Artículos de revistas sobre el tema "Cilia and ciliary motion"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Cilia and ciliary motion".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Dong, Xiaoguang, Guo Zhan Lum, Wenqi Hu, Rongjing Zhang, Ziyu Ren, Patrick R. Onck y Metin Sitti. "Bioinspired cilia arrays with programmable nonreciprocal motion and metachronal coordination". Science Advances 6, n.º 45 (noviembre de 2020): eabc9323. http://dx.doi.org/10.1126/sciadv.abc9323.
Texto completoSears, Patrick R., Kristin Thompson, Michael R. Knowles y C. William Davis. "Human airway ciliary dynamics". American Journal of Physiology-Lung Cellular and Molecular Physiology 304, n.º 3 (1 de febrero de 2013): L170—L183. http://dx.doi.org/10.1152/ajplung.00105.2012.
Texto completoValentine, Megan y Judith Van Houten. "Using Paramecium as a Model for Ciliopathies". Genes 12, n.º 10 (24 de septiembre de 2021): 1493. http://dx.doi.org/10.3390/genes12101493.
Texto completoVanaki, Shayan M., David Holmes, Pahala Gedara Jayathilake y Richard Brown. "Three-Dimensional Numerical Analysis of Periciliary Liquid Layer: Ciliary Abnormalities in Respiratory Diseases". Applied Sciences 9, n.º 19 (26 de septiembre de 2019): 4033. http://dx.doi.org/10.3390/app9194033.
Texto completoSher Akbar, Noreen y Z. H. Khan. "Heat transfer analysis of bi-viscous ciliary motion fluid". International Journal of Biomathematics 08, n.º 02 (25 de febrero de 2015): 1550026. http://dx.doi.org/10.1142/s1793524515500266.
Texto completoYu, Yanan, Kyosuke Shinohara, Huanming Xu, Zhenfeng Li, Tomoki Nishida, Hiroshi Hamada, Yuanqing Xu et al. "The Motion of An Inv Nodal Cilium: a Realistic Model Revealing Dynein-Driven Ciliary Motion with Microtubule Mislocalization". Cellular Physiology and Biochemistry 51, n.º 6 (2018): 2843–57. http://dx.doi.org/10.1159/000496038.
Texto completoFlaherty, Justin, Zhe Feng, Zhangli Peng, Y. N. Young y Andrew Resnick. "Primary cilia have a length-dependent persistence length". Biomechanics and Modeling in Mechanobiology 19, n.º 2 (9 de septiembre de 2019): 445–60. http://dx.doi.org/10.1007/s10237-019-01220-7.
Texto completoSareh, Sina, Jonathan Rossiter, Andrew Conn, Knut Drescher y Raymond E. Goldstein. "Swimming like algae: biomimetic soft artificial cilia". Journal of The Royal Society Interface 10, n.º 78 (6 de enero de 2013): 20120666. http://dx.doi.org/10.1098/rsif.2012.0666.
Texto completoPeabody, Jacelyn E., Ren-Jay Shei, Brent M. Bermingham, Scott E. Phillips, Brett Turner, Steven M. Rowe y George M. Solomon. "Seeing cilia: imaging modalities for ciliary motion and clinical connections". American Journal of Physiology-Lung Cellular and Molecular Physiology 314, n.º 6 (1 de junio de 2018): L909—L921. http://dx.doi.org/10.1152/ajplung.00556.2017.
Texto completoIto, Hiroaki, Toshihiro Omori y Takuji Ishikawa. "Swimming mediated by ciliary beating: comparison with a squirmer model". Journal of Fluid Mechanics 874 (12 de julio de 2019): 774–96. http://dx.doi.org/10.1017/jfm.2019.490.
Texto completoKupferberg, Stephen B., John P. Bent y Edward S. Porubsky. "The Evaluation of Ciliary Function: Electron versus Light Microscopy". American Journal of Rhinology 12, n.º 3 (mayo de 1998): 199–202. http://dx.doi.org/10.2500/105065898781390172.
Texto completoHoque, Mohammed, Eunice N. Kim, Danny Chen, Feng-Qian Li y Ken-Ichi Takemaru. "Essential Roles of Efferent Duct Multicilia in Male Fertility". Cells 11, n.º 3 (20 de enero de 2022): 341. http://dx.doi.org/10.3390/cells11030341.
