Literatura académica sobre el tema "Choquet pricing"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Choquet pricing".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Choquet pricing"
Chen, Zengjing y Reg Kulperger. "Minimax pricing and Choquet pricing". Insurance: Mathematics and Economics 38, n.º 3 (junio de 2006): 518–28. http://dx.doi.org/10.1016/j.insmatheco.2005.11.010.
Texto completoDe Waegenaere, Anja, Robert Kast y Andre Lapied. "Choquet pricing and equilibrium". Insurance: Mathematics and Economics 32, n.º 3 (julio de 2003): 359–70. http://dx.doi.org/10.1016/s0167-6687(03)00116-1.
Texto completoCastagnoli, Erio, Fabio Maccheroni y Massimo Marinacci. "CHOQUET INSURANCE PRICING: A CAVEAT". Mathematical Finance 14, n.º 3 (julio de 2004): 481–85. http://dx.doi.org/10.1111/j.0960-1627.2004.00201.x.
Texto completoChateauneuf, A., R. Kast y A. Lapied. "CHOQUET PRICING FOR FINANCIAL MARKETS WITH FRICTIONS". Mathematical Finance 6, n.º 3 (julio de 1996): 323–30. http://dx.doi.org/10.1111/j.1467-9965.1996.tb00119.x.
Texto completoJang, Lee-Chae. "Interval-valued Choquet integrals and applications in pricing risks". Journal of Korean Institute of Intelligent Systems 17, n.º 4 (25 de agosto de 2007): 451–54. http://dx.doi.org/10.5391/jkiis.2007.17.4.451.
Texto completoMuzzioli, Silvia y Costanza Torricelli. "Implied trees in illiquid markets: A Choquet pricing approach". International Journal of Intelligent Systems 17, n.º 6 (25 de abril de 2002): 577–94. http://dx.doi.org/10.1002/int.10039.
Texto completoDriouchi, Tarik, Lenos Trigeorgis y Yongling Gao. "Choquet-based European option pricing with stochastic (and fixed) strikes". OR Spectrum 37, n.º 3 (10 de octubre de 2014): 787–802. http://dx.doi.org/10.1007/s00291-014-0378-3.
Texto completoWójcik, Sebastian. "Quasi-Arithmetic Type Mean Generated by the Generalized Choquet Integral". Symmetry 12, n.º 12 (17 de diciembre de 2020): 2104. http://dx.doi.org/10.3390/sym12122104.
Texto completoBastianello, Lorenzo, Alain Chateauneuf y Bernard Cornet. "Put–Call Parities, absence of arbitrage opportunities, and nonlinear pricing rules". Mathematical Finance, 23 de marzo de 2024. http://dx.doi.org/10.1111/mafi.12433.
Texto completoChateauneuf, Alain y Bernard Cornet. "The risk-neutral non-additive probability with market frictions". Economic Theory Bulletin, 15 de marzo de 2022. http://dx.doi.org/10.1007/s40505-022-00216-4.
Texto completoTesis sobre el tema "Choquet pricing"
Lacaussade, Charles-Thierry. "Evaluation d'actifs financiers et frictions de marché". Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD021.
Texto completoThis thesis aims to provide innovative theoretical and empirical methods for valuing securities to economics researchers, market makers, and participants, including brokers, dealers, asset managers, and regulators. We propose an extension of the Fundamental Theorem of Asset Pricing (FTAP) tailored to markets with financial frictions. Hence, our asset pricing methodologies allow for more tractable bid and ask prices, as observed in the financial market. This thesis provides both theoretical models and an empirical application of the pricing rule with bid-ask spreads.In our first chapter, we introduce two straightforward closed-form pricing expressions for securities in two-date markets, encompassing a variety of frictions (transaction cost, taxes, commission fees). This result relies on a novel absence of arbitrage condition tailored to the market with frictions considering potential buy and sell strategies. Furthermore, these asset pricing models both rely on non-additive probability measures. The first is a Choquet pricing rule, for which we offer a particular case adapted for calibration, and the second is a Multiple Priors pricing rule.In the second chapter, as a step toward generalizing our asset pricing models, we provide the necessary and sufficient conditions for multi-period pricing rules characterized by bid-ask spreads. We extend the multi-period version of the Fundamental Theorem of Asset Pricing by assuming the existence of market frictions. We show that it is possible to model a dynamic multi-period pricing problem with a one-stage pricing problem when the filtration is frictionless, which is equivalent to assuming the martingale property, which is equivalent to assuming price consistency.Finally, in the third chapter, we give the axiomatization of a particular class of Choquet pricing rule, namely Rank-Dependent pricing rules assuming the absence of arbitrage and put-call parity. Rank-dependent pricing rules have the appealing feature of being easily calibrated because the non-additive probability measure takes the form of a distorted objective probability. Therefore, we offer an empirical study of these Rank-Dependent pricing rules through a parametric calibration on market data to explore the impact of market frictions on prices. We also study the empirical validity of the put-call parity. Furthermore, we investigate the impact of time to expiration (time value) and moneyness (intrinsic value) on the shape of the distortion function. The resulting rank-dependent pricing rules always exhibit a greater accuracy than the benchmark (FTAP). Finally, we relate the market frictions to the market's risk aversion
Actas de conferencias sobre el tema "Choquet pricing"
Liyan Han y Juan Zhou. "European option pricing and hedges under heterogeneity with λ-fuzzy measures and choquet intergral". En 2008 IEEE 16th International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2008. http://dx.doi.org/10.1109/fuzzy.2008.4630445.
Texto completo