transport en phase vapeur de NbSe2 par l'iode". Journal of Crystal Growth 130, n.º 1-2 (mayo de 1993): 259–68. http://dx.doi.org/10.1016/0022-0248(93)90860-y.
Texto completoTesis sobre el tema "Cinétique de transition de phase"
Chollet, Mélanie. "Cinétiques de transition de phase dans le manteau terrestre". Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10149.
Texto completoThe evolution of petrological assemblies with increasing pressure and temperature is commonly perceived at equilibrium and fixed within time. The development of X-ray synchrotron sources now enable to measure in situ, time-resolved rates of mineralogical transformations at high pressure (HP), high temperature (HT). This thesis presents the application of this technology in two geological settings. (i) The seismogenic ability of breakdown of hydrated minerals within the subducting slab is checked. The dehydration kinetics of talc, 10Å phase and antigorite were measured at HP-HT in a closed system. We have found that antigorite dehydrates through an intermediate stage. All associated rates of released fluids are faster than the viscous deformation of rocks and are therefore compatible with the trigger of rupture. (ii) The kinetics of olivineringwoodite transition were determined within the co-stability loop for Fe-rich compositions. They show a partial amorphization of olivine at the beginning of the transformation. This could significantly affect the velocities of seismic waves when crossing the mantle transition zone. Moreover, the characteristic times of this reaction and the substantial reduction in grain size, indicate that such a phase transition may induce a significant seismic attenuation. These in situ HP-HT experimental results reveal novel mechanisms of phase transition and thus contribute to a better understanding of geodynamic models
Lakrit, Mohamed. "Comportement et cinétique de transformation martensitique sous sollicitation multiaxiale des matériaux métastables". Thesis, Brest, 2016. http://www.theses.fr/2016BRES0021/document.
Texto completoPhase transformation considerably influences the thermomechanical properties of metastable materials. This is reflected in the numerical model that simulates the behavior of these materials for the calculation codes and require experiments.Thus, the present work concerns the characterization of the axial and multi-axial behavior of two iTRIP steels, 301L steel and 304L steel in addition to a shape memory alloy based on CuAlBe. This characterization is coupled with monitoring of phase transformation kinetics through the measurement of the electrical resistance.The first chapter is a bibliographic study of the two classes of metastable materials mentioned above as well as the phase transformation phenomenon and its characterization techniques. The second chapter deals with uniaxial thermomechanical tests on a steel iTRIP to validate the phase assay. The multiaxial thermomechanical testing performed on specimens tubular steel 304L iTrip will be presented.The third chapter is devoted to uniaxial tests performed on CuAlBe spicemens and realization phase doping in a three-phase case. Also, the validation of the assumption of linearity between the martensite volume fraction and the equivalent transformation strain in the case of proportional and non-proportional loading is done
Shakhovoy, Roman. "Structural properties and dynamics of alkali sulfates". Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2029/document.
Texto completoThe main goal of a present research is a detailed study of ionic transfer in double sulfates belonging to the LIMSO₄ family, where M = Na, K, Rb, Cs. The most attention has been paid to LiNaSO₄ as to the most interesting (in terms of the ion dynamics) compound among other double sulfates. We have carried out magnetic relaxation measurements and line width analysis for all compounds under consideration. Moreover, PGF NMR measurements of ₇li and ²³Na self-diffusion coefficients in LiNaSO4 have been carried out. For the first time, we have measured the phase transition kinetics in LiNaSO₄. For this purpose, we developed a new technique, which is based on the difference of spin-lattice relaxation times in the two phases, but which does not involve the direct measurement of T₁. Elaborated technique allows measuring time evolution of the volume of the appearing phase at controlled cooling rates. We have carried out NMR study of the sulfate ion reorientations in the low-temperature modification of LiNaSO₄. The influence of the SO ₄² reorientational jumps on the quadrupolar interactions of 7Li nuclei was investigated b y a j ump reorientational model, which has not previously been app lied to sulfates. The proposed method is a “low-cost” technique, since it does not require an ¹⁷O enriched sample and dispenses with time-consuming ³³S NMR. Other advantage of a given method is a possibility to probe reorientational motions without NMR relaxation measurements. To analyze motional narrowing in solids with two diffusing spin sublattices (such case occurs, e.g., in LiNaSO₄) we deduced a formula, which can be used for fitting of the two-step temperature dependencies of the NMR line width. The obtained function has been al so ex tended to the case, when a distribution of correlation times takes place. The advantage of this approach is that even in the case of distribution of correlation times, the fitting function could be expressed in the analytical form
Amouretti, Alexis. "Exploration du diagramme de phase de l'hématite Fe2O3 par compression dynamique laser". Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS085.pdf.
Texto completoThe study of Fe2O3 under extreme conditions is important to better understand the interiors of planets, such as the Earth or super-Earths, and meteorite impacts which are fundamental processes of planetary accretion. In order to study these phenomena, we have used the technique of dynamic compression by laser shock, coupled with time-resolved diagnostics: VISAR (interferometer allowing measurements of surface and interface velocities), and X-ray diffraction and absorption during the shocks and releases. We have accurately measured, for the first time, the equation of state of Fe2O3 at very high pressure, up to 700 GPa, and determined that Fe2O3 melting occurs under shock at 135 GPa and 3000 K. This measurement led us to question the calculated temperature of the currently available SESAME equation of state table for Fe2O3. The measurements also showed that the high pressure phases observed in static compression are not identical to those revealed by dynamic compression. Thus the spin transition (high spin to low spin) of Fe3+ in Fe2O3 is, under dynamic compression, isostructural with volume reduction, while it is probably accompanied by a structural change in static compression. Such differences indicate a kinetic limitation of the use of laser shocks for the study of planetary interiors and conversely of static techniques for that of fast phenomena (ns). Finally, we have highlighted the reduction of iron from Fe3+ to a medium redox state Fe2.2+ in Fe2O3 upon release after a shock at 120 GPa, over a characteristic time of the order of nanoseconds. This observation highlights the rapidity of the redox mechanism, suggesting a probable reduction of Fe3+ during meteorite impacts, which explains some observations made in tektites
Fouché, Olivier. "Cinétiques photo-induites à l’échelle nanoseconde de composés à transition d’état de spin et propriétés optiques de nanoparticules à transition d’état de spin". Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13766/document.
Texto completoThis work deals with the study of optical properties of spin-state transition compounds. More precisely, we characterized the photo-induced transition of this complex. To make these studies, we have used two home-built experimental set ups based on time resolved pump-probe techniques. We have shown that thermal mechanism induces nucleation/growth process. Besides, we have studied the effect of particle size on the photo-induced transition. Finally, we have studied the optical properties of nanoparticles
Boisse, Julien. "Modélisation par champ de phase de la cinétique de précipitation dans les alliages Ni-Al, Al-Sc et Al-Zr-Sc". Phd thesis, Université de Rouen, 2008. http://tel.archives-ouvertes.fr/tel-00649319.
Texto completoBadyka, Romain. "Influence des éléments d'alliage sur la cinétique de vieillissement de la ferrite d'aciers inoxydables austéno-ferritiques moulés". Thesis, Normandie, 2018. http://www.theses.fr/2018NORMR072/document.
Texto completoCast austenitic-ferritic stainless steels are used in primary circuit of 2nd generation nuclearpower plants. At operating temperature (285 °C - 325 °C), evolution of mechanical properties isobserved due to the phase transformations occurring within the ferrite: spinodal decomposition (SD)leading to the formation on a Fe rich phase (α) and a Cr rich phase (α ') and the precipitation of the G-phase at α/α' interfaces. This evolution of the mechanical properties can be prohibitive for thecomponents. If it is well known that the steel composition plays an important role on the evolution ofthe properties (steels less rich in Ni and Mo are less sensitive to aging), the role of solute elements asNi, Mo and Mn on the aging kinetics is not yet known so as the contribution of the G-phase on thehardening during the thermal aging. In this study, the aging kinetics of the ferrite of some austenitic-ferritic stainless steels with or without Mo and model alloys with tuned compositions have been studied by atom probe tomography (APT) and by micro hardness measurements. This works answered the three following questions: - Quantification of the contribution of both spinodal decomposition and G-phase precipitation on hardening of the ferrite: combination of hardening models and data obtained with APT permitted to show that G-phase precipitation is clearly the main contributor to ferrite hardness increase at early stage of ageing in Mo-bearing steels. This is due to the high number density of G-phase particles. In Mo-free steels which have ten times less G-phase particles, contributions of both spinodal decomposition and G-phase precipitation are similar. In both cases, when coarsening of G-phase particles occurs and SD is well developed, SD contribution becomes larger. - Influence of Ni, Mo and Mn on aging kinetics: The study of model alloys with tuned composition has shown that only Ni plays a role on SD by enhancing the decomposition. Mn is a key element for the precipitation of G-phase particles at α/α' interfaces. - Efficiency of regeneration heat treatment at 550 °C: an alternative to component replacement is to perform a heat treatment at higher temperature in order to restore the properties of the components. The heat treatments performed permitted to entirely restore the mechanical properties of Mo free steels and partially the properties of Mo bearing ones. This is due to the presence of undissolved G-phase particles in the case of Mo bearing alloys. In each case, SD was totally dissolved
Harry, Solo Andriniaina. "Étude théorique d'un plasma dans la phase de transition allumage/combustion d'un moteur à gaz". Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30093.
Texto completoThe spark ignition in thermal engines, leading to the initiation of combustion, is characterized by several processes that happen during short moments (maximum few milliseconds). The knowledge and control of the physicochemical phenomena involved are the key elements allowing to optimize the system. Using numerical tools, more detailed description and understanding of the mechanisms governing the medium can be investigated. This thesis is related to this topic and is focused to analyze the chemical species evolution of air-methane stoichiometric mixture according to the medium characteristics. The work is based on three main stages. The first step concerns the development of tool which allows to calculate the chemical composition and thermodynamic properties. The method is based on mass action law and the resolution under the local thermodynamic equilibrium hypothesis for a given pressure or mass density. Corrective terms (of Debye-Hückel and virial) enabling to assimilate the gas to real fluid are integrated into the system of equations. The second step is devoted to the development of the 0D model which is based on the resolution of the species conservation equation. This approach allows to study the possible presence of departures from equilibrium according to various cooling rates of the medium. The last step concerns the implementation of a 1D transient hydro-kinetic coupling model applied to ignition. It is developed on an axisymmetric cylindrical geometry. The results show typical evolutions of temperature and radial propagations of pressure. Depending on these parameters, the species behavior is analyzed and discussed in comparison to equilibrium. The departures from equilibrium of the densities highlighted for some initial choices of parameters by the coupling model open the perspectives to the direct calculation of the plasma properties
Aarab, Hassane. "Cinétique de la transition de "lock-in" dans les solutions solides (NH4)2(BeF4)1-x(SO4)x". Montpellier 2, 1991. http://www.theses.fr/1991MON20044.
Texto completoGerard, Y. "Etude expérimentale des interactions entre déformation et transformation de phase.Exemple de la transition calcite - aragonite". Phd thesis, Université Rennes 1, 1987. http://tel.archives-ouvertes.fr/tel-00648807.
Texto completoLibros sobre el tema "Cinétique de transition de phase"
Phase transition dynamics. Cambridge: Cambridge University Press, 2002.
Buscar texto completoMa, Tian y Shouhong Wang. Phase Transition Dynamics. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29260-7.
Texto completoMa, Tian y Shouhong Wang. Phase Transition Dynamics. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-8963-4.
Texto completoGrimmett, Geoffrey, ed. Probability and Phase Transition. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8326-8.
Texto completoKinderlehrer, David, Richard James, Mitchell Luskin y Jerry L. Ericksen, eds. Microstructure and Phase Transition. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-8360-4.
Texto completoGrimmett, Geoffrey. Probability and Phase Transition. Dordrecht: Springer Netherlands, 1994.
Buscar texto completoGeoffrey, Grimmett, North Atlantic Treaty Organization. Scientific Affairs Division. y NATO Advanced Study Institute on Probability Theory of Spatial Disorder and Phase Transition (1993 : Cambridge, England), eds. Probability and phase transition. Dordrecht: Kluwer Academic Publishers, 1994.
Buscar texto completoMishima, Osamu. Liquid-Phase Transition in Water. Tokyo: Springer Japan, 2021. http://dx.doi.org/10.1007/978-4-431-56915-2.
Texto completoSchmitz, Kai. The B−L Phase Transition. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-00963-6.
Texto completoGleiser, Marcelo. Fluctuation driven electroweak phase transition. Batavia, IL: Fermi National Accelerator Laboratory, 1991.
Buscar texto completoCapítulos de libros sobre el tema "Cinétique de transition de phase"
de Oliveira, Mário J. "Phase Transition". En Equilibrium Thermodynamics, 103–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36549-2_7.
Texto completoBatsanov, Stepan S. y Andrei S. Batsanov. "Phase Transition". En Introduction to Structural Chemistry, 395–412. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4771-5_9.
Texto completode Oliveira, Mário J. "Phase Transition". En Equilibrium Thermodynamics, 111–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-53207-2_7.
Texto completoCleaves, Henderson James. "Phase Transition". En Encyclopedia of Astrobiology, 1849–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_4020.
Texto completoCleaves, Henderson Jim. "Phase Transition". En Encyclopedia of Astrobiology, 1223. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_4020.
Texto completoCleaves, Henderson James. "Phase Transition". En Encyclopedia of Astrobiology, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-642-27833-4_4020-4.
Texto completoSuzuki, Takashi. "Phase Transition". En Mean Field Theories and Dual Variation - Mathematical Structures of the Mesoscopic Model, 141–57. Paris: Atlantis Press, 2015. http://dx.doi.org/10.2991/978-94-6239-154-3_5.
Texto completoCerf, Raphaël y Joseba Dalmau. "Phase Transition". En Probability Theory and Stochastic Modelling, 83–86. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08663-2_11.
Texto completoCleaves, Henderson James Jim. "Phase Transition". En Encyclopedia of Astrobiology, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_4020-3.
Texto completoCleaves, Henderson James. "Phase Transition". En Encyclopedia of Astrobiology, 2265–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_4020.
Texto completoActas de conferencias sobre el tema "Cinétique de transition de phase"
Gallicchio, Claudio, Alessio Micheli y Luca Silvestri. "Phase Transition Adaptation". En 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021. http://dx.doi.org/10.1109/ijcnn52387.2021.9534006.
Texto completoCavagnoli, Rafael, Debora P. Menezes, Constança Provide^ncia, Valdir Guimaraes, José R. B. Oliveira, Kita C. D. Macario y Frederico A. Genezini. "Hadron-Quark Phase Transition". En NUCLEAR PHYSICS 2008: XXXI Workshop on Nuclear Physics in Brazil. AIP, 2009. http://dx.doi.org/10.1063/1.3157807.
Texto completoMa, Ji, Junqi Zhang, Wei Wang y Jing Yao. "Phase transition Particle Swarm Optimization". En 2014 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2014. http://dx.doi.org/10.1109/cec.2014.6900429.
Texto completoClavelli, L. "Phase Transition to Exact Susy". En SUSY06: THE 14TH INTERNATIONAL CONFERENCE ON SUPERSYMMETRY AND THE UNIFICATION OF FUNDAMENTAL INTERACTIONS. AIP, 2007. http://dx.doi.org/10.1063/1.2735264.
Texto completoChomaz, Ph. "Phase Transition in Small Systems". En NUCLEI AND MESOSCOPIC PHYSICS: Workshop on Nuclei and Mesoscopic Physics: WNMP 2004. AIP, 2005. http://dx.doi.org/10.1063/1.1996887.
Texto completoLaine, Mikko. "The MSSM electroweak phase transition". En Cosmology and particle physics. AIP, 2001. http://dx.doi.org/10.1063/1.1363553.
Texto completoParang, M. y D. Chao. "Microgravity two-phase flow transition". En 37th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-843.
Texto completoKozlov, G. A. "The flux-tube phase transition". En QUARK CONFINEMENT AND THE HADRON SPECTRUM VII: 7th Conference on Quark Confinement and the Hadron Spectrum - QCHS7. AIP, 2007. http://dx.doi.org/10.1063/1.2714426.
Texto completoHusain, Viqar y Sebastian Jaimungal. "Phase transition in quantum gravity". En GENERAL RELATIVITY AND RELATIVISTIC ASTROPHYSICS. ASCE, 1999. http://dx.doi.org/10.1063/1.1301591.
Texto completoPfau, Anton K., Edward W. Scheckler, David M. Newmark y Andrew R. Neureuther. "Continuous-slope phase-shift transition". En 11th Annual BACUS Symposium on Photomask Technology, editado por Kevin C. McGinnis. SPIE, 1992. http://dx.doi.org/10.1117/12.56953.
Texto completoInformes sobre el tema "Cinétique de transition de phase"
Meth, M. PHASE TRANSITION FOR AGS UPGRADE. Office of Scientific and Technical Information (OSTI), septiembre de 1991. http://dx.doi.org/10.2172/1150578.
Texto completoHobbs, Reginald L., Joseph J. Nealon y Richard Wassmuth. Ada Transition Research Project (Phase 1). Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1990. http://dx.doi.org/10.21236/ada268439.
Texto completoBurgess Jr, Donald R. Binary Metal-Carbon Phase-Transition Temperatures. Gaithersburg, MD: National Institute of Standards and Technology, 2023. http://dx.doi.org/10.6028/nist.tn.2278.
Texto completoAhrens L., E. Gill y E. Raka. Passing Transition with a Double Phase Jump. Office of Scientific and Technical Information (OSTI), noviembre de 1985. http://dx.doi.org/10.2172/1130925.
Texto completoHixson, R. S., D. Schiferl, J. M. Wills y M. A. Hill. Phase stability of transition metals and alloys. Office of Scientific and Technical Information (OSTI), junio de 1997. http://dx.doi.org/10.2172/481599.
Texto completoSelman, Bart. Controlling Computational Cost: Structure, Phase Transition and Randomization. Fort Belvoir, VA: Defense Technical Information Center, julio de 2004. http://dx.doi.org/10.21236/ada426243.
Texto completoGriffin, J. E. Synchrotron phase transition crossing using an rf harmonic. Office of Scientific and Technical Information (OSTI), marzo de 1991. http://dx.doi.org/10.2172/5731087.
Texto completoBernstein, N., M. D. Johannes y Khang Hoang. Origin Of The Structural Phase Transition In Li7La3Zr2O12. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2012. http://dx.doi.org/10.21236/ada567120.
Texto completoWesolowski, Daniel Edward, Mark Andrew Rodriguez y James J. M. Griego. Phase transition behavior of a processed thermal battery. Office of Scientific and Technical Information (OSTI), julio de 2012. http://dx.doi.org/10.2172/1051701.
Texto completoRamanathan, Shriram. Exploratory Phase Transition-Based Switches Using Functional Oxides. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2011. http://dx.doi.org/10.21236/ada549366.
Texto completo