Artículos de revistas sobre el tema "Chemoenzymatic catalysis"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Chemoenzymatic catalysis.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Chemoenzymatic catalysis".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Pauly, Jan, Harald Gröger y Anant V. Patel. "Developing Multicompartment Biopolymer Hydrogel Beads for Tandem Chemoenzymatic One-Pot Process". Catalysts 9, n.º 6 (18 de junio de 2019): 547. http://dx.doi.org/10.3390/catal9060547.

Texto completo
Resumen
Chemoenzymatic processes have been gaining interest to implement sustainable reaction steps or even create new synthetic routes. In this study, we combined Grubbs’ second-generation catalyst with pig liver esterase and conducted a chemoenzymatic one-pot process in a tandem mode. To address sustainability, we encapsulated the catalysts in biopolymer hydrogel beads and conducted the reaction cascade in an aqueous medium. Unfortunately, conducting the process in tandem led to increased side product formation. We then created core-shell beads with catalysts located in different compartments, which notably enhanced the selectivity towards the desired product compared to homogeneously distributing both catalysts within the matrix. Finally, we designed a specific large-sized bead with a diameter of 13.5 mm to increase the diffusion route of the Grubbs’ catalyst-containing shell. This design forced the ring-closing metathesis to occur first before the substrate could diffuse into the pig liver esterase-containing core, thus enhancing the selectivity to 75%. This study contributes to addressing reaction-related issues by designing specific immobilisates for chemoenzymatic processes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Xu, Yuanfeng, Meng Wang, Bo Feng, Ziyang Li, Yuanhua Li, Hexing Li y Hui Li. "Dynamic kinetic resolution of aromatic sec-alcohols by using a heterogeneous palladium racemization catalyst and lipase". Catalysis Science & Technology 7, n.º 24 (2017): 5838–42. http://dx.doi.org/10.1039/c7cy01954h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Mertens, M. A. Stephanie, Daniel F. Sauer, Ulrich Markel, Johannes Schiffels, Jun Okuda y Ulrich Schwaneberg. "Chemoenzymatic cascade for stilbene production from cinnamic acid catalyzed by ferulic acid decarboxylase and an artificial metathease". Catalysis Science & Technology 9, n.º 20 (2019): 5572–76. http://dx.doi.org/10.1039/c9cy01412h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Kadokawa, Jun-ichi. "Enzymatic preparation of functional polysaccharide hydrogels by phosphorylase catalysis". Pure and Applied Chemistry 90, n.º 6 (27 de junio de 2018): 1045–54. http://dx.doi.org/10.1515/pac-2017-0802.

Texto completo
Resumen
Abstract This article reviews enzymatic preparation of functional polysaccharide hydrogels by means of phosphorylase-catalyzed enzymatic polymerization. A first topic of this review deals with the synthesis of amylose-grafted polymeric materials and their formation of hydrogels, composed of abundant natural polymeric main-chains, such as chitosan, cellulose, xantham gum, carboxymethyl cellulose, and poly(γ-glutamic acid). Such synthesis was achieved by combining the phosphorylase-catalyzed enzymatic polymerization forming amylose with the appropriate chemical reaction (chemoenzymatic method). An amylose-grafted chitin nanofiber hyrogel was also prepared by the chemoenzymatic approach. As a second topic, the preparation of glycogen hydrogels by the phosphorylase-catalyzed enzymatic reactions was described. When the phosphorylase-catalyzed enzymatic polymerization from glycogen as a polymeric primer was carried out, followed by standing the reaction mixture at room temperature, a hydrogel was obtained. pH-Responsive amphoteric glycogen hydrogels were also fabricated by means of the successive phosphorylase-catalyzed enzymatic reactions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Horvat, Melissa, Victoria Weilch, Robert Rädisch, Sebastian Hecko, Astrid Schiefer, Florian Rudroff, Birgit Wilding et al. "Chemoenzymatic one-pot reaction from carboxylic acid to nitrile via oxime". Catalysis Science & Technology 12, n.º 1 (2022): 62–66. http://dx.doi.org/10.1039/d1cy01694f.

Texto completo
Resumen
We report a new chemoenzymatic cascade starting with aldehyde synthesis by carboxylic acid reductase (CAR) followed by chemical in situ oxime formation and enzymatic dehydration by aldoxime dehydratase (Oxd).
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Reymond, Jean-Louis y Jérémy Boilevin. "Synthesis of Lipid-Linked Oligosaccharides (LLOs) and Their Phosphonate Analogues as Probes To Study Protein Glycosylation Enzymes". Synthesis 50, n.º 14 (26 de junio de 2018): 2631–54. http://dx.doi.org/10.1055/s-0037-1609735.

Texto completo
Resumen
Here we review chemical and chemoenzymatic methods for the synthesis of lipid-linked oligosaccharides (LLOs) and their phosphonate analogues, which serve as substrates and inhibitors to investigate the structure and mechanism of protein N-glycosylation enzymes. We emphasize how to overcome the challenges pertaining to the instability and difficult physicochemical properties of this class of compounds.1 Introduction2 LLO Syntheses2.1 Glycosyl Phosphate Syntheses2.2 Glycosyl Phosphonates2.3 Lipid Elongation2.4 Lipid Phosphates2.5 Coupling Reaction Strategies3 Chemoenzymatic Synthesis of Elongated LLOs4 Biological Properties of Synthetic LLOs5 Conclusion
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kuska, Justyna, Freya Taday, Kathryn Yeow, James Ryan y Elaine O'Reilly. "An in vitro–in vivo sequential cascade for the synthesis of iminosugars from aldoses". Catalysis Science & Technology 11, n.º 13 (2021): 4327–31. http://dx.doi.org/10.1039/d1cy00698c.

Texto completo
Resumen
Here, we report a chemoenzymatic approach for the preparation of a small panel of biologically important iminosugars from readily available aldoses, employing a transaminase in combination with Gluconobacter oxydans whole cells.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Gao, Liya, Zihan Wang, Yunting Liu, Pengbo Liu, Shiqi Gao, Jing Gao y Yanjun Jiang. "Co-immobilization of metal and enzyme into hydrophobic nanopores for highly improved chemoenzymatic asymmetric synthesis". Chemical Communications 56, n.º 88 (2020): 13547–50. http://dx.doi.org/10.1039/d0cc06431a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Wu, Yuqi, Jiawei Shen, Dong Yang, Daozhu Xu, Menghan Huang y Yucai He. "Production of Furfuryl Alcohol from Corncob Catalyzed By CCZU-KF Cell Via Chemoenzymatic Approach". Academic Journal of Science and Technology 6, n.º 1 (2 de junio de 2023): 132–38. http://dx.doi.org/10.54097/ajst.v6i1.9022.

Texto completo
Resumen
In this work, the hybrid route of chemo-catalysis and bio-catalysis were used to chemoenzymatically catalyze corncob to produce furfuryl alcohol via sequential conversion with solid acid catalyst at 180 ℃ for 10 min, and E. coli CCZU-KF whole-cell biocatalyst at 35 ℃ for 72 h in 10 vol% choline chloride system. The yield of furfuryl alcohol was 97.7%. This work successfully demonstrated the green and efficient synthesis of furfuryl alcohol production from biomass via chemoenzymatic approach.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Gadler, P., S. M. Glueck, W. Kroutil, B. M. Nestl, B. Larissegger-Schnell, B. T. Ueberbacher, S. R. Wallner y K. Faber. "Biocatalytic approaches for the quantitative production of single stereoisomers from racemates". Biochemical Society Transactions 34, n.º 2 (20 de marzo de 2006): 296–300. http://dx.doi.org/10.1042/bst0340296.

Texto completo
Resumen
Strategies for the chemoenzymatic transformation of a racemate into a single stereoisomeric product in quantitative yield have been developed. A range of industrially relevant α-hydroxycarboxylic acids was deracemized in a stepwise fashion via lipase-catalysed enantioselective O-acylation, followed by mandelate racemase-catalysed racemization of the remaining non-reacted substrate enantiomer. Alternatively, aliphatic α-hydroxycarboxylic acids were enzymatically isomerized using whole resting cells of Lactobacillus spp. Enantioselective hydrolysis of rac-sec-alkyl sulphate esters was accomplished using novel alkyl sulphatases of microbial origin. The stereochemical path of catalysis could be controlled by choice of the biocatalyst. Whereas Rhodococcus ruber DSM 44541 and Sulfolobus acidocaldarius DSM 639 act through inversion of configuration, stereo-complementary retaining sulphatase activity was detected in the marine planctomycete Rhodopirellula baltica DSM 10527.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Tiso, Till, Daniel F. Sauer, Klaus Beckerle, Christian C. Blesken, Jun Okuda y Lars M. Blank. "A Combined Bio-Chemical Synthesis Route for 1-Octene Sheds Light on Rhamnolipid Structure". Catalysts 10, n.º 8 (4 de agosto de 2020): 874. http://dx.doi.org/10.3390/catal10080874.

Texto completo
Resumen
Here we report a chemoenzymatic approach to synthesize 1-octene from carbohydrates via ethenolysis of rhamnolipids. Rhamnolipids synthesized by P. putida contain a double bond between carbon five and six, which is experimentally confirmed via olefin cross metathesis. Utilizing these lipids in the ethenolysis catalyzed by a Grubbs−Hoveyda-type catalyst selectively generates 1-octene and with good conversions. This study shows the potential of chemoenzymatic approaches to produce compounds for the chemical industry from renewable resources.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Júnior, Aldo Araújo da Trindade, Yan Ferraz Ximenes Ladeira, Alexandre da Silva França, Rodrigo Octavio Mendonça Alves de Souza, Adolfo Henrique Moraes, Robert Wojcieszak, Ivaldo Itabaiana Jr. y Amanda Silva de Miranda. "Multicatalytic Hybrid Materials for Biocatalytic and Chemoenzymatic Cascades—Strategies for Multicatalyst (Enzyme) Co-Immobilization". Catalysts 11, n.º 8 (31 de julio de 2021): 936. http://dx.doi.org/10.3390/catal11080936.

Texto completo
Resumen
During recent decades, the use of enzymes or chemoenzymatic cascades for organic chemistry has gained much importance in fundamental and industrial research. Moreover, several enzymatic and chemoenzymatic reactions have also served in green and sustainable manufacturing processes especially in fine chemicals, pharmaceutical, and flavor/fragrance industries. Unfortunately, only a few processes have been applied at industrial scale because of the low stabilities of enzymes along with the problematic processes of their recovery and reuse. Immobilization and co-immobilization offer an ideal solution to these problems. This review gives an overview of all the pathways for enzyme immobilization and their use in integrated enzymatic and chemoenzymatic processes in cascade or in a one-pot concomitant execution. We place emphasis on the factors that must be considered to understand the process of immobilization. A better understanding of this fundamental process is an essential tool not only in the choice of the best route of immobilization but also in the understanding of their catalytic activity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Tanaka, Tomonari, Ayane Matsuura, Yuji Aso y Hitomi Ohara. "One-pot chemoenzymatic synthesis of glycopolymers from unprotected sugars via glycosidase-catalysed glycosylation using triazinyl glycosides". Chemical Communications 56, n.º 71 (2020): 10321–24. http://dx.doi.org/10.1039/d0cc02838j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Rajput, Anshul, Arijit De, Amit Mondal, Kiran Das, Biswanath Maity y Syed Masood Husain. "A biocatalytic approach towards the preparation of natural deoxyanthraquinones and their impact on cellular viability". New Journal of Chemistry 46, n.º 7 (2022): 3087–90. http://dx.doi.org/10.1039/d1nj05513e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Mosley, Sylvester L., Pumtiwitt C. Rancy, Dwight C. Peterson, Justine Vionnet, Rina Saksena y Willie F. Vann. "Chemoenzymatic synthesis of conjugatable oligosialic acids". Biocatalysis and Biotransformation 28, n.º 1 (24 de noviembre de 2009): 41–50. http://dx.doi.org/10.3109/10242420903388694.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Yang, Shangjin, Walter Hayden, Kurt Faber y Herfried Griengl. "Chemoenzymatic Synthesis of (R)-(-)-Citramalic Acid". Synthesis 1992, n.º 04 (1992): 365–66. http://dx.doi.org/10.1055/s-1992-26110.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Rutjes, Floris, Stan Groothuys, Brian Kuijpers, Peter Quaedflieg, Harlof Roelen, Roel Wiertz, Richard Blaauw y Floris van Delft. "Chemoenzymatic Synthesis of Triazole-Linked Glycopeptides". Synthesis 2006, n.º 18 (25 de julio de 2006): 3146–52. http://dx.doi.org/10.1055/s-2006-942509.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Baisch, Gabi y Reinhold Öhrlein. "Chemoenzymatic Synthesis of Sialyl Lewisx Glycopeptides". Angewandte Chemie International Edition in English 35, n.º 16 (6 de septiembre de 1996): 1812–15. http://dx.doi.org/10.1002/anie.199618121.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Priyanka, Pragya, Thomas B. Parsons, Antonia Miller, Frances M. Platt y Antony J. Fairbanks. "Chemoenzymatic Synthesis of a Phosphorylated Glycoprotein". Angewandte Chemie International Edition 55, n.º 16 (11 de marzo de 2016): 5058–61. http://dx.doi.org/10.1002/anie.201600817.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Zhang, Jiabin, Ding Liu, Varma Saikam, Madhusudhan R. Gadi, Christopher Gibbons, Xuan Fu, Heliang Song et al. "Machine‐Driven Chemoenzymatic Synthesis of Glycopeptide". Angewandte Chemie International Edition 59, n.º 45 (31 de agosto de 2020): 19825–29. http://dx.doi.org/10.1002/anie.202001124.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Drauz, Karlheinz, Matthias Kottenhahn, Kyriakos Makryaleas, Herbert Klenk y Michael Bernd. "Chemoenzymatic Syntheses ofω-UreidoD-Amino Acids". Angewandte Chemie International Edition in English 30, n.º 6 (junio de 1991): 712–14. http://dx.doi.org/10.1002/anie.199107121.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Li, Shuwei y Dexing Zeng. "Chemoenzymatic Enrichment of Phosphotyrosine-Containing Peptides". Angewandte Chemie International Edition 46, n.º 25 (18 de junio de 2007): 4751–53. http://dx.doi.org/10.1002/anie.200700633.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Himiyama, Tomoki y Yasunori Okamoto. "Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications". Molecules 25, n.º 13 (30 de junio de 2020): 2989. http://dx.doi.org/10.3390/molecules25132989.

Texto completo
Resumen
Artificial metalloenzymes (ArMs) comprise a synthetic metal complex in a protein scaffold. ArMs display performances combining those of both homogeneous catalysts and biocatalysts. Specifically, ArMs selectively catalyze non-natural reactions and reactions inspired by nature in water under mild conditions. In the past few years, the construction of ArMs that possess a genetically incorporated unnatural amino acid and the directed evolution of ArMs have become of great interest in the field. Additionally, biochemical applications of ArMs have steadily increased, owing to the fact that compartmentalization within a protein scaffold allows the synthetic metal complex to remain functional in a sea of inactivating biomolecules. In this review, we present updates on: (1) the newly reported ArMs, according to their type of reaction, and (2) the unique biochemical applications of ArMs, including chemoenzymatic cascades and intracellular/in vivo catalysis. We believe that ArMs have great potential as catalysts for organic synthesis and as chemical biology tools for pharmaceutical applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Dong, Mengmeng, Jiawen Chen, Jiebing Yang, Wei Jiang, Haobo Han, Quanshun Li y Yan Yang. "Chemoenzymatic synthesis of a cholesterol-g-poly(amine-co-ester) carrier for p53 gene delivery to inhibit the proliferation and migration of tumor cells". New Journal of Chemistry 42, n.º 16 (2018): 13541–48. http://dx.doi.org/10.1039/c8nj02574f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Chênevert, Robert y Michel Desjardins. "Chemoenzymatic enantioselective synthesis of baclofen". Canadian Journal of Chemistry 72, n.º 11 (1 de noviembre de 1994): 2312–17. http://dx.doi.org/10.1139/v94-294.

Texto completo
Resumen
We report two different chemoenzymatic enantioselective syntheses of baclofen based on the distinction between enantiotopic ester groups in compounds bearing a prochiral centre. In the first approach, the key step is the highly stereoselective enzymatic hydrolysis of dimethyl 3-(4-chlorophenyl)glutarate by chymotrypsin in an aqueous medium. In the second approach, the key step is the enzyme-catalyzed esterification of 2-(4-chloropheny 1)-1,3-propanediol by acetic anhydride in the presence of a lipase in an organic medium.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Chênevert, Robert, Ghodsi Mohammadi-Ziarani, Dave Caron y Mohammed Dasser. "Chemoenzymatic enantioselective synthesis of (-)-enterolactone". Canadian Journal of Chemistry 77, n.º 2 (1 de febrero de 1999): 223–26. http://dx.doi.org/10.1139/v98-231.

Texto completo
Resumen
Enterolactone, a lignan isolated from biological fluids of animals and humans, was synthesized via enzymatic desymmetrization of 2-(3-methoxybenzyl)-1,3-propanediol.Key words: enterolactone, synthesis, lipase, desymmetrization, lignan.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Chen, Shaohang, Jiaan Zhang, Zhigang Zeng, Zongjie Dai, Qinhong Wang, Ron Wever, Frank Hollmann y Wuyuan Zhang. "Chemoenzymatic intermolecular haloether synthesis". Molecular Catalysis 517 (enero de 2022): 112061. http://dx.doi.org/10.1016/j.mcat.2021.112061.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Korpak, Margarete y Jörg Pietruszka. "Chemoenzymatic One-Pot Synthesis of γ-Butyrolactones". Advanced Synthesis & Catalysis 353, n.º 9 (junio de 2011): 1420–24. http://dx.doi.org/10.1002/adsc.201100110.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Sigmund, Amy E., Wonpyo Hong, Rafael Shapiro y Robert DiCosimo. "Chemoenzymatic Synthesis ofcis-4-Hydroxy-D-proline". Advanced Synthesis & Catalysis 343, n.º 6-7 (agosto de 2001): 587–90. http://dx.doi.org/10.1002/1615-4169(200108)343:6/7<587::aid-adsc587>3.0.co;2-v.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Thiem, Joachim y Torsten Wiemann. "Combined Chemoenzymatic Synthesis ofN-Glycoprotein Building Blocks". Angewandte Chemie International Edition in English 29, n.º 1 (enero de 1990): 80–82. http://dx.doi.org/10.1002/anie.199000801.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Thiem, Joachim y Bernd Sauerbrei. "Chemoenzymatic Syntheses of Sialyloligosaccharides with Immobilized Sialidase". Angewandte Chemie International Edition in English 30, n.º 11 (noviembre de 1991): 1503–5. http://dx.doi.org/10.1002/anie.199115031.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Wang, Shuaishuai, Qing Zhang, CongCong Chen, Yuxi Guo, Madhusudhan Reddy Gadi, Jin Yu, Ulrika Westerlind et al. "Facile Chemoenzymatic Synthesis of O-Mannosyl Glycans". Angewandte Chemie International Edition 57, n.º 30 (18 de mayo de 2018): 9268–73. http://dx.doi.org/10.1002/anie.201803536.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Meng, Caicai, Aniruddha Sasmal, Yan Zhang, Tian Gao, Chang-Cheng Liu, Naazneen Khan, Ajit Varki, Fengshan Wang y Hongzhi Cao. "Chemoenzymatic Assembly of Mammalian O-Mannose Glycans". Angewandte Chemie International Edition 57, n.º 29 (25 de junio de 2018): 9003–7. http://dx.doi.org/10.1002/anie.201804373.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Lu, Weigang, Chengli Zong, Pradeep Chopra, Lauren E. Pepi, Yongmei Xu, I. Jonathan Amster, Jian Liu y Geert-Jan Boons. "Controlled Chemoenzymatic Synthesis of Heparan Sulfate Oligosaccharides". Angewandte Chemie International Edition 57, n.º 19 (30 de marzo de 2018): 5340–44. http://dx.doi.org/10.1002/anie.201800387.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Doyon, Tyler J., Jonathan C. Perkins, Summer A. Baker Dockrey, Evan O. Romero, Kevin C. Skinner, Paul M. Zimmerman y Alison R. H. Narayan. "Chemoenzymatic o-Quinone Methide Formation". Journal of the American Chemical Society 141, n.º 51 (16 de diciembre de 2019): 20269–77. http://dx.doi.org/10.1021/jacs.9b10474.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Hollmann, Frank, Andreas Kleeb, Katja Otto y Andreas Schmid. "Coupled chemoenzymatic transfer hydrogenation catalysis for enantioselective reduction and oxidation reactions". Tetrahedron: Asymmetry 16, n.º 21 (octubre de 2005): 3512–19. http://dx.doi.org/10.1016/j.tetasy.2005.09.026.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Cao, Yuan, Giang K. T. Nguyen, James P. Tam y Chuan-Fa Liu. "Butelase-mediated synthesis of protein thioesters and its application for tandem chemoenzymatic ligation". Chemical Communications 51, n.º 97 (2015): 17289–92. http://dx.doi.org/10.1039/c5cc07227a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Hitt, David M., Yamina Belabassi, Joyce Suhy, Clifford E. Berkman y Charles M. Thompson. "Chemoenzymatic resolution of rac-malathion". Tetrahedron: Asymmetry 25, n.º 6-7 (abril de 2014): 529–33. http://dx.doi.org/10.1016/j.tetasy.2014.02.013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Li, Huanhuan, Sabry H. H. Younes, Shaohang Chen, Peigao Duan, Chengsen Cui, Ron Wever, Wuyuan Zhang y Frank Hollmann. "Chemoenzymatic Hunsdiecker-Type Decarboxylative Bromination of Cinnamic Acids". ACS Catalysis 12, n.º 8 (4 de abril de 2022): 4554–59. http://dx.doi.org/10.1021/acscatal.2c00485.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Endoma-Arias, Mary Ann, Mariia Makarova, Helen Dela Paz y Tomas Hudlicky. "Chemoenzymatic Total Synthesis of (+)-Oxycodone from Phenethyl Acetate". Synthesis 51, n.º 01 (20 de noviembre de 2018): 225–32. http://dx.doi.org/10.1055/s-0037-1611335.

Texto completo
Resumen
The stereoselective total synthesis of unnatural (+)-oxy­codone from phenethyl acetate is described. Absolute stereochemistry was established via microbial dihydroxylation of phenethyl acetate with the recombinant strain JM109 (pDTG601A) to the corresponding cis-cyclohexadienediol­ whose configuration provides for the absolute stereo­chemistry of the ring C of (+)-oxycodone. Intramolecular Heck cyclization was employed to establish the quaternary carbon at C-13, along with the dibenzodihydrofuran functionality. The C-14 hydroxyl was installed via SmI2-mediated radical cyclization. The synthesis of (+)-oxy­codone was completed in a total of 13 steps and an overall yield of 1.5%. Experimental and spectral data are provided for all new compounds.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Unverzagt, Carlo. "Chemoenzymatic Synthesis of a Sialylated Undecasaccharide–Asparagine Conjugate". Angewandte Chemie International Edition in English 35, n.º 20 (1 de noviembre de 1996): 2350–53. http://dx.doi.org/10.1002/anie.199623501.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Johnson, Luke A., Alice Dunbabin, Jennifer C. R. Benton, Robert J. Mart y Rudolf K. Allemann. "Modular Chemoenzymatic Synthesis of Terpenes and their Analogues". Angewandte Chemie International Edition 59, n.º 22 (25 de marzo de 2020): 8486–90. http://dx.doi.org/10.1002/anie.202001744.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Maiti, Sampa, Saikat Manna, Nicholas Banahene, Lucynda Pham, Zhijie Liang, Jun Wang, Yi Xu et al. "From Glucose to Polymers: A Continuous Chemoenzymatic Process". Angewandte Chemie International Edition 59, n.º 43 (20 de agosto de 2020): 18943–47. http://dx.doi.org/10.1002/anie.202006468.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Nikoshvili, Linda Z. y Valentina G. Matveeva. "Recent Progress in Pd-Catalyzed Tandem Processes". Catalysts 13, n.º 8 (15 de agosto de 2023): 1213. http://dx.doi.org/10.3390/catal13081213.

Texto completo
Resumen
In recent years, Pd-containing catalytic systems for tandem processes have gained special attention due to their enhanced catalytic properties and their possibility of performing several reactions without the necessity of separating the intermediates. In this review, recent progress in Pd-catalyzed tandem processes is considered. Three types of catalytic systems are described: homogeneous catalysts (including immobilized Pd complexes); heterogeneous catalysts supported on oxides, MOFs, COFs, etc., with particular attention to the supports containing acid/base sites; and metal-enzyme catalysts for chemoenzymatic tandem processes applied in fine organic synthesis and biotechnology. For homogeneous Pd-catalyzed reactions, different tandem reactions were considered, i.e., cross-coupling, cyclization, carbonylation, isomerization, alkylation, arylation, etc.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Lima, Gledson Vieira, Marcos Reinaldo da Silva, Thiago de Sousa Fonseca, Leandro Bezerra de Lima, Maria da Conceição Ferreira de Oliveira, Telma Leda Gomes de Lemos, Davila Zampieri et al. "Chemoenzymatic synthesis of (S)-Pindolol using lipases". Applied Catalysis A: General 546 (septiembre de 2017): 7–14. http://dx.doi.org/10.1016/j.apcata.2017.08.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Lin, Hening y Christopher T. Walsh. "A Chemoenzymatic Approach to Glycopeptide Antibiotics". Journal of the American Chemical Society 126, n.º 43 (noviembre de 2004): 13998–4003. http://dx.doi.org/10.1021/ja045147v.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Angelastro, Antonio, William M. Dawson, Louis Y. P. Luk, E. Joel Loveridge y Rudolf K. Allemann. "Chemoenzymatic Assembly of Isotopically Labeled Folates". Journal of the American Chemical Society 139, n.º 37 (6 de septiembre de 2017): 13047–54. http://dx.doi.org/10.1021/jacs.7b06358.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Ko, Kwang-Seuk, Corbin J. Zea y Nicola L. Pohl. "Strategies for the Chemoenzymatic Synthesis of Deoxysugar Nucleotides: Substrate Binding versus Catalysis". Journal of Organic Chemistry 70, n.º 5 (marzo de 2005): 1919–21. http://dx.doi.org/10.1021/jo048424p.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Mathew, Sam, Arunachalam Sagadevan, Dominik Renn y Magnus Rueping. "One-Pot Chemoenzymatic Conversion of Alkynes to Chiral Amines". ACS Catalysis 11, n.º 20 (29 de septiembre de 2021): 12565–69. http://dx.doi.org/10.1021/acscatal.1c03474.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Chakraborti, Asit, U. Banerjee, Linga Banoth, Bhukya Chandarrao y Brahmam Pujala. "Efficient Chemoenzymatic Synthesis of (RS)-, (R)-, and (S)-Bunitrolol". Synthesis 46, n.º 04 (11 de diciembre de 2013): 479–88. http://dx.doi.org/10.1055/s-0033-1340465.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía