Artículos de revistas sobre el tema "Chemical engineers"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Chemical engineers.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Chemical engineers".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Heydorn, K. y Elo Harald Hansen. "Metrology for chemical engineers". Accreditation and Quality Assurance 6, n.º 2 (8 de febrero de 2001): 75–77. http://dx.doi.org/10.1007/pl00010442.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Emmert, Richard E. "Chemical Engineers: At the Forefront". Science 249, n.º 4973 (7 de septiembre de 1990): 1094. http://dx.doi.org/10.1126/science.249.4973.1094.c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Emmert, Richard E. "Chemical Engineers: At the Forefront". Science 249, n.º 4973 (7 de septiembre de 1990): 1094. http://dx.doi.org/10.1126/science.249.4973.1094-c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Shallcross, D. C. y M. J. Parkinson. "Teaching Ethics to Chemical Engineers". Education for Chemical Engineers 1, n.º 1 (enero de 2006): 49–54. http://dx.doi.org/10.1205/ece.05011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Peachey, B., R. Evitts y G. Hill. "Project Management for Chemical Engineers". Education for Chemical Engineers 2, n.º 1 (enero de 2007): 14–19. http://dx.doi.org/10.1205/ece06019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Rossiter, J. A. "Introducing PI to chemical engineers". IFAC Proceedings Volumes 45, n.º 11 (2012): 436–41. http://dx.doi.org/10.3182/20120619-3-ru-2024.00008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Emmert, R. E. "Chemical Engineers: At the Forefront". Science 249, n.º 4973 (7 de septiembre de 1990): 1094. http://dx.doi.org/10.1126/science.249.4973.1094-b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Shallcross, David C. "Teaching ethics to chemical engineers". Education for Chemical Engineers 5, n.º 2 (mayo de 2010): e13-e21. http://dx.doi.org/10.1016/j.ece.2009.12.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Orazem, Mark E. "Editorial overview: If chemists make chemicals and chemical engineers make money, what do electrochemical engineers do?" Current Opinion in Electrochemistry 20 (abril de 2020): A2—A4. http://dx.doi.org/10.1016/j.coelec.2020.06.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Wilkinson, Derek. "Introducing CFD to Undergraduate Chemical Engineers". International Journal of Mechanical Engineering Education 26, n.º 2 (abril de 1998): 126–32. http://dx.doi.org/10.1177/030641909802600204.

Texto completo
Resumen
CFD (computational fluid dynamics) has become readily accessible and is widely applied in many aspects of the processing industries. A short introduction to CFD has been included in undergraduate Chemical Engineering courses with the aim of giving students an appreciation of its principal features. This comprised three lectures followed by practical experience of commercial CFD software applied to four simple fluid flow problems. A leading aim of the course has been to encourage a sceptical approach to initial results and to indicate methods by which their validity should be established.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

HANSON, DAVID. "Chemical engineers indicted in wastes case". Chemical & Engineering News 66, n.º 28 (11 de julio de 1988): 21. http://dx.doi.org/10.1021/cen-v066n028.p021.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Holdich, Richard. "Computer programming examples for chemical engineers". Chemical Engineering Journal 40, n.º 3 (abril de 1989): 197–98. http://dx.doi.org/10.1016/0300-9467(89)80068-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Gren, Larissa y Khalida Kurbanova. "PROFESSIONAL COMPETENCE OF FUTURE CHEMICAL ENGINEERS IN HIGHER EDUCATION INSTITUTIONS: THE ANALYSIS OF THE THEMATIC DIRECTION OF THE SCIENTIFIC LITERATURE". Theory and practice of social systems management, n.º 3 (4 de octubre de 2021): 62–75. http://dx.doi.org/10.20998/2078-7782.2021.3.06.

Texto completo
Resumen
The article is devoted to the analysis of the thematic direction of the scientific literature on the formation of professional competence of future chemical engineers in higher education institutions of both domestic researchers and researchers from other countries (monographs, dissertation research); the classification of dissertation researches directions on the formation of professional competence of future chemical engineers in institutions of higher education is given; the necessity of further thorough researches of scientists on the issues of formation of professional competence of future chemical engineers in higher education institutions is proved. Promising areas of professional competence of future chemical engineers in higher education are use of international experience in the formation of professional competence and training of future chemical engineers in higher education in the educational process.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Mahmud, Iqbal. "Chemical Engineering Education and Practice in Bangladesh". Journal of Chemical Engineering 26 (24 de marzo de 2012): 1–8. http://dx.doi.org/10.3329/jce.v26i1.10174.