Texto completoHan, Jihun y Charles S. Peskin. "Spontaneous oscillation and fluid–structure interaction of cilia". Proceedings of the National Academy of Sciences 115, n.º 17 (9 de abril de 2018): 4417–22. http://dx.doi.org/10.1073/pnas.1712042115.
Texto completoOhmura, Takuya, Yukinori Nishigami, Atsushi Taniguchi, Shigenori Nonaka, Junichi Manabe, Takuji Ishikawa y Masatoshi Ichikawa. "Simple mechanosense and response of cilia motion reveal the intrinsic habits of ciliates". Proceedings of the National Academy of Sciences 115, n.º 13 (12 de marzo de 2018): 3231–36. http://dx.doi.org/10.1073/pnas.1718294115.
Texto completoKhaderi, S. N., J. M. J. den Toonder y P. R. Onck. "Microfluidic propulsion by the metachronal beating of magnetic artificial cilia: a numerical analysis". Journal of Fluid Mechanics 688 (20 de octubre de 2011): 44–65. http://dx.doi.org/10.1017/jfm.2011.355.
Texto completoShakib Arslan, Muhammad, Zaheer Abbas y Muhammad Yousuf Rafiq. "Biological flow of thermally intense cilia generated motion of non-Newtonian fluid in a curved channel". Advances in Mechanical Engineering 15, n.º 3 (marzo de 2023): 168781322311571. http://dx.doi.org/10.1177/16878132231157179.
Texto completoPaff, Tamara, Heymut Omran, Kim G. Nielsen y Eric G. Haarman. "Current and Future Treatments in Primary Ciliary Dyskinesia". International Journal of Molecular Sciences 22, n.º 18 (11 de septiembre de 2021): 9834. http://dx.doi.org/10.3390/ijms22189834.
Texto completoYang, T. Tony, Minh Nguyet Thi Tran, Weng Man Chong, Chia-En Huang y Jung-Chi Liao. "Single-particle tracking localization microscopy reveals nonaxonemal dynamics of intraflagellar transport proteins at the base of mammalian primary cilia". Molecular Biology of the Cell 30, n.º 7 (21 de marzo de 2019): 828–37. http://dx.doi.org/10.1091/mbc.e18-10-0654.
Texto completoPatel-King, Ramila S., Miho Sakato-Antoku, Maya Yankova y Stephen M. King. "WDR92 is required for axonemal dynein heavy chain stability in cytoplasm". Molecular Biology of the Cell 30, n.º 15 (15 de julio de 2019): 1834–45. http://dx.doi.org/10.1091/mbc.e19-03-0139.
Texto completoGueron, Shay y Konstantin Levit-Gurevich. "Computation of the Internal Forces in Cilia: Application to Ciliary Motion, the Effects of Viscosity, and Cilia Interactions". Biophysical Journal 74, n.º 4 (abril de 1998): 1658–76. http://dx.doi.org/10.1016/s0006-3495(98)77879-8.
Texto completoFarooq, A. A. y A. M. Siddiqui. "Mathematical model for the ciliary-induced transport of seminal liquids through the ductuli efferentes". International Journal of Biomathematics 10, n.º 03 (20 de febrero de 2017): 1750031. http://dx.doi.org/10.1142/s1793524517500310.
Texto completoKiyota, Kouki, Hironori Ueno, Keiko Numayama-Tsuruta, Tomofumi Haga, Yohsuke Imai, Takami Yamaguchi y Takuji Ishikawa. "Fluctuation of cilia-generated flow on the surface of the tracheal lumen". American Journal of Physiology-Lung Cellular and Molecular Physiology 306, n.º 2 (15 de enero de 2014): L144—L151. http://dx.doi.org/10.1152/ajplung.00117.2013.
Texto completoSalman, Huseyin Enes, Nathalie Jurisch-Yaksi y Huseyin Cagatay Yalcin. "Computational Modeling of Motile Cilia-Driven Cerebrospinal Flow in the Brain Ventricles of Zebrafish Embryo". Bioengineering 9, n.º 9 (28 de agosto de 2022): 421. http://dx.doi.org/10.3390/bioengineering9090421.
Texto completoAkbar, Noreen Sher y Adil Wahid Butt. "Heat transfer analysis of viscoelastic fluid flow due to metachronal wave of cilia". International Journal of Biomathematics 07, n.º 06 (noviembre de 2014): 1450066. http://dx.doi.org/10.1142/s1793524514500661.
