Literatura académica sobre el tema "Chirality"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Chirality".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Chirality"

1

Utsunomiya, Sosuke, So Sakamura, Takeshi Sasamura, Tomoki Ishibashi, Chinami Maeda, Mikiko Inaki y Kenji Matsuno. "Cells with Broken Left–Right Symmetry: Roles of Intrinsic Cell Chirality in Left–Right Asymmetric Epithelial Morphogenesis". Symmetry 11, n.º 4 (8 de abril de 2019): 505. http://dx.doi.org/10.3390/sym11040505.

Texto completo
Resumen
Chirality is a fundamental feature in biology, from the molecular to the organismal level. An animal has chirality in the left–right asymmetric structure and function of its body. In general, chirality occurring at the molecular and organ/organism scales has been studied separately. However, recently, chirality was found at the cellular level in various species. This “cell chirality” can serve as a link between molecular chirality and that of an organ or animal. Cell chirality is observed in the structure, motility, and cytoplasmic dynamics of cells and the mechanisms of cell chirality formation are beginning to be understood. In all cases studied so far, proteins that interact chirally with F-actin, such as formin and myosin I, play essential roles in cell chirality formation or the switching of a cell’s enantiomorphic state. Thus, the chirality of F-actin may represent the ultimate origin of cell chirality. Links between cell chirality and left–right body asymmetry are also starting to be revealed in various animal species. In this review, the mechanisms of cell chirality formation and its roles in left–right asymmetric development are discussed, with a focus on the fruit fly Drosophila, in which many of the pioneering studies were conducted.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Niemeyer, Jochen y Noel Pairault. "Chiral Mechanically Interlocked Molecules – Applications of Rotaxanes, Catenanes and Molecular Knots in Stereoselective Chemosensing and Catalysis". Synlett 29, n.º 06 (26 de febrero de 2018): 689–98. http://dx.doi.org/10.1055/s-0036-1591934.

Texto completo
Resumen
Interlocked molecules, such as rotaxanes, catenanes, and molecular knots, offer conceptually new possibilities for the generation of chiral chemosensors and catalysts. Due to the presence of the mechanical or topological bond, interlocked molecules can be used to design functional systems with unprecedented features, such as switchability and deep binding cavities. In addition, classical elements of chirality can be supplemented with mechanical or topological chirality, which have so far only scarcely been employed as sources of chirality for stereoselective applications. This minireview discusses recent examples in this emerging area, showing that the application of chiral interlocked molecules in sensing and catalysis offers many fascinating opportunities for future research.1 Introduction2 Interlocked Molecules with Chiral Subcomponents2.1 Point Chirality2.2 Axial Chirality3 Mechanically Chiral Interlocked Molecules4 Topologically Chiral Interlocked Molecules5 Outlook
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Khan, Iftheker A., Joseph R. V. Flora, A. R. M. Nabiul Afrooz, Nirupam Aich, P. Ariette Schierz, P. Lee Ferguson, Tara Sabo-Attwood y Navid B. Saleh. "Change in chirality of semiconducting single-walled carbon nanotubes can overcome anionic surfactant stabilisation: a systematic study of aggregation kinetics". Environmental Chemistry 12, n.º 6 (2015): 652. http://dx.doi.org/10.1071/en14176.

Texto completo
Resumen
Environmental context Chirally enriched semiconducting single-walled carbon nanotubes (SWNTs) are some of the most utilised nanomaterials. Although chirality of SWNTs is known to influence their electronic properties and interfacial interaction, the interplay between chirality and surfactant structure in SWNT stability is not well understood. This study investigates these interactions, providing data to better assess the environmental fate of SWNTs. Abstract Single-walled carbon nanotubes’ (SWNT) effectiveness in applications is enhanced by debundling or stabilisation. Anionic surfactants are known to effectively stabilise SWNTs. However, the role of specific chirality on surfactant-stabilised SWNT aggregation has not been studied to date. The aggregation behaviour of chirally enriched (6,5) and (7,6) semiconducting SWNTs, functionalised with three anionic surfactants – sodium dodecyl sulfate, sodium dodecyl benzene sulfonate and sodium deoxycholate – was evaluated with time-resolved dynamic light scattering. A wide range of mono- (NaCl) and divalent (CaCl2) electrolytes as well as a 2.5mg total organic carbon (TOC) L–1 Suwannee River humic acid were used as background chemistry. Overall, sodium dodecyl benzene sulfonate showed the most effectiveness in stabilising SWNTs, followed by sodium deoxycholate and sodium dodecyl sulfate. However, the larger diameter (7,6) chirality tubes (compared to (6,5) diameter), compromised the surfactant stability due to enhanced van der Waals interaction. The presence of divalent electrolytes overshadowed the chirality effects and resulted in similar aggregation behaviour for both the SWNT samples. Molecular modelling results elucidated key differences in surfactant conformation on SWNT surfaces and identified interaction energy changes between the two chiralities to delineate aggregation mechanisms. The stability of SWNTs increased in the presence of Suwannee River humic acid under 10mM monovalent and mixed-electrolyte conditions. The results suggest that change in chirality can overcome surfactant stabilisation of semiconducting SWNTs. SWNT stability can also be strongly influenced by the anionic surfactant structure.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Weinberg, Noham y Kurt Mislow. "On chirality measures and chirality properties". Canadian Journal of Chemistry 78, n.º 1 (15 de enero de 2000): 41–45. http://dx.doi.org/10.1139/v99-223.

Texto completo
Resumen
It is shown that chiral zeroes are integral to all pseudoscalar functions, and that these functions, and thus the chirality properties that are described by them, are therefore normally unsuitable as chirality measures. The multidimensional nature of chirality properties is explored. Chirality measures for nonrigid objects and stochastic systems are discussed. It is shown that if the chirality of a nonrigid object is described as a time average of the chirality measures of its instant configurations, this time average is nonzero not only for chiral but also for achiral molecules. This paradox can be resolved if chirality measures are properly applied to nonrigid objects.Key words: chirality, chiral zeroes, chirality measures, chirality properties.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Lee, Edmund J. D. y Ken M. Williams. "Chirality". Clinical Pharmacokinetics 18, n.º 5 (mayo de 1990): 339–45. http://dx.doi.org/10.2165/00003088-199018050-00001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Pirkle, William H., Christopher J. Welch, J. Andrew Burke, Bo Lamm, Patrick Camilleri, Volker Schurig, M. Jung et al. "Chirality". Anal. Proc. 29, n.º 6 (1992): 225–34. http://dx.doi.org/10.1039/ap9922900225.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Roy, Sarita, Kaushik Bhattacharya, Chitra Mandal y Anjan Kr Dasgupta. "Cellular response to chirality and amplified chirality". Journal of Materials Chemistry B 1, n.º 48 (2013): 6634. http://dx.doi.org/10.1039/c3tb21322f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Čepič, Mojca. "Chirality, Chirality Transfer and the Chiroclinic Effect". Molecular Crystals and Liquid Crystals 475, n.º 1 (13 de diciembre de 2007): 151–61. http://dx.doi.org/10.1080/15421400701681141.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Smith, Howard. "Chirality Counts?" Pain Physician 4;15, n.º 4;8 (14 de agosto de 2012): E377—E357. http://dx.doi.org/10.36076/ppj.2012/15/e355.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

&NA;. "Pharmaceuticals?? chirality". Inpharma Weekly &NA;, n.º 947 (julio de 1994): 5. http://dx.doi.org/10.2165/00128413-199409470-00008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Chirality"

1

Sasso, d'Elia Cecilia. "Organocatalyse et multiple bond-forming transformations (MBFTs) comme outils pour le contrôle de la chiralité". Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0371.

