Literatura académica sobre el tema "Chloroplast avoidance movement"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Chloroplast avoidance movement".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Chloroplast avoidance movement"
Sato, Y., M. Wada y A. Kadota. "Choice of tracks, microtubules and/or actin filaments for chloroplast photo-movement is differentially controlled by phytochrome and a blue light receptor". Journal of Cell Science 114, n.º 2 (15 de enero de 2001): 269–79. http://dx.doi.org/10.1242/jcs.114.2.269.
Texto completoYuan, Ning, Lavanya Mendu, Kaushik Ghose, Carlie Shea Witte, Julia Frugoli y Venugopal Mendu. "FKF1 Interacts with CHUP1 and Regulates Chloroplast Movement in Arabidopsis". Plants 12, n.º 3 (25 de enero de 2023): 542. http://dx.doi.org/10.3390/plants12030542.
Texto completoLin, Yi-Jyun, Yu-Chung Chen, Kuan-Chieh Tseng, Wen-Chi Chang y Swee-Suak Ko. "Phototropins Mediate Chloroplast Movement in Phalaenopsis aphrodite (Moth Orchid)". Plant and Cell Physiology 60, n.º 10 (14 de junio de 2019): 2243–54. http://dx.doi.org/10.1093/pcp/pcz116.
Texto completoSuetsugu, Noriyuki, Atsushi Takemiya, Sam-Geun Kong, Takeshi Higa, Aino Komatsu, Ken-ichiro Shimazaki, Takayuki Kohchi y Masamitsu Wada. "RPT2/NCH1 subfamily of NPH3-like proteins is essential for the chloroplast accumulation response in land plants". Proceedings of the National Academy of Sciences 113, n.º 37 (30 de agosto de 2016): 10424–29. http://dx.doi.org/10.1073/pnas.1602151113.
Texto completoKasahara, Masahiro, Takatoshi Kagawa, Kazusato Oikawa, Noriyuki Suetsugu, Mitsue Miyao y Masamitsu Wada. "Chloroplast avoidance movement reduces photodamage in plants". Nature 420, n.º 6917 (diciembre de 2002): 829–32. http://dx.doi.org/10.1038/nature01213.
Texto completoKagawa, Takatoshi y Masamitsu Wada. "Velocity of chloroplast avoidance movement is fluence rate dependent". Photochemical & Photobiological Sciences 3, n.º 6 (2004): 592. http://dx.doi.org/10.1039/b316285k.
Texto completoMajumdar, Arkajo y Rup Kumar Kar. "Chloroplast avoidance movement: a novel paradigm of ROS signalling". Photosynthesis Research 144, n.º 1 (28 de marzo de 2020): 109–21. http://dx.doi.org/10.1007/s11120-020-00736-9.
Texto completoKo, Swee-Suak, Chung-Min Jhong, Yi-Jyun Lin, Ching-Yu Wei, Ju-Yin Lee y Ming-Che Shih. "Blue Light Mediates Chloroplast Avoidance and Enhances Photoprotection of Vanilla Orchid". International Journal of Molecular Sciences 21, n.º 21 (28 de octubre de 2020): 8022. http://dx.doi.org/10.3390/ijms21218022.
Texto completoKitashova, Anastasia, Katja Schneider, Lisa Fürtauer, Laura Schröder, Tim Scheibenbogen, Siegfried Fürtauer y Thomas Nägele. "Impaired chloroplast positioning affects photosynthetic capacity and regulation of the central carbohydrate metabolism during cold acclimation". Photosynthesis Research 147, n.º 1 (19 de noviembre de 2020): 49–60. http://dx.doi.org/10.1007/s11120-020-00795-y.
Texto completoSztatelman, Olga, Andrzej Waloszek, Agnieszka Katarzyna Banaś y Halina Gabryś. "Photoprotective function of chloroplast avoidance movement: In vivo chlorophyll fluorescence study". Journal of Plant Physiology 167, n.º 9 (junio de 2010): 709–16. http://dx.doi.org/10.1016/j.jplph.2009.12.015.
Texto completoTesis sobre el tema "Chloroplast avoidance movement"
CAZZANIGA, Stefano. "Photoprotection in oxygenic photosynthesis: A reverse genetic study". Doctoral thesis, 2015. http://hdl.handle.net/11562/916582.
Texto completoLight is essential for photosynthesis and life on earth and yet it is harmful for plants. When photons are absorbed in excess with respect to the capacity of photosynthetic electron transport, reactive oxygen species are produced that causes photoinhibition, limiting plant growth and productivity. Oxygenic photosynthetic organisms have evolved photoprotective mechanisms to prevent/avoid photodamage. Among these, the Non-Photochemical Quenching (of chlorophyll fluorescence) or NPQ is of particular interest. NPQ has been reported to quench the chlorophyll excited states thus catalyzing the thermal dissipation of energy absorbed in excess. Over the past decades many efforts have been made to elucidate the mechanisms underlying these processes. Besides academic curiosity, manipulation of thermal dissipation rate and its regulation in response to environmental cues appears to be the key for both enhancing stress resistance and productivity for food and fuels. In my PhD I used a reverse genetic approach on the model organism Arabidopsis thaliana to disentangle and characterize the role of different components of photoprotective mechanisms as well as their contribution to acclimation to abiotic stresses. Of particular interest have been the generation and analysis of mutants defective in carotenoids biosynthesis, specific xanthophyll binding proteins and in the chloroplast light avoidance mechanism.
Actas de conferencias sobre el tema "Chloroplast avoidance movement"
Wen, Feng, Da Xing y Lingrui Zhang. "Hydrogen peroxide generated by NADPH oxidase is involved in high blue-light-induced chloroplast avoidance movements in Arabidopsis". En Photonics and Optoelectronics Meetings 2009, editado por Qingming Luo, Lihong V. Wang, Valery V. Tuchin, Pengcheng Li y Ling Fu. SPIE, 2009. http://dx.doi.org/10.1117/12.841575.
Texto completo