Texto completoSher Akbar, Noreen. "Biomathematical analysis of carbon nanotubes due to ciliary motion". International Journal of Biomathematics 08, n.º 02 (25 de febrero de 2015): 1550023. http://dx.doi.org/10.1142/s1793524515500230.
Texto completoCui, Zhiwei, Ye Wang y Jaap M. J. den Toonder. "Metachronal Motion of Biological and Artificial Cilia". Biomimetics 9, n.º 4 (27 de marzo de 2024): 198. http://dx.doi.org/10.3390/biomimetics9040198.
Texto completoPang, Chuan, Fengwei An, Shiming Yang, Ning Yu, Daishi Chen y Lei Chen. "In vivo and in vitro observation of nasal ciliary motion in a guinea pig model". Experimental Biology and Medicine 245, n.º 12 (20 de mayo de 2020): 1039–48. http://dx.doi.org/10.1177/1535370220926443.
Texto completoRamachandran, Saravana, Kuppalapalle Vajravelu, K. V. Prasad y S. Sreenadh. "Peristaltic-Ciliary Flow of A Casson Fluid through An Inclined Tube". Communication in Biomathematical Sciences 4, n.º 1 (7 de mayo de 2021): 23–38. http://dx.doi.org/10.5614/cbms.2021.4.1.3.
Texto completoMorgan, Darrell D. y Anthony G. Moss. "The Effects of Cigarette Smoke on Porcine Airway Epithelium". Microscopy and Microanalysis 4, S2 (julio de 1998): 1076–77. http://dx.doi.org/10.1017/s1431927600025502.
Texto completoWyatt, Todd A., Mary A. Forgèt, Jennifer M. Adams y Joseph H. Sisson. "Both cAMP and cGMP are required for maximal ciliary beat stimulation in a cell-free model of bovine ciliary axonemes". American Journal of Physiology-Lung Cellular and Molecular Physiology 288, n.º 3 (marzo de 2005): L546—L551. http://dx.doi.org/10.1152/ajplung.00107.2004.
Texto completoFerguson, Jonathan L., Thomas V. McCaffrey, Eugene B. Kern y William J. Martin. "The Effects of Sinus Bacteria on Human Ciliated Nasal Epithelium in Vitro". Otolaryngology–Head and Neck Surgery 98, n.º 4 (abril de 1988): 299–304. http://dx.doi.org/10.1177/019459988809800405.
Texto completoWU, Junlin, Jiaqi Yin, Zixiang Xu, Yingli Liu, Huanyong Qin y Xin Sheng. "The function of ciliopathy protein FOP on cilia and cortical microtubule cytoskeleton in Euplotes amieti". Acta Protozoologica 62 (2023): 45–56. http://dx.doi.org/10.4467/16890027ap.23.005.18868.
Texto completoStokes, M. "Larval locomotion of the lancelet". Journal of Experimental Biology 200, n.º 11 (1 de enero de 1997): 1661–80. http://dx.doi.org/10.1242/jeb.200.11.1661.
Texto completoUENO, Hironori, Takuji ISHIKAWA, Khanh Huy BUI, Kohsuke GONDA, Takashi ISHIKAWA y Takami YAMAGUCHI. "7G13 Analysis of ciliary motion and the axonemal structure in the mouse respiratory cilia". Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME 2012.24 (2012): _7G13–1_—_7G13–2_. http://dx.doi.org/10.1299/jsmebio.2012.24._7g13-1_.
Texto completoRoth, K. E., C. L. Rieder y S. S. Bowser. "Flexible-substratum technique for viewing cells from the side: some in vivo properties of primary (9+0) cilia in cultured kidney epithelia". Journal of Cell Science 89, n.º 4 (1 de abril de 1988): 457–66. http://dx.doi.org/10.1242/jcs.89.4.457.
Texto completoSmith, D. J., E. A. Gaffney y J. R. Blake. "Mathematical modelling of cilia-driven transport of biological fluids". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 465, n.º 2108 (2 de junio de 2009): 2417–39. http://dx.doi.org/10.1098/rspa.2009.0018.
Texto completoSiddiqui, A. M., A. A. Farooq y M. A. Rana. "An investigation of non-Newtonian fluid flow due to metachronal beating of cilia in a tube". International Journal of Biomathematics 08, n.º 02 (25 de febrero de 2015): 1550016. http://dx.doi.org/10.1142/s1793524515500163.