Texto completo
Resumen
Chemical Engineering as a distinct engineering discipline is now more than hundred years old. It was 1888 when Professor Louis Mills Norton first introduced the curricula for Chemical Engineering at MIT. As creative chemists came up with new chemicals it provided ever new challenges to the Chemical Engineers to innovate new industrial processes applying the new found knowledge in unit operations, unit processes, reaction engineering, process control, (later) transport phenomena and (recently) process integration. In Bangladesh the founding fathers of engineering education took a long term view of the industrial development prospects and took the innovative decision to introduce Chemical Engineering curricula in the erstwhile Ahsanullah Engineering College in the early fifties. During these early years large corporations in the public sector provided the initial thrust for development of chemical and process industries. However it was not adequately appreciated during the formative years that mere experience in the successful operation of complex chemical plants does not constitute technology transfer in the real sense of the term. Professional in the field stressed the need for setting up of design sections where local chemical engineers with inputs form relevant professionals would be able to contribute meaningfully in establishing the design criteria for a plant. In the private sector Chemical Engineers have demonstrated in Bangladesh that they can be innovative in transferring technology and developing Ceramic and medium scale Basic Chemical industries. Thus, it has been amply demonstrated that accumulating technological capacity through such dynamic technology transfer efforts should be one of the avowed objectives of any development process. Professional Capability and Areas of Competence of Chemical Engineers have grown over the years in this country and this issue has been elaborated with specific examples.DOI: http://dx.doi.org/10.3329/jce.v26i1.10174 JCE 2011; 26(1): 1-8
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Semel, Joachim. "Structural Changes in the Chemical Industry: Perspectives for Chemical Engineers". Chemie Ingenieur Technik 73, n.º 6 (junio de 2001): 613. http://dx.doi.org/10.1002/1522-2640(200106)73:6<613::aid-cite6133333>3.0.co;2-s.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Marcus, Alan I. y Erik Lokensgard. "The Chemical Engineers of Iowa State College". Annals of Iowa 48, n.º 3 (enero de 1986): 177–205. http://dx.doi.org/10.17077/0003-4827.9151.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Obalová, Lucie. "CHISA 2021 virtually – Worldwide Chemical Engineers Meeting". Chemical Engineering & Technology 44, n.º 11 (19 de octubre de 2021): 1954. http://dx.doi.org/10.1002/ceat.202171105.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Šantić, Ana, D. Kovačević y Marijana Đaković. "Croatian Meeting of Chemists and Chemical Engineers". Chemistry International 40, n.º 3 (1 de julio de 2018): 48–51. http://dx.doi.org/10.1515/ci-2018-0330.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Nedderman, R. M. "Applied mathematics and modeling for chemical engineers". Chemical Engineering Journal and the Biochemical Engineering Journal 64, n.º 3 (diciembre de 1996): 363–64. http://dx.doi.org/10.1016/s0923-0467(96)85020-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

REISCH, MARC. "Bright job prospects for chemists, chemical engineers". Chemical & Engineering News 76, n.º 3 (19 de enero de 1998): 11–12. http://dx.doi.org/10.1021/cen-v076n003.p011a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Graham, Michael D. "Applied mathematics and modeling for chemical engineers". Chemical Engineering Science 50, n.º 11 (junio de 1995): 1846. http://dx.doi.org/10.1016/0009-2509(95)90005-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Gani, Rafiqul y Jarka Glassey. "10th Anniversary of Education for Chemical Engineers". Education for Chemical Engineers 14 (enero de 2016): 49–50. http://dx.doi.org/10.1016/j.ece.2016.04.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Wang, Charleston C. K. "Environmental Excellence: The Place for Chemical Engineers". Environmental Progress 16, n.º 1 (1997): S2. http://dx.doi.org/10.1002/ep.3300160102.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Banholzer, William F. y Mark E. Jones. "Chemical engineers must focus on practical solutions". AIChE Journal 59, n.º 8 (15 de julio de 2013): 2708–20. http://dx.doi.org/10.1002/aic.14172.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Moll, M. "Bioprocess Technology — A Challenge for Chemical Engineers". Chemie Ingenieur Technik 73, n.º 6 (junio de 2001): 775. http://dx.doi.org/10.1002/1522-2640(200106)73:6<775::aid-cite7753333>3.0.co;2-t.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Agrawal, Rakesh, Martin Offutt y Michael P. Ramage. "Hydrogen economy - an opportunity for chemical engineers?" AIChE Journal 51, n.º 6 (2005): 1582–89. http://dx.doi.org/10.1002/aic.10561.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Abraham, Martin. "Sustainable engineering: An initiative for chemical engineers". Environmental Progress 23, n.º 4 (2004): 261–63. http://dx.doi.org/10.1002/ep.10043.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Yushko, S. V., M. F. Galikhanov y V. V. Kondratyev. "Integrative Training of Future Engineers to Innovative Activities in Conditions of Postindustrial Economy". Higher Education in Russia 28, n.º 1 (7 de marzo de 2019): 65–75. http://dx.doi.org/10.31992/0869-3617-2018-27-12-65-75.

Texto completo
Resumen
The article substantiates the necessity of new priorities and paradigms of innovative engineering activity, changing the role of an engineer and the nature of engineering education. It is demonstrated that the basis of modern technologies is interdisciplinary research that determines the need for integrative training of engineers for innovation. The main characteristics, distinctive features and structure of such activity are given. Based on the qualification levels of future engineers’ and the stages of their professional competencies formation, the requirements for innovative engineers are formulated and a comprehensive approach to the formation of engineering competencies is substantiated. The change of the most important trends in the field of engineering training made it possible to update the main provisions of the classical concept of engineering education. The vector of further development of Kazan National Research Technological University as a university center for technological development of the Republicof Tatarstanin the field of chemical technologies has been outlined.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Pollard, J. "The Eccentric Engineer. Aluminium - A tale of two countries and two clever chemical engineers". Engineering & Technology 14, n.º 2 (1 de marzo de 2019): 87. http://dx.doi.org/10.1049/et.2019.0231.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Gavriilidis, Asterios, Achilleas Constantinou, Klaus Hellgardt, King Kuok (Mimi) Hii, Graham J. Hutchings, Gemma L. Brett, Simon Kuhn y Stephen P. Marsden. "Aerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industries". Reaction Chemistry & Engineering 1, n.º 6 (2016): 595–612. http://dx.doi.org/10.1039/c6re00155f.

Texto completo
Resumen
This collaborative review (between teams of chemists and chemical engineers) describes the current scientific and operational hurdles that prevent the utilisation of aerobic oxidation reactions for the production of speciality chemicals and active pharmaceutical ingredients (APIs).
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Simmrock, K. H. "Computer aided chemical engineering, 3 computer programming examples for chemical engineers". Chemical Engineering and Processing: Process Intensification 23, n.º 4 (junio de 1988): 229. http://dx.doi.org/10.1016/0255-2701(88)85016-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Wang, Zhongzheng, Aidan Murphy, Alan O’Riordan y Ivan O’Connell. "Equivalent Impedance Models for Electrochemical Nanosensor-Based Integrated System Design". Sensors 21, n.º 9 (8 de mayo de 2021): 3259. http://dx.doi.org/10.3390/s21093259.

Texto completo
Resumen
Models of electrochemical sensors play a critical role for electronic engineers in designing electrochemical nanosensor-based integrated systems and are also widely used in analyzing chemical reactions to model the current, electrical potential, and impedance occurring at the surface of an electrode. However, the use of jargon and the different perspectives of scientists and electronic engineers often result in different viewpoints on principles of electrochemical models, which can impede the effective development of sensor technology. This paper is aimed to fill the knowledge gap between electronic engineers and scientists by providing a review and an analysis of electrochemical models. First, a brief review of the electrochemical sensor mechanism from a scientist’s perspective is presented. Then a general model, which reflects a more realistic situation of nanosensors is proposed from an electronic engineer point of view and a comparison between the Randles Model is given with its application in electrochemical impedance spectroscopy and general sensor design. Finally, with the help of the proposed equivalent model, a cohesive explanation of the scan rate of cyclic voltammetry is discussed. The information of this paper can contribute to enriching the knowledge of electrochemical sensor models for scientists and is also able to guide the electronic engineer on designing next-generation sensor layouts.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Paul, A. K., A. Prasad y A. Kumar. "Review on Artificial Neural Network and its Application in the Field of Engineering". Journal of Mechanical Engineering: Prakash 01, n.º 01 (2022): 53–61. http://dx.doi.org/10.56697/jmep.2022.1107.

Texto completo
Resumen
The engineers have been utilising artificial neural networks (ANNs), one of the most effective and adaptable tools offered by artificial intelligence, for many years in a variety of applications. A simple mathematical model of brain functions is provided by ANNs, which are computational tools. They can be used for tasks like modelling, categorisation, and prediction when combined with raw data and a learning system. They have recently experienced a sharp increase in popularity and are currently among the most important study topics in the disciplines of artificial intelligence and machine learning. Large groups of basic classifiers known as neurons make up an ANN. Chemical engineers use them to automate process controls, model complex linkages, and forecast reactor performance. Large data sets can benefit from ANNs' capacity for learning, but these systems can also overfit or become stuck in local minima and are challenging to reverse engineer. The function of artificial neural networks (ANNs) in chemical engineering is explored in this article. For creating chemical engineering processes, the ANN is quite helpful. The process is very quick and trustworthy. We also gathered several journal publications and current research articles, summarising the use of ANN in various chemical engineering fields and its processes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Ran, Natalia Alekseevna y Zhanna Valerievna Nikolaeva. "Mathematical training of prospective chemical branch engineers as an important factor of their professional training". Samara Journal of Science 6, n.º 2 (1 de junio de 2017): 238–41. http://dx.doi.org/10.17816/snv201762309.

Texto completo
Resumen
The paper deals with the problem of effective mathematical training of prospective chemical branch engineers. The chemical branch is one of the key branches of the Samara Region economy. The authors note that petrochemical enterprises need engineers who have sufficient all-professional and special knowledge, skills, as well as a high degree of professional mobility, able to react quickly and creatively to inquiries of dynamically changing practice; able to solve all range of production problems. The authors also note that the high level of professional competence of a chemical branch engineer is defined by the level of his/her mathematical knowledge. The authors reveal features of integral and differential calculus application for the solution of chemical tasks on the example of physical chemistry tasks. The authors suppose and prove that education process optimization and professional orientation of mathematical training in a technical college can be reached at the expense of such factors as: continuous mathematical training; modification of educational and methodical support; professional development of pedagogical staff; optimally structured content of mathematical disciplines by practice-focused tasks application intensification; motivation for mathematical disciplines independent study by students of a technical college; application of diagnostic techniques of students mathematical competence development.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

LONG, JANICE. "Engineers celebrate their accomplishments". Chemical & Engineering News 78, n.º 9 (28 de febrero de 2000): 12–13. http://dx.doi.org/10.1021/cen-v078n009.p012a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Yerrick, Randy, Carl Lund y Yonghee Lee. "Online Simulator Use in the Preparing Chemical Engineers". International Journal of Online Pedagogy and Course Design 3, n.º 2 (abril de 2013): 1–24. http://dx.doi.org/10.4018/ijopcd.2013040101.

Texto completo
Resumen
Active learning strategies (including simulations) have been promoted by engineering education reformers as an effort to move traditional STEM teaching toward more constructivist practices. In this study chemical engineering students were studied during the implementation of simulators to promote critical thinking. While many have studied achievement and perceptions of students to measure engineering tools and their development, this study specifically examined students’ outcomes connecting the tool to specific teaching and learning strategies. A case study was conducted using pre- and post-test, survey questionnaire, individual interviews, and classroom observations. Results showed the use of simulator was associated with increases in students’ scores but the novelty of innovation was not the single explanation for increased scores or favored technology usage. Interviews and other qualitative data suggested that outcomes may closely tie teaching strategies to the effectiveness of the tool rather than the focus on the tool itself. Implications for teaching and future research are discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Mervis, J. "PROFESSIONAL SOCIETIES: Chemical Engineers Fight to Stay Solvent". Science 301, n.º 5631 (18 de julio de 2003): 289b—290. http://dx.doi.org/10.1126/science.301.5631.289b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Mendez, Miguel. "The role of chemical engineers in green engineering". IEEE Engineering Management Review 38, n.º 2 (2010): 64–69. http://dx.doi.org/10.1109/emr.2010.5496958.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

JOHNSON, RITA E. "Minority chemists, chemical engineers gather to celebrate accomplishments". Chemical & Engineering News 74, n.º 20 (13 de mayo de 1996): 46–47. http://dx.doi.org/10.1021/cen-v074n020.p046.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Shcherbina, L. A. y I. A. Budkute. "40 Years to Preparing Chemical Engineers in Mogilev". Fibre Chemistry 46, n.º 2 (julio de 2014): 73–74. http://dx.doi.org/10.1007/s10692-014-9564-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Shen, Youqing. "Ninth Global Chinese Chemical Engineers Symposium Special Issue". Industrial & Engineering Chemistry Research 57, n.º 23 (13 de junio de 2018): 7733–34. http://dx.doi.org/10.1021/acs.iecr.8b02402.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Saroha, Anil Kumar. "Creating a Sustainable World: Role of Chemical Engineers". Indian Chemical Engineer 51, n.º 1 (23 de octubre de 2009): v—vi. http://dx.doi.org/10.1080/00194500903122385.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

King, M. R. "Chemical engineers at the frontiers of computational biology". Molecular Simulation 32, n.º 3-4 (marzo de 2006): 191–92. http://dx.doi.org/10.1080/08927020600559653.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Choi, Phillip. "Molecular Modelling-an Enabling Technology for Chemical Engineers". Canadian Journal of Chemical Engineering 84, n.º 3 (19 de mayo de 2008): 265–68. http://dx.doi.org/10.1002/cjce.5450840301.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Schügerl, K. "Biology and Biochemistry for Chemists and Chemical Engineers". Chemical Engineering and Processing: Process Intensification 28, n.º 2 (octubre de 1990): 147. http://dx.doi.org/10.1016/0255-2701(90)80012-t.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Chen, Wilfred, Ashok Mulchandani y Marc A. Deshusses. "Environmental biotechnology: Challenges and opportunities for chemical engineers". AIChE Journal 51, n.º 3 (2005): 690–95. http://dx.doi.org/10.1002/aic.10487.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Krystyník, Pavel. "CHISA 2022 – 26th Worldwide Meeting of Chemical Engineers". Chemical Engineering & Technology 46, n.º 6 (22 de mayo de 2023): 1058. http://dx.doi.org/10.1002/ceat.202370604.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

N. John Erinne. "CHEMICAL ENGINEERING, NIGERIA AND THE CHANGING SOCIETY". JOURNAL OF THE NIGERIAN SOCIETY OF CHEMICAL ENGINEERS 37, n.º 3 (30 de septiembre de 2022): 1–8. http://dx.doi.org/10.51975/22370301.som.

Texto completo
Resumen
This paper reviews the nature of Chemical Engineering, as well as its foundations and practice in Nigeria. It then examines the needs of contemporary society and economy and explores the role and relevance of Chemical Engineering in meeting the needs of the emerging society and economy. Subsequently, the peculiarities of future societal and economic challenges Nigeria will be faced with are highlighted. The question of training of Chemical Engineers to meet these future challenges in Nigeria then comes under focus. Suggestions are made for improved Chemical Engineering curriculum in the nation’s universities which will enable the production of Nigerian Chemical Engineers who are well equipped to meet the needs of the future. Keywords: chemical engineering education; Nigeria developmental needs; curriculum.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Malin, John M. "American Chemical Society assistance to chemical scientists and engineers in developing countries". Pure and Applied Chemistry 73, n.º 7 (1 de julio de 2001): 1221–23. http://dx.doi.org/10.1351/pac200173071221.

Texto completo
Resumen
The American Chemical Society, through its Office of International Activities, is engaged in a variety of activities to assist chemical scientists and engineers in developing countries. These include surveys of chemical activity in Latin America and Africa; assistance to sister chemical societies; organization of international exchange programs; production of environmental chemistry workshops; hosting invited visitors at PITTCON meetings; donations of materials and, especially, chemical literature through Project Bookshare; collaboration in producing CHEMRAWN conferences; and environmental chemistry activities.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Gmehling, J. "Buchbesprechung: Physical and Chemical Equilibrium for Chemical Engineers. Von N. De Nevers". Chemie Ingenieur Technik 76, n.º 12 (6 de febrero de 2004): 148–49. http://dx.doi.org/10.1002/cite.200490017.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía