Literatura académica sobre el tema "Chromoplexie"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Chromoplexie".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Chromoplexie"
Serbyn, Nataliia, Myrthe M. Smit, Vimathi S. Gummalla, Gregory J. Brunette y David S. Pellman. "Abstract 6105: Unravelling the mechanistic basis of chromoplexy, a mutational process driving early cancer genome evolution". Cancer Research 83, n.º 7_Supplement (4 de abril de 2023): 6105. http://dx.doi.org/10.1158/1538-7445.am2023-6105.
Texto completoBallas, Leslie K., Brian R. Hu y David I. Quinn. "Chromoplexy and hypoxic microenvironment drives prostate cancer". Lancet Oncology 15, n.º 13 (diciembre de 2014): 1419–21. http://dx.doi.org/10.1016/s1470-2045(14)71114-3.
Texto completoAshby, Cody, Michael A. Bauer, Yan Wang, Christopher P. Wardell, Ruslana G. Tytarenko, Purvi Patel, Erin Flynt et al. "Chromothripsis and Chromoplexy Are Associated with DNA Instability and Adverse Clinical Outcome in Multiple Myeloma". Blood 132, Supplement 1 (29 de noviembre de 2018): 408. http://dx.doi.org/10.1182/blood-2018-99-117359.
Texto completoWang, Kendric, Yuzhuo Wang y Colin C. Collins. "Chromoplexy: a new paradigm in genome remodeling and evolution". Asian Journal of Andrology 15, n.º 6 (26 de agosto de 2013): 711–12. http://dx.doi.org/10.1038/aja.2013.109.
Texto completoAshby, Cody, Eileen M. Boyle, Brian A. Walker, Michael A. Bauer, Katie Rose Ryan, Judith Dent, Anjan Thakurta, Erin Flynt, Faith E. Davies y Gareth Morgan. "Chromoplexy and Chromothripsis Are Important Prognostically in Myeloma and Deregulate Gene Function By a Range of Mechanisms". Blood 134, Supplement_1 (13 de noviembre de 2019): 3767. http://dx.doi.org/10.1182/blood-2019-130335.
Texto completoPham, Minh-Tam N., Michael C. Haffner, Heather C. Wick, Jonathan B. Coulter, Anuj Gupta, Roshan V. Chikarmane, Harshath Gupta, Sarah Wheelan, William G. Nelson y Srinivasan Yegnasubramanian. "Abstract 680: Topoisomerase 2 beta facilitates chromatin reorganization during Androgen Receptor induced transcription and contributes to chromoplexy in prostate cancer". Cancer Research 82, n.º 12_Supplement (15 de junio de 2022): 680. http://dx.doi.org/10.1158/1538-7445.am2022-680.
Texto completoAnderson, Nathaniel D., Richard de Borja, Matthew D. Young, Fabio Fuligni, Andrej Rosic, Nicola D. Roberts, Simon Hajjar et al. "Rearrangement bursts generate canonical gene fusions in bone and soft tissue tumors". Science 361, n.º 6405 (30 de agosto de 2018): eaam8419. http://dx.doi.org/10.1126/science.aam8419.
Texto completoShen, Michael M. "Chromoplexy: A New Category of Complex Rearrangements in the Cancer Genome". Cancer Cell 23, n.º 5 (mayo de 2013): 567–69. http://dx.doi.org/10.1016/j.ccr.2013.04.025.
Texto completoZhang, Cheng-Zhong y David Pellman. "Cancer Genomic Rearrangements and Copy Number Alterations from Errors in Cell Division". Annual Review of Cancer Biology 6, n.º 1 (11 de abril de 2022): 245–68. http://dx.doi.org/10.1146/annurev-cancerbio-070620-094029.
Texto completoMustafin, R. N. "Participation of retroelements in chromoanagenesis in cancer development". Siberian journal of oncology 23, n.º 5 (15 de noviembre de 2024): 146–56. http://dx.doi.org/10.21294/1814-4861-2024-23-5-146-156.