Texto completo
Resumen
Depuis des dizaines d’années, les chimistes organiciens ont accru leurs capacités à synthétiser des molécules complexes de manière exponentielle par le développement de nouvelles méthodes toujours plus élaborées. Malgré ces accomplissements, le challenge de synthétiser de nouvelles molécules toujours plus complexes de manière sélective et efficace reste toujours d’actualité. Dans le premier chapitre, nous introduirons la notion de chiralité de manière générale. Ensuite, les différentes stratégies pour contrôler la chiralité en synthèse organique seront exposées, en se focalisant plus particulièrement sur l’organocatalyse énantiosélective. Ensuite, dans le deuxième et troisième chapitre, le contrôle de la chiralité centrale sera étudié d’une part dans une synthèse de tetrahydropyranes et d’autre part dans l’addition de Michael impliquant les 1,3-cetoamides α,β-insaturés. Dans le quatrième chapitre, d’autres types de chiralité moins conventionnelles seront examinées. Tout d’abord, une étude portant sur la racemization des furanes atropisomères sera menée. Ensuite, des stratégie innovantes seront mises en œuvre pour la synthèse [4]- et [5] helicènes via notamment des phénomènes de conversion de chiralité
In the last century, the ability of organic chemists to build complex molecules has grown exponentially. Despite these achievements, the challenge of synthesizing new molecules efficiently and selectively remains open. In the first chapter, we will discuss the definition of chirality as a transversal topic in science. Subsequently we will discuss the different strategies to control chirality in organic synthesis, with a special attention to organocatalysis. In the second and third chapter we will focus on the attempt to control central chirality for the synthesis of substituted tetrahydropyrans and the investigation of the reactivity of α,β-unsaturated 1,3-ketoamides in Michael addition. In the fourth chapter, other less conventional types of chirality will be examined. First, a study on the racemization of atropisomer furans will be conducted. Then, innovative strategies will be implemented for the synthesis [4] - and [5] helicenes via, in particular, chirality conversion approaches
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Cooke, Jason W. B. "Chirality recognition". Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306575.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Sasso, d'Elia Cecilia. "Organocatalyse et multiple bond-forming transformations (MBFTs) comme outils pour le contrôle de la chiralité". Electronic Thesis or Diss., Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0371.

Texto completo
Resumen
Depuis des dizaines d’années, les chimistes organiciens ont accru leurs capacités à synthétiser des molécules complexes de manière exponentielle par le développement de nouvelles méthodes toujours plus élaborées. Malgré ces accomplissements, le challenge de synthétiser de nouvelles molécules toujours plus complexes de manière sélective et efficace reste toujours d’actualité. Dans le premier chapitre, nous introduirons la notion de chiralité de manière générale. Ensuite, les différentes stratégies pour contrôler la chiralité en synthèse organique seront exposées, en se focalisant plus particulièrement sur l’organocatalyse énantiosélective. Ensuite, dans le deuxième et troisième chapitre, le contrôle de la chiralité centrale sera étudié d’une part dans une synthèse de tetrahydropyranes et d’autre part dans l’addition de Michael impliquant les 1,3-cetoamides α,β-insaturés. Dans le quatrième chapitre, d’autres types de chiralité moins conventionnelles seront examinées. Tout d’abord, une étude portant sur la racemization des furanes atropisomères sera menée. Ensuite, des stratégie innovantes seront mises en œuvre pour la synthèse [4]- et [5] helicènes via notamment des phénomènes de conversion de chiralité
In the last century, the ability of organic chemists to build complex molecules has grown exponentially. Despite these achievements, the challenge of synthesizing new molecules efficiently and selectively remains open. In the first chapter, we will discuss the definition of chirality as a transversal topic in science. Subsequently we will discuss the different strategies to control chirality in organic synthesis, with a special attention to organocatalysis. In the second and third chapter we will focus on the attempt to control central chirality for the synthesis of substituted tetrahydropyrans and the investigation of the reactivity of α,β-unsaturated 1,3-ketoamides in Michael addition. In the fourth chapter, other less conventional types of chirality will be examined. First, a study on the racemization of atropisomer furans will be conducted. Then, innovative strategies will be implemented for the synthesis [4] - and [5] helicenes via, in particular, chirality conversion approaches
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Fitzpatrick, Kevin. "Organometallic chirality recognition". Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359451.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Plum, Eric. "Chirality and metamaterials". Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/301296/.

Texto completo
Resumen
Electromagnetic metamaterials are artificial media that derive novel properties from periodic structuring on the sub-wavelength scale. Here, the consequences of two-dimensional (2D) and three-dimensional (3D) chirality for the electromagnetic properties of metamaterials are investigated. The focus of this work is on new ways of achieving circular conversion dichroism, optical activity and negative refraction in highly symmetric structures. In the theoretical part of this work, fundamental constraints on polarization effects in planar metamaterials are established based on symmetry and energy conservation considerations. Through the experimental study of 2D chirality, I have first observed circular conversion dichroism (i) in non-chiral structures and (ii) due to 2D-chiral arrangement of non-chiral elements. (iii) I have first seen enantiomerically sensitive reflection, yielding the experimental demonstration that circular conversion dichroism results in simultaneous directional asymmetries in transmission, reflection and absorption. In particular, a tunable transmission asymmetry of up to 21 % has been observed when extrinsic 2D chirality was associated with oblique incidence onto a non-chiral meandering wire pattern. At normal incidence circular conversion dichroism was seen for non-chiral split ring elements assembled into a 2D-chiral double-periodic array. Simultaneous directional and enantiomeric asymmetries in transmission (16 %), reflection (16 %) and absorption (32 %) were observed for normal incidence onto a double-periodic array of 2D-chiral split rings. Regarding 3D chirality, I have (i) realized the first material with a negative refractive index due to chirality and (ii) observed optical activity in the first stereometamaterial. (iii) I have discovered that optical activity can be observed in non-chiral metamaterials and (iv) I have demonstrated that optical activity in such structures is tunable and occurs in transmission and reflection. In particular polarization rotation reaching 81± and circular dichroism of up to 26 dB have been observed for non-chiral arrays of split rings, when an extrinsically 3D-chiral experimental arrangement was formed by metamaterial and direction of incidence. Based on a previously-studied meta-molecule consisting of mutually twisted metal patterns in parallel planes, microwave and photonic stereometamaterials with optical activity have been realized in this thesis and such a structure has been shown to have a negative refractive index of -1.7 for right-handed circularly polarized microwaves.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Nguyen, Tuong Vi Chemistry Faculty of Science UNSW. "Molecular interactions and chirality". Awarded by:University of New South Wales. School of Chemistry, 2005. http://handle.unsw.edu.au/1959.4/21891.

Texto completo
Resumen
- Alicyclic diols can hydrogen bond in many different ways and yield most interesting structures. In this thesis, eight C2-symmetric diols 48-50, 78, 79 and 81-83 were synthesized and their crystal structures were determined. No less than seven of these show unusual solid state behaviour: 48 and 78 are inclusion hosts; 49, 50 and 78 form doubly-stranded hydrogen-bonded ladder structures, where there is a strong preference for each strand to be homochiral; 78, 81 and 82 undergo self-resolution during recrystallization; and 83 forms chirally pure crystals (but the material is still racemic). - One of the favourable supramolecular synthons for hydroxy compounds is the (O-H)6 cycle of hydrogen bonds. When this cycle is formed by a racemic compound, its enantiomers alternate down-up-down etc. around the cycle. No case of an (O-H)6 cycle involving chirally pure hydroxy compounds is known. These observations indicate a strong preference for the (O-H)6 cycle being constructed from achiral or racemic molecules rather than from chirally pure hydroxyl compounds. Racemic (??)-48 and (??)-92 which are already known to form (O-H)6 cycles in the solid state were prepared in chirally pure form and their X-ray crystal structures determined. No (O-H)6 cycles were observed for these homochiral diols. These findings confirm that the (O-H)6 motif occurs only for achiral or racemic compounds. - Similarly, the edge-to-edge eight-membered aryl C-H???N dimer involves either achiral molecules or those of opposite chirality. No chirally pure dimers of this type are reported. Racemic compounds 42-44 that are known to pack using the C-H???N dimer were synthesized in chirally pure form. No edge-to-edge eight-membered aryl C-H???N dimers were formed in the solid state. Hence this supramolecular synthon is only favoured for achiral or racemic compounds only. - Other major conclusions are that the cause of self-resolution is due to packing energy. In some cases it is likely that solvent choice, or solvent plus temperature selection, can be used to control self-resolution.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Fröhlich, U. "Chirality and ionic liquids". Thesis, Queen's University Belfast, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426700.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Yagi, Shigeyuki. "Studies of Chiral Signal Transmission from Point Chirality to Helical Chirality in Linear Tetrapyrroles". Kyoto University, 1999. http://hdl.handle.net/2433/181331.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Neil, Emily Rose. "Highly luminescent lanthanide chirality probes". Thesis, Durham University, 2015. http://etheses.dur.ac.uk/11390/.

Texto completo
Resumen
The chirality of biological systems can be probed using highly emissive lanthanide complexes with the aid of circularly polarised luminescence and emission spectroscopy. Such chirality probes can be synthesised through the incorporation of a remote chiral centre within the ligand framework, which can preferentially stabilise a particular stereoisomer giving an enantiopure complex of well-defined helicity. Alternatively, lanthanide chirality probes can be derived from achiral or dynamically racemic ligands, where the selective induction of a CPL signal can be monitored as a function of the nature and concentration of a selected chiral analyte. A series of chiral lanthanide complexes has been synthesised. Each complex is based on an amide substituted 1,4,7-triazacyclononane system derived from either R-(+) or S-(-)-α-methylbenzyl amine. The stereochemistry of the amide moiety controls the helicity of the complex, and one major diastereoisomer is formed for each lanthanide metal. The absolute stereochemistry of the major diastereoisomer was determined by X-ray crystallography (S-Δ-λλλ and R-Λ-δδδ). Inclusion of an aryl-alkynyl chromophore generated complexes that exhibited large extinction coefficients (up to 55,000 M-1 cm-1) and high quantum yields (up to 37%) in water. A second set of bright Eu (III) complexes has been prepared based on an achiral heptadentate ligand system, which vary in the nature of the pyridyl donor (phosphinate, carboxylate and amide). The binding of a number of chiral acids including lactate, mandelate and cyclohexylhydroxyacetate was monitored by a change in the emission spectrum and the induction of strong CPL. Empirical analysis of the ΔJ = 4 region of each of the Eu (III) complexes allows an assignment of the complex-anion adducts as R-Δ and S-Λ. Furthermore, variations in the sign and magnitude of CPL allow the enantiomeric purity of samples with unknown enantiomeric composition to be assessed. Finally, several dynamically racemic lanthanide chirality probes have been synthesised and characterised. Induced CPL has been assessed, which arises as a result of the change in complex constitution upon binding to important chiral biomolecules such as, sialic acid, O-phosphono-amino acids and peptides and oleoyl-L-lysophosphatidic acid (LPA). This work presents the first example of induced CPL in the detection of cancer biomarkers, sialic acid and LPA, and demonstrates the utility of this class of dynamically racemic Eu (III) complexes as chirality probes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Slaney, Andrew John. "Frustration and chirality in anisotropic fluids". Thesis, University of Hull, 1992. http://hydra.hull.ac.uk/resources/hull:3698.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Chirality"

1

Janoschek, Rudolf, ed. Chirality. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76569-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Caglioti, Luciano, G. Pályi y C. Zucchi. Organometallic chirality. Modena: Mucchi, 2008.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Green, Mark M., R. J. M. Nolte y E. W. Meijer, eds. Materials-Chirality. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2003. http://dx.doi.org/10.1002/0471471895.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Crego-Calama, Mercedes y David N. Reinhoudt, eds. Supramolecular Chirality. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11406174.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Hicks, Janice M., ed. Chirality: Physical Chemistry. Washington, DC: American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2002-0810.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Flügel, Rolf M. Chirality and Life. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16977-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Soai, Kenso, ed. Amplification of Chirality. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77869-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