Texto completoUmlauf, Benjamin. "DDEL-13. CILIA INHIBITORS SYNERGIZE WITH TEMOZOLOMIDE TO DRAMATICALLY IMPROVE SURVIVAL IN ORTHOTOPIC MURINE MODELS OF GLIOBLASTOMA". Neuro-Oncology 25, Supplement_5 (1 de noviembre de 2023): v104. http://dx.doi.org/10.1093/neuonc/noad179.0392.
Texto completoSatir, P. "Mechanism of Ciliary Movement - What's New?" Physiology 4, n.º 4 (1 de agosto de 1989): 153–57. http://dx.doi.org/10.1152/physiologyonline.1989.4.4.153.
Texto completoBlanchon, Sylvain, Marie Legendre, Mathieu Bottier, Aline Tamalet, Guy Montantin, Nathalie Collot, Catherine Faucon et al. "Deep phenotyping, including quantitative ciliary beating parameters, and extensive genotyping in primary ciliary dyskinesia". Journal of Medical Genetics 57, n.º 4 (26 de noviembre de 2019): 237–44. http://dx.doi.org/10.1136/jmedgenet-2019-106424.
Texto completoSisson, J. H., D. J. Tuma y S. I. Rennard. "Acetaldehyde-mediated cilia dysfunction in bovine bronchial epithelial cells". American Journal of Physiology-Lung Cellular and Molecular Physiology 260, n.º 2 (1 de febrero de 1991): L29—L36. http://dx.doi.org/10.1152/ajplung.1991.260.2.l29.
Texto completoMasuda, Tsukuru, Aya Mizutani Akimoto, Kenichi Nagase, Teruo Okano y Ryo Yoshida. "Artificial cilia as autonomous nanoactuators: Design of a gradient self-oscillating polymer brush with controlled unidirectional motion". Science Advances 2, n.º 8 (agosto de 2016): e1600902. http://dx.doi.org/10.1126/sciadv.1600902.
Texto completoRiaz, Arshad, Elena Bobescu, Katta Ramesh y Rahmat Ellahi. "Entropy Analysis for Cilia-Generated Motion of Cu-Blood Flow of Nanofluid in an Annulus". Symmetry 13, n.º 12 (8 de diciembre de 2021): 2358. http://dx.doi.org/10.3390/sym13122358.
Texto completoKANEKO, Toshiyasu, Kazuki WATANABE, Kenji NAGAOKA y Kazuya YOSHIDA. "Motion Analysis of Ciliary Micro-Hopping Locomotion for an Asteroid Exploration Robot with Design Parameters of Cilia". Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2016 (2016): 2A2–17a1. http://dx.doi.org/10.1299/jsmermd.2016.2a2-17a1.
Texto completoHanasoge, Srinivas, Peter J. Hesketh y Alexander Alexeev. "Metachronal motion of artificial magnetic cilia". Soft Matter 14, n.º 19 (2018): 3689–93. http://dx.doi.org/10.1039/c8sm00549d.
Texto completoIde, Takahiro, Wang Kyaw Twan, Hao Lu, Yayoi Ikawa, Lin-Xenia Lim, Nicole Henninger, Hiromi Nishimura et al. "CFAP53 regulates mammalian cilia-type motility patterns through differential localization and recruitment of axonemal dynein components". PLOS Genetics 16, n.º 12 (21 de diciembre de 2020): e1009232. http://dx.doi.org/10.1371/journal.pgen.1009232.
Texto completoMAXEY, MARTIN R. "Biomimetics and cilia propulsion". Journal of Fluid Mechanics 678 (17 de junio de 2011): 1–4. http://dx.doi.org/10.1017/jfm.2011.145.
Texto completoMan, Yi, Feng Ling y Eva Kanso. "Cilia oscillations". Philosophical Transactions of the Royal Society B: Biological Sciences 375, n.º 1792 (30 de diciembre de 2019): 20190157. http://dx.doi.org/10.1098/rstb.2019.0157.
Texto completoHanasoge, Srinivas, Matthew Ballard, Peter J. Hesketh y Alexander Alexeev. "Asymmetric motion of magnetically actuated artificial cilia". Lab on a Chip 17, n.º 18 (2017): 3138–45. http://dx.doi.org/10.1039/c7lc00556c.
Texto completoNakamura, S. y S. L. Tamm. "Calcium control of ciliary reversal in ionophore-treated and ATP-reactivated comb plates of ctenophores." Journal of Cell Biology 100, n.º 5 (1 de mayo de 1985): 1447–54. http://dx.doi.org/10.1083/jcb.100.5.1447.
Texto completo