Texto completoTesis sobre el tema "Chromoplexie"
Heintzé, Maxime. "Rôles des mutations somatiques dans STAG2, TP53 et CDKN2A et de la chromoplexie dans l'oncogenèse du sarcome d'Ewing". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASL093.
Texto completoEwing sarcoma is the second most frequent pediatric cancer of the bones and soft tissues. It is characterized by the presence of a chromosomal translocation that fuses a gene from the FET family with a transcription factor from the ETS family. In 85% of cases, the t(11;22)(q24;q12) translocation fusing the EWSR1 and FLI1 genes is observed, and in 10% of cases, the t(21;22)(q22;q12) translocation fusing EWSR1 with ERG can be found. These fusion proteins exert an aberrant oncogenic role. Somatic mutations in the STAG2, TP53 and CDKN2A genes are frequently found in patient tumors. In particular, STAG2, a gene involved in the cohesin complex, is increasingly observed to be mutated or inactivated in cancers today. A recently described phenomenon of genomic instability, known as chromoplexy, is now found in 18% of cancers. Chromoplexy involves multiple, generally balanced, rearrangements between several chromosomes, forming complex translocation loops. Interestingly, tumors from patients positive for the EWSR1-ERG fusion are almost always associated with chromoplexy.Understanding the role of additional somatic mutations and chromoplexy in the initiation of oncogenesis in this sarcoma is necessary to decipher the mechanisms of cellular transformation in this disease. To generate new study models, we endogenously induce EWSR1-ETS translocations associated with additional mutations in primary human mesenchymal stem cells (MSCs), a potential cellular origin of this sarcoma, using CRISPR-Cas9. To better understand the mechanism of chromoplexy, we hypothesized that the orientation of the EWSR1 and ERG genes on their respective chromosomes leads to the formation of a theoretical dicentric chromosome. This highly unstable chromosome may promote the formation of rearrangement loops, such as chromoplexy, to stabilize the genome.In this way, we were able to generate a novel, innovative model of Ewing sarcoma from primary human MSCs. These models showed the ability to develop tumors and metastases when injected in vivo into mice. These tumors recapitulated all the typical characteristics of Ewing sarcoma, including its characteristic morphology and the membrane expression of the CD99 marker. Moreover, the transcriptomic profiles of the tumors were highly similar to those of patient tumors.Subsequently, we used the EWSR1-ERG fusion to study chromoplexy. Through the use of specific inhibitors targeting DNA double-strand break repair pathways, we were able to promote the formation of rearrangement loops in model cells. From our results, we generated entirely new, original models presenting the EWSR1-ERG fusion, with or without chromoplexy, from primary human MSCs.This work confirms a potential mesenchymal origin for this sarcoma. We have shown that the endogenous induction of EWSR1-ETS fusions enables complete cellular transformation when associated with additional somatic mutations in the STAG2, TP53, and CDKN2A genes. Finally, we were able to partially understand the role of chromoplexy in the initiation of oncogenesis in Ewing sarcoma
Baca, Sylvan Charles. "The landscape of somatic mutations in primary prostate adenocarcinoma". Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:10824.
Texto completoCapítulos de libros sobre el tema "Chromoplexie"
Das, Bhaswatee, Bipasha Choudhury, Aditya Kumar y Vishwa Jyoti Baruah. "Genomic Instability and DNA Repair in Cancer". En DNA - Damages and Repair Mechanisms. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95736.
Texto completoActas de conferencias sobre el tema "Chromoplexie"
Demeulemeester, J., M. Tarabichi, MW Fittall, P. Van Loo, JO Korbel y PJ Campbell. "4 Patterns of clustered mutational processes: Pan-Cancer analysis of chromothripsis, chromoplexy and kataegis". En Abstracts of the 25th Biennial Congress of the European Association for Cancer Research, Amsterdam, The Netherlands, 30 June – 3 July 2018. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/esmoopen-2018-eacr25.4.
Texto completo