N, Collins A., Sheldrake G. N y Crosby J, eds. Chirality in industry. Chichester [England]: Wiley, 1992.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Norio, Kurihara y Miyamoto J, eds. Chirality in agrochemicals. Chichester: Wiley, 1998.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

M, Hicks Janice, ed. Chirality: Physical chemistry. Washington, DC: American Chemical Society, 2002.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Chirality"

1

Gooch, Jan W. "Chirality". En Encyclopedic Dictionary of Polymers, 139. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2302.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Nahler, Gerhard. "chirality". En Dictionary of Pharmaceutical Medicine, 25. Vienna: Springer Vienna, 2009. http://dx.doi.org/10.1007/978-3-211-89836-9_185.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Blackmond, Donna. "Chirality". En Encyclopedia of Astrobiology, 445–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_283.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Aitken, R. A. "Chirality". En Asymmetric Synthesis, 1–21. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-1346-5_1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Goldberg, Stanley I. "Chirality". En Encyclopedia of Astrobiology, 297–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_283.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Lekner, John. "Chirality". En Theory of Electromagnetic Beams, 95–110. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-031-02082-7_5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Blackmond, Donna. "Chirality". En Encyclopedia of Astrobiology, 1–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_283-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Blackmond, Donna. "Chirality". En Encyclopedia of Astrobiology, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27833-4_283-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Blackmond, Donna. "Chirality". En Encyclopedia of Astrobiology, 554–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_283.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Latal, H. "Parity Violation in Atomic Physics". En Chirality, 1–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76569-8_1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Chirality"

1

Lin, Zhiqiu, Jin Sun, Abe Davis y Noah Snavely. "Visual Chirality". En 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020. http://dx.doi.org/10.1109/cvpr42600.2020.01231.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Starosta, Krzysztof. "Nuclear Chirality". En NUCLEI AT THE LIMITS. AIP, 2005. http://dx.doi.org/10.1063/1.1905294.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Tang, Ben Zhong, Haoke Zhang, Wing Yip LAM y Tsz Kin KWOK. "Aggregation and chirality". En Liquid Crystals XXII, editado por Iam Choon Khoo. SPIE, 2018. http://dx.doi.org/10.1117/12.2324632.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Brandenburg, Axel. "Chirality in Astrophysics". En Nobel Symposium 167: Chiral Matter. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811265068_0002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Felser, C. y J. Gooth. "Topology and Chirality". En Nobel Symposium 167: Chiral Matter. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811265068_0010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

DIMITROV, V. y S. FRAUENDORF. "CHIRALITY OF ROTATING NUCLEI". En Proceedings of the Third International Conference. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705211_0013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Lombardi, Andrea, Federico Palazzetti, Vincenzo Aquilanti y Gaia Grossi. "Chirality in molecular collisions". En PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2017 (ICCMSE-2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5012291.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Pedersen, Jesper G. y Niels A. Mortensen. "Spectral signatures of chirality". En SPIE NanoScience + Engineering, editado por Mikhail A. Noginov, Nikolay I. Zheludev, Allan D. Boardman y Nader Engheta. SPIE, 2009. http://dx.doi.org/10.1117/12.824870.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Fabre, Baptiste, A. Ferre, C. Handschin, M. Dumergue, F. Burgy, A. Comby, D. Descamps et al. "Probing Ultrafast Molecular Chirality". En High Intensity Lasers and High Field Phenomena. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/hilas.2016.hm1b.1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Tonev, D., G. de Angelis, S. Brant, P. Petkov, A. Ventura, Matko Milin, Tamara Niksic, Suzana Szilner y Dario Vretenar. "Dynamic Chirality in Nuclei". En NUCLEAR STRUCTURE AND DYNAMICS ’09: Proceedings of the International Conference. AIP, 2009. http://dx.doi.org/10.1063/1.3232078.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Chirality"

1

Nemat-Nasser, Siavouche. Structural Composites With Tuned EM Chirality. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 2014. http://dx.doi.org/10.21236/ada613691.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Nemat-Nasser, Sia. Structural Composites with Tuned EM Chirality. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2009. http://dx.doi.org/10.21236/ada524300.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Freiman, Stephen, Jeffrey A. Fagan, Stephanie Hooker, Kalman B. Migler, Angela R. Hight Walker y Ming Zheng, eds. Fourth NIST Workshop on Carbon Nanotubes: Chirality Measurements. Gaithersburg, MD: National Institute of Standards and Technology, enero de 2013. http://dx.doi.org/10.6028/nist.sp.1133.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Markert, Christina. A experimental research program on chirality at the LHC. Office of Scientific and Technical Information (OSTI), septiembre de 2016. http://dx.doi.org/10.2172/1325001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Kim, Seung M. Investigation of Chirality Selection Mechanism of Single-Walled Carbon Nanotube. Fort Belvoir, VA: Defense Technical Information Center, julio de 2015. http://dx.doi.org/10.21236/ada626886.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

de Teramond, Guy F. Possible Origin of Fermion Chirality and Gut Structure From Extra Dimensions. Office of Scientific and Technical Information (OSTI), octubre de 1998. http://dx.doi.org/10.2172/9933.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

de Teramond, Guy F. Possible Origin of Fermion Chirality and Gut Structure From Extra Dimensions. Office of Scientific and Technical Information (OSTI), julio de 1999. http://dx.doi.org/10.2172/6303006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Wang, Bingnan. Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality. Office of Scientific and Technical Information (OSTI), enero de 2009. http://dx.doi.org/10.2172/972072.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Horton, David, Victoria Soroker, Peter Landolt y Anat Zada Byers. Characterization and Chemistry of Sexual Communication in Two Psyllid Pests of Pears (Homoptera: Psyllidae). United States Department of Agriculture, agosto de 2011. http://dx.doi.org/10.32747/2011.7592653.bard.

Texto completo
Resumen
Pear-feeding psyllids in the genus Cacopsylla (Hemiptera: Psyllidae) are among the most important arthropod pests of pears worldwide. These pests are exceedingly difficult to control, and new management tools are needed. Sex attractantpheromones have been used in IPM programs for pests of pome fruits (especially Lepidoptera), but not as yet for pest Hemiptera. Results of the current project showed that males of two psyllid pests of pears, Cacopsylla bidens (Israel) and Cacopsylla pyricola (North America), use volatile or semi-volatile compounds to locate female psyllids for mating. For both species, the attractants can be collected from the cuticle of females by washing live female psyllids with an appropriate solvent. Analysis of these washes by gas chromatography – mass spectrometry led to the following discoveries: Psyllid cuticles contain a mix of hydrocarbons, straight chain and branched alkanes, and long chain aldehydes The two species have different chemical profiles Chemical profiles change seasonally and with reproductive status Chemical profiles differ between male and reproductive female psyllids Several specific compounds found to be more abundant in attractive females than males were identified and synthesized. Behavioral assays (olfactometer) were then used to determine whether these compounds were attractive to males. Two compounds showed promise as attractants for male psyllids: 7-methylheptacosane (C. bidens) and 13-methylheptacosane (C. pyricola and C. bidens). These are the first sex attractantpheromones identified for any psyllid species. Field tests showed that the chemicals could be used to attract males under orchard conditions, but that effectiveness in the field appeared to be seasonally variable. Future research plans include: (a) test mixtures of compounds; (b) explore seasonality in field response to compounds; (c) determine whether chirality of the two compounds affects their attractiveness; and (d) compare different types of traps and release devices to optimize lure performance.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Roberts, C. D., Z. Dong y H. J. Munczek. Gauge covariant fermion propagator in quenched, chirally symmetric quantum electrodynamics. Office of Scientific and Technical Information (OSTI), agosto de 1995. http://dx.doi.org/10.2172/166442.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía