Artículos de revistas sobre el tema "CHCHD10"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: CHCHD10.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "CHCHD10".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Zhou, Wei, Dongrui Ma y Eng-King Tan. "Mitochondrial CHCHD2 and CHCHD10: Roles in Neurological Diseases and Therapeutic Implications". Neuroscientist 26, n.º 2 (16 de septiembre de 2019): 170–84. http://dx.doi.org/10.1177/1073858419871214.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
CHCHD2 mutations have been identified in various neurological diseases such as Parkinson’s disease (PD), frontotemporal dementia (FTD), and Alzheimer’s disease (AD). It is also the first mitochondrial gene whose mutations lead to PD. CHCHD10 is a homolog of CHCHD2; similar to CHCHD2, various mutations of CHCHD10 have been identified in a broad spectrum of neurological disorders, including FTD and AD, with a high frequency of CHCHD10 mutations found in motor neuron diseases. Functionally, CHCHD2 and CHCHD10 have been demonstrated to interact with each other in mitochondria. Recent studies link the biological functions of CHCHD2 to the MICOS complex (mitochondrial inner membrane organizing system). Multiple experimental models suggest that CHCHD2 maintains mitochondrial cristae and disease-associated CHCHD2 mutations function in a loss-of-function manner. However, both CHCHD2 and CHCHD10 knockout mouse models appear phenotypically normal, with no obvious mitochondrial defects. Strategies to maintain or enhance mitochondria cristae could provide opportunities to correct the associated cellular defects in disease state and unravel potential novel targets for CHCHD2-linked neurological conditions.
2

Liu, Tian, Liam Wetzel, Zexi Zhu, Pavan Kumaraguru, Viraj Gorthi, Yan Yan, Mohammed Zaheen Bukhari et al. "Disruption of Mitophagy Flux through the PARL-PINK1 Pathway by CHCHD10 Mutations or CHCHD10 Depletion". Cells 12, n.º 24 (7 de diciembre de 2023): 2781. http://dx.doi.org/10.3390/cells12242781.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Coiled-coil-helix-coiled-coil-helix domain-containing 10 (CHCHD10) is a nuclear-encoded mitochondrial protein which is primarily mutated in the spectrum of familial and sporadic amyotrophic lateral sclerosis (ALS)–frontotemporal dementia (FTD). Endogenous CHCHD10 levels decline in the brains of ALS–FTD patients, and the CHCHD10S59L mutation in Drosophila induces dominant toxicity together with PTEN-induced kinase 1 (PINK1), a protein critical for the induction of mitophagy. However, whether and how CHCHD10 variants regulate mitophagy flux in the mammalian brain is unknown. Here, we demonstrate through in vivo and in vitro models, as well as human FTD brain tissue, that ALS/FTD-linked CHCHD10 mutations (R15L and S59L) impair mitophagy flux and mitochondrial Parkin recruitment, whereas wild-type CHCHD10 (CHCHD10WT) normally enhances these measures. Specifically, we show that CHCHD10R15L and CHCHD10S59L mutations reduce PINK1 levels by increasing PARL activity, whereas CHCHD10WT produces the opposite results through its stronger interaction with PARL, suppressing its activity. Importantly, we also demonstrate that FTD brains with TAR DNA-binding protein-43 (TDP-43) pathology demonstrate disruption of the PARL–PINK1 pathway and that experimentally impairing mitophagy promotes TDP-43 aggregation. Thus, we provide herein new insights into the regulation of mitophagy and TDP-43 aggregation in the mammalian brain through the CHCHD10–PARL–PINK1 pathway.
3

Imai, Yuzuru, Hongrui Meng, Kahori Shiba-Fukushima y Nobutaka Hattori. "Twin CHCH Proteins, CHCHD2, and CHCHD10: Key Molecules of Parkinson’s Disease, Amyotrophic Lateral Sclerosis, and Frontotemporal Dementia". International Journal of Molecular Sciences 20, n.º 4 (20 de febrero de 2019): 908. http://dx.doi.org/10.3390/ijms20040908.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Mutations of coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) and 10 (CHCHD10) have been found to be linked to Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and/or frontotemporal lobe dementia (FTD). CHCHD2 and CHCHD10 proteins, which are homologous proteins with 54% identity in amino acid sequence, belong to the mitochondrial coiled-coil-helix-coiled-coil-helix (CHCH) domain protein family. A series of studies reveals that these twin proteins form a multimodal complex, producing a variety of pathophysiology by the disease-causing variants of these proteins. In this review, we summarize the present knowledge about the physiological and pathological roles of twin proteins, CHCHD2 and CHCHD10, in neurodegenerative diseases.
4

Gomez, Adriana Morales, Nathan Staff y Stephen C. Ekker. "288 Harnessing the potential of transcriptional adaptation as a mechanism for Amyotrophic lateral sclerosis". Journal of Clinical and Translational Science 7, s1 (abril de 2023): 86. http://dx.doi.org/10.1017/cts.2023.344.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
OBJECTIVES/GOALS: Understanding the mechanism of transcriptional adaptation may contribute to an explanation for variation in clinical manifestations of Amyotrophic lateral sclerosis patient phenotypes. METHODS/STUDY POPULATION: To examine transcriptional adaptation, we utilized gene editing tools in HT1080 cells and patient samples with known CHCHD10 mutations causative for Amyotrophic lateral sclerosis. Frameshift mutations were performed via CRISPR-Cas9. Ribonucleoprotein electroporation was used to transfect cells and DNA sequencing was conducted to validate gene editing. To validate transcriptional adaption, changes in levels of protein and gene expression will be measured via immunoblot and quantification of CHCHD10 and CHCHCD2 from whole cells lysates of the edited cells. RESULTS/ANTICIPATED RESULTS: We anticipate that CHCHD2 transcriptional adaptation can functionally compensate for the locus loss of function of CHCHD10. This mechanism of transcriptional adaptation may contribute to an explanation for variation in clinical manifestations of patient phenotypes. DISCUSSION/SIGNIFICANCE: Our approach would advance discovery science towards by exploring CHCHD10/2 transcriptional adaptation mechanism that can lead to novel therapies for rare Amyotrophic lateral sclerosis, such as CHCHD10-R15L.
5

Gomez, Adriana Morales, Nathan Staff y Stephen C. Ekker. "320 Genetic Compensation as a mechanism underlying patients with Rare ALS". Journal of Clinical and Translational Science 6, s1 (abril de 2022): 57. http://dx.doi.org/10.1017/cts.2022.178.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
OBJECTIVES/GOALS: Rare mutations in CHCHD10 gene are found in 1% of patients with familial Amyotrophic lateral sclerosis (ALS). The overall goal of this study is to utilize induced pluripotent stem cells (iPSCs) as an in vitro model organism for rare ALS variants to evaluate the mechanism of transcription adaptation of CHCHD10/2 as a potential therapeutic. METHODS/STUDY POPULATION: Point mutations on normal iPSCs was performed via Donorguide CRISPR/Cas9. The single stranded RNA/DNA donors contain genetic alterations of CHCHD10: Pro12Ser, Arg15Leu, Pro23Leu, Pro34Ser, Ser59Leu, Gly66Val, Pro80Leu, Tyr92Cys and Gln102His. Ribonucleoprotein electroporation was used to transfect iPSCs and DNA sequencing was used to validate gene editing. To validate transcriptional adaption, changes in levels of protein and gene expression were measured via immunoblot and quantification of CHCHD10 and CHCHCD2 was performed from whole cells lysates of the edited iPSCs. RESULTS/ANTICIPATED RESULTS: We anticipate that CHCHD2 transcriptional adaptation can functionally compensate for the locus loss of function of CHCHD10. This mechanism of transcriptional adaptation may contribute to an explanation for variation in clinical manifestations of patient phenotypes. DISCUSSION/SIGNIFICANCE: This study supplies further evidence for genetic modification as a treatment option for diseases with point mutation causal or enabling mechanisms, including some variants of ALS. Future work will explore the gene-correction from an ALS patient with a known CHCHD10-R15L variant.
6

Gomez, Adriana Morales, Nathan Staff y Stephen C. Ekker. "393 Harnessing the potential of transcriptional adaptation as a mechanism for rare Amyotrophic lateral sclerosis". Journal of Clinical and Translational Science 8, s1 (abril de 2024): 117. http://dx.doi.org/10.1017/cts.2024.343.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
OBJECTIVES/GOALS: Transcriptional adaptation is a phenomenon in which a mutation in one gene leads to the genetic compensation of another homogenous gene. Understanding the mechanism of transcriptional adaptation may contribute to an explanation for variation in clinical manifestations of rare Amyotrophic lateral sclerosis patient phenotypes. METHODS/STUDY POPULATION: The presence of a premature termination codon triggers transcriptional activation. Therefore, we utilized CRISPR-Cas9 tool to generate a premature termination codon in CHCHD10 gene in multiple types of cells, including induced pluripotent stem cells derived from patient samples with known CHCHD10 mutations causative for Amyotrophic lateral sclerosis. CRISPR-Cas9 tool was delivered via ribonucleoprotein electroporation and transfect cell’s DNA was sequenced to validate gene editing. To confirm transcriptional adaption, changes in levels of protein and gene expression will be measured via immunoblot and quantification of CHCHD10 and CHCHCD2 from whole cells lysates of the edited cells. RESULTS/ANTICIPATED RESULTS: We anticipate that CHCHD2 transcriptional adaptation can functionally compensate for the locus loss of function of CHCHD10. This mechanism of transcriptional adaptation may contribute to an explanation for variation in clinical manifestations of patient phenotypes. DISCUSSION/SIGNIFICANCE: Our approach would advance discovery science towards by exploring transcriptional adaptation mechanism in humans, which can lead to novel therapies for rare Amyotrophic lateral sclerosis, such as CHCHD10.
7

Keith, Julia L., Emily Swinkin, Andrew Gao, Samira Alminawi, Ming Zhang, Philip McGoldrick, Paul McKeever, Janice Robertson, Ekaterina Rogaeva y Lorne Zinman. "Neuropathologic description of CHCHD10 mutated amyotrophic lateral sclerosis". Neurology Genetics 6, n.º 1 (13 de enero de 2020): e394. http://dx.doi.org/10.1212/nxg.0000000000000394.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
ObjectiveTo present the postmortem neuropathologic report of a patient with a CHCHD10 mutation exhibiting an amyotrophic lateral sclerosis (ALS) clinical phenotype.MethodsA 54-year-old man without significant medical history or family history presented with arm weakness, slowly progressed over 19 years to meet the El Escorial criteria for clinically probable ALS with bulbar and respiratory involvement, and was found to have a CHCHD10 p.R15L mutation. Postmortem neuropathologic examination took place including immunohistochemical staining with CHCHD10, and double immunofluorescence combining CHCHD10 with TDP43 and neurofilament was performed and the results were compared with normal controls and sporadic ALS cases.ResultsPostmortem examination of the CHCHD10 mutation carrier showed severe loss of hypoglossal and anterior horn motor neurons, mild corticospinal tract degeneration, and a relative lack of TDP43 immunopathology. CHCHD10 immunohistochemistry for the 3 controls and the 5 sporadic ALS cases showed strong neuronal cytoplasmic and axonal labeling, with the CHCHD10 mutation carrier also having numerous CHCHD10 aggregates within their anterior horns. These aggregates may be related to the CHCHD10 aggregates recently described to cause mitochondrial degeneration and disease in a tissue-selective toxic gain-of-function fashion in a CHCHD10 knock-in mouse model. The CHCHD10 aggregates did not colocalize with TDP43 and were predominantly extracellular on double immunofluorescence labeling with neurofilament.ConclusionsThe neuropathology of CHCHD10 mutated ALS includes predominantly lower motor neuron degeneration, absent TDP43 immunopathology, and aggregates of predominantly extracellular CHCHD10, which do not contain TDP43.
8

McCann, Emily P., Jennifer A. Fifita, Natalie Grima, Jasmin Galper, Prachi Mehta, Sarah E. Freckleton, Katharine Y. Zhang et al. "Genetic and immunopathological analysis of CHCHD10 in Australian amyotrophic lateral sclerosis and frontotemporal dementia and transgenic TDP-43 mice". Journal of Neurology, Neurosurgery & Psychiatry 91, n.º 2 (5 de noviembre de 2019): 162–71. http://dx.doi.org/10.1136/jnnp-2019-321790.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
ObjectiveSince the first report of CHCHD10 gene mutations in amyotrophiclateral sclerosis (ALS)/frontotemporaldementia (FTD) patients, genetic variation in CHCHD10 has been inconsistently linked to disease. A pathological assessment of the CHCHD10 protein in patient neuronal tissue also remains to be reported. We sought to characterise the genetic and pathological contribution of CHCHD10 to ALS/FTD in Australia.MethodsWhole-exome and whole-genome sequencing data from 81 familial and 635 sporadic ALS, and 108 sporadic FTD cases, were assessed for genetic variation in CHCHD10. CHCHD10 protein expression was characterised by immunohistochemistry, immunofluorescence and western blotting in control, ALS and/or FTD postmortem tissues and further in a transgenic mouse model of TAR DNA-binding protein 43 (TDP-43) pathology.ResultsNo causal, novel or disease-associated variants in CHCHD10 were identified in Australian ALS and/or FTD patients. In human brain and spinal cord tissues, CHCHD10 was specifically expressed in neurons. A significant decrease in CHCHD10 protein level was observed in ALS patient spinal cord and FTD patient frontal cortex. In a TDP-43 mouse model with a regulatable nuclear localisation signal (rNLS TDP-43 mouse), CHCHD10 protein levels were unaltered at disease onset and early in disease, but were significantly decreased in cortex in mid-stage disease.ConclusionsGenetic variation in CHCHD10 is not a common cause of ALS/FTD in Australia. However, we showed that in humans, CHCHD10 may play a neuron-specific role and a loss of CHCHD10 function may be linked to ALS and/or FTD. Our data from the rNLS TDP-43 transgenic mice suggest that a decrease in CHCHD10 levels is a late event in aberrant TDP-43-induced ALS/FTD pathogenesis.
9

Xiao, Yatao, Jianmin Zhang, Xiaoqiu Shu, Lei Bai, Wentao Xu, Ailian Wang, Aizhong Chen et al. "Loss of mitochondrial protein CHCHD10 in skeletal muscle causes neuromuscular junction impairment". Human Molecular Genetics 29, n.º 11 (2 de julio de 2019): 1784–96. http://dx.doi.org/10.1093/hmg/ddz154.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Abstract The neuromuscular junction (NMJ) is a synapse between motoneurons and skeletal muscles to control motor behavior. Acetylcholine receptors (AChRs) are restricted at the synaptic region for proper neurotransmission. Mutations in the mitochondrial CHCHD10 protein have been identified in multiple neuromuscular disorders; however, the physiological roles of CHCHD10 at NMJs remain elusive. Here, we report that CHCHD10 is highly expressed at the postsynapse of NMJs in skeletal muscles. Muscle conditional knockout CHCHD10 mice showed motor defects, abnormal neuromuscular transmission and NMJ structure. Mechanistically, we found that mitochondrial CHCHD10 is required for ATP production, which facilitates AChR expression and promotes agrin-induced AChR clustering. Importantly, ATP could effectively rescue the reduction of AChR clusters in the CHCHD10-ablated muscles. Our study elucidates a novel physiological role of CHCHD10 at the peripheral synapse. It suggests that mitochondria dysfunction contributes to neuromuscular pathogenesis.
10

Grossman, Lawrence I., Neeraja Purandare, Rooshan Arshad, Stephanie Gladyck, Mallika Somayajulu, Maik Hüttemann y Siddhesh Aras. "MNRR1, a Biorganellar Regulator of Mitochondria". Oxidative Medicine and Cellular Longevity 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/6739236.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
The central role of energy metabolism in cellular activities is becoming widely recognized. However, there are many gaps in our knowledge of the mechanisms by which mitochondria evaluate their status and call upon the nucleus to make adjustments. Recently, a protein family consisting of twin CX9C proteins has been shown to play a role in human pathophysiology. We focus here on two family members, the isoforms CHCHD2 (renamed MNRR1) and CHCHD10. The better studied isoform, MNRR1, has the unusual property of functioning in both the mitochondria and the nucleus and of having a different function in each. In the mitochondria, it functions by binding to cytochromecoxidase (COX), which stimulates respiration. Its binding to COX is promoted by tyrosine-99 phosphorylation, carried out by ABL2 kinase (ARG). In the nucleus, MNRR1 binds to a novel promoter element inCOX4I2and itself, increasing transcription at 4% oxygen. We discuss mutations in both MNRR1 and CHCHD10 found in a number of chronic, mostly neurodegenerative, diseases. Finally, we propose a model of a graded response to hypoxic and oxidative stresses, mediated under different oxygen tensions by CHCHD10, MNRR1, and HIF1, which operate at intermediate and very low oxygen concentrations, respectively.
11

Straub, Isabella R., Alexandre Janer, Woranontee Weraarpachai, Lorne Zinman, Janice Robertson, Ekaterina Rogaeva y Eric A. Shoubridge. "Loss of CHCHD10–CHCHD2 complexes required for respiration underlies the pathogenicity of a CHCHD10 mutation in ALS". Human Molecular Genetics 27, n.º 1 (7 de noviembre de 2017): 178–89. http://dx.doi.org/10.1093/hmg/ddx393.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Ayoubi, Riham, Walaa Alshafie, Kathleen Southern, Peter S. McPherson y Carl Laflamme. "The identification of high-performing antibodies for Coiled-coil-helix-coiled-coil-helix domain containing protein 10 (CHCHD10) for use in Western Blot, immunoprecipitation and immunofluorescence". F1000Research 12 (26 de julio de 2023): 403. http://dx.doi.org/10.12688/f1000research.133479.2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
CHCHD10 is a mitochondrial protein, implicated in the regulation of mitochondrial morphology and cristae structure, as well as the maintenance of mitochondrial DNA integrity. Recently discovered to be associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in its mutant form, the scientific community would benefit from the availability of validated anti-CHCHD10 antibodies. In this study, we characterized four CHCHD10 commercial antibodies for Western Blot, immunoprecipitation, and immunofluorescence using a standardized experimental protocol based on comparing read-outs in knockout cell lines and isogenic parental controls. As this study highlights high-performing antibodies for CHCHD10, we encourage readers to use it as a guide to select the most appropriate antibody for their specific needs.
13

Ayoubi, Riham, Walaa Alshafie, Kathleen Southern, Peter S. McPherson y Carl Laflamme. "The identification of high-performing antibodies for Coiled-coil-helix-coiled-coil-helix domain containing protein 10 (CHCHD10) for use in Western Blot, immunoprecipitation and immunofluorescence". F1000Research 12 (14 de abril de 2023): 403. http://dx.doi.org/10.12688/f1000research.133479.1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
CHCHD10 is a mitochondrial protein, implicated in the regulation of mitochondrial morphology and cristae structure, as well as the maintenance of mitochondrial DNA integrity. Recently discovered to be associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in its mutant form, the scientific community would benefit from the availability of validated anti-CHCHD10 antibodies. In this study, we characterized four CHCHD10 commercial antibodies for Western Blot, immunoprecipitation, and immunofluorescence using a standardized experimental protocol based on comparing read-outs in knockout cell lines and isogenic parental controls. As this study highlights high-performing antibodies for CHCHD10, we encourage readers to use it as a guide to select the most appropriate antibody for their specific needs.
14

Huang, Xiaoping, Beverly P. Wu, Diana Nguyen, Yi-Ting Liu, Melika Marani, Jürgen Hench, Paule Bénit et al. "CHCHD2 accumulates in distressed mitochondria and facilitates oligomerization of CHCHD10". Human Molecular Genetics 28, n.º 2 (4 de octubre de 2018): 349. http://dx.doi.org/10.1093/hmg/ddy340.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Rubino, Elisa, Livia Brusa, Ming Zhang, Silvia Boschi, Flora Govone, Alessandro Vacca, Annalisa Gai et al. "Genetic analysis of CHCHD2 and CHCHD10 in Italian patients with Parkinson's disease". Neurobiology of Aging 53 (mayo de 2017): 193.e7–193.e8. http://dx.doi.org/10.1016/j.neurobiolaging.2016.12.027.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Rubino, Elisa, Ming Zhang, Tiziana Mongini, Silvia Boschi, Liliana Vercelli, Alessandro Vacca, Flora Govone et al. "Mutation analysis of CHCHD2 and CHCHD10 in Italian patients with mitochondrial myopathy". Neurobiology of Aging 66 (junio de 2018): 181.e1–181.e2. http://dx.doi.org/10.1016/j.neurobiolaging.2018.02.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Zhou, Wei, Dongrui Ma, Alfred Xuyang Sun, Hoang-Dai Tran, Dong-liang Ma, Brijesh K. Singh, Jin Zhou et al. "PD-linked CHCHD2 mutations impair CHCHD10 and MICOS complex leading to mitochondria dysfunction". Human Molecular Genetics 28, n.º 7 (29 de noviembre de 2018): 1100–1116. http://dx.doi.org/10.1093/hmg/ddy413.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Kobayashi, Yuri, Shinya Kusakari, Hiroaki Suzuki y Masaaki Matsuoka. "Analysis of molecular mechanism underlying cell death induced by an ALS/FTD-causative gene CHCHD10, S59L-CHCHD10". Proceedings for Annual Meeting of The Japanese Pharmacological Society 92 (2019): 1—SS—71. http://dx.doi.org/10.1254/jpssuppl.92.0_1-ss-71.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Liu, Yi-Ting, Xiaoping Huang, Diana Nguyen, Mario K. Shammas, Beverly P. Wu, Eszter Dombi, Danielle A. Springer, Joanna Poulton, Shiori Sekine y Derek P. Narendra. "Loss of CHCHD2 and CHCHD10 activates OMA1 peptidase to disrupt mitochondrial cristae phenocopying patient mutations". Human Molecular Genetics 29, n.º 9 (27 de abril de 2020): 1547–67. http://dx.doi.org/10.1093/hmg/ddaa077.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Abstract Dominant mutations in the mitochondrial paralogs coiled-helix-coiled-helix (CHCHD) domain 2 (C2) and CHCHD10 (C10) were recently identified as causing Parkinson’s disease and amyotrophic lateral sclerosis/frontotemporal dementia/myopathy, respectively. The mechanism by which they disrupt mitochondrial cristae, however, has been uncertain. Using the first C2/C10 double knockout (DKO) mice, we report that C10 pathogenesis and the normal function of C2/C10 are intimately linked. Similar to patients with C10 mutations, we found that C2/C10 DKO mice have disrupted mitochondrial cristae, because of cleavage of the mitochondrial-shaping protein long form of OPA1 (L-OPA1) by the stress-induced peptidase OMA1. OMA1 was found to be activated similarly in affected tissues of mutant C10 knock-in (KI) mice, demonstrating that L-OPA1 cleavage is a novel mechanism for cristae abnormalities because of both C10 mutation and C2/C10 loss. Using OMA1 activation as a functional assay, we found that C2 and C10 are partially functionally redundant, and some but not all disease-causing mutations have retained activity. Finally, C2/C10 DKO mice partially phenocopied mutant C10 KI mice with the development of cardiomyopathy and activation of the integrated mitochondrial integrated stress response in affected tissues, tying mutant C10 pathogenesis to C2/C10 function.
20

Purandare, Neeraja, Mallika Somayajulu, Maik Hüttemann, Lawrence I. Grossman y Siddhesh Aras. "The cellular stress proteins CHCHD10 and MNRR1 (CHCHD2): Partners in mitochondrial and nuclear function and dysfunction". Journal of Biological Chemistry 293, n.º 17 (14 de marzo de 2018): 6517–29. http://dx.doi.org/10.1074/jbc.ra117.001073.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Mao, Chengyuan, Herui Wang, Haiyang Luo, Shuyu Zhang, Huisha Xu, Shuo Zhang, Jared Rosenblum et al. "CHCHD10 is involved in the development of Parkinson's disease caused by CHCHD2 loss-of-function mutation p.T61I". Neurobiology of Aging 75 (marzo de 2019): 38–41. http://dx.doi.org/10.1016/j.neurobiolaging.2018.10.020.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Harjuhaahto, Sandra, Tiina S. Rasila, Svetlana M. Molchanova, Rosa Woldegebriel, Jouni Kvist, Svetlana Konovalova, Markus T. Sainio et al. "ALS and Parkinson's disease genes CHCHD10 and CHCHD2 modify synaptic transcriptomes in human iPSC-derived motor neurons". Neurobiology of Disease 141 (julio de 2020): 104940. http://dx.doi.org/10.1016/j.nbd.2020.104940.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

van Rheenen, Wouter, Frank P. Diekstra, Leonard H. van den Berg y Jan H. Veldink. "Are CHCHD10 mutations indeed associated with familial amyotrophic lateral sclerosis?" Brain 137, n.º 12 (10 de octubre de 2014): e313-e313. http://dx.doi.org/10.1093/brain/awu299.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Brockmann, Sarah J., Axel Freischmidt, Patrick Oeckl, Kathrin Müller, Srinivas K. Ponna, Anika M. Helferich, Christoph Paone et al. "CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease by haploinsufficiency". Human Molecular Genetics 27, n.º 4 (5 de enero de 2018): 706–15. http://dx.doi.org/10.1093/hmg/ddx436.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Zhou, Xiaoxia, Zhenhua Liu, Jifeng Guo, Qiying Sun, Qian Xu, Xinxiang Yan, Beisha Tang y Lifang Lei. "Identification of CHCHD10 variants in Chinese patients with Parkinson's disease". Parkinsonism & Related Disorders 47 (febrero de 2018): 96–97. http://dx.doi.org/10.1016/j.parkreldis.2017.12.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Xiao, Tingting, Bin Jiao, Weiwei Zhang, Chuzheng Pan, Jingya Wei, Xiaoyan Liu, Yafang Zhou, Lin Zhou, Beisha Tang y Lu Shen. "Identification of CHCHD10 Mutation in Chinese Patients with Alzheimer Disease". Molecular Neurobiology 54, n.º 7 (30 de agosto de 2016): 5243–47. http://dx.doi.org/10.1007/s12035-016-0056-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Straub, Isabella R., Woranontee Weraarpachai y Eric A. Shoubridge. "Multi-OMICS study of a CHCHD10 variant causing ALS demonstrates metabolic rewiring and activation of endoplasmic reticulum and mitochondrial unfolded protein responses". Human Molecular Genetics 30, n.º 8 (22 de marzo de 2021): 687–705. http://dx.doi.org/10.1093/hmg/ddab078.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Abstract Mutations in CHCHD10, coding for a mitochondrial intermembrane space protein, are a rare cause of autosomal dominant amyotrophic lateral sclerosis. Mutation-specific toxic gain of function or haploinsufficiency models have been proposed to explain pathogenicity. To decipher the metabolic dysfunction associated with the haploinsufficient p.R15L variant, we integrated transcriptomic, metabolomic and proteomic data sets in patient cells subjected to an energetic stress that forces the cells to rely on oxidative phosphorylation for ATP production. Patient cells had a complex I deficiency that resulted in an increased NADH/NAD+ ratio, diminished TCA cycle activity, a reorganization of one carbon metabolism and an increased AMP/ATP ratio leading to phosphorylation of AMPK and inhibition of mTORC1. These metabolic changes activated the unfolded protein response (UPR) in the ER through the IRE1/XBP1 pathway, upregulating downstream targets including ATF3, ATF4, CHOP and EGLN3, and two cytokine markers of mitochondrial disease, GDF15 and FGF21. Activation of the mitochondrial UPR was mediated through an upregulation of the transcription factors ATF4 and ATF5, leading to increased expression of mitochondrial proteases and heat shock proteins. There was a striking transcriptional up regulation of at least seven dual specific phosphatases, associated with an almost complete dephosphorylation of JNK isoforms, suggesting a concerted deactivation of MAP kinase pathways. This study demonstrates that loss of CHCHD10 function elicits an energy deficit that activates unique responses to nutrient stress in both the mitochondria and ER, which may contribute to the selective vulnerability of motor neurons.
28

Che, Xiangqian y Gang Wang. "P3-130: GENETIC FEATURES OF MAPT , GRN , C9ORF72 CHCHD2 , CHCHD10 AND SIGMAR1 GENE MUTATIONS IN CHINESE PATIENTS WITH FRONTOTEMPORAL DEMENTIA". Alzheimer's & Dementia 15 (julio de 2019): P980—P981. http://dx.doi.org/10.1016/j.jalz.2019.06.3158.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Li, Xiao Ling, Shi Shu, Xiao Guang Li, Qing Liu, Fang Liu, Bo Cui, Ming Sheng Liu, Bin Peng, Li Ying Cui y Xue Zhang. "CHCHD10 is not a frequent causative gene in Chinese ALS patients". Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 17, n.º 5-6 (14 de abril de 2016): 458–60. http://dx.doi.org/10.3109/21678421.2016.1170151.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Bannwarth, Sylvie, Samira Ait-El-Mkadem, Annabelle Chaussenot, Emmanuelle C. Genin, Sandra Lacas-Gervais, Konstantina Fragaki, Laetitia Berg-Alonso et al. "Reply: Are CHCHD10 mutations indeed associated with familial amyotrophic lateral sclerosis?" Brain 137, n.º 12 (10 de octubre de 2014): e314-e314. http://dx.doi.org/10.1093/brain/awu300.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Penttilä, Sini, Manu Jokela, Anna Maija Saukkonen, Jari Toivanen, Johanna Palmio, Janne Lähdesmäki, Satu Sandell et al. "CHCHD10 mutations and motor neuron disease: the distribution in Finnish patients". Journal of Neurology, Neurosurgery & Psychiatry 88, n.º 3 (3 de noviembre de 2016): 272–77. http://dx.doi.org/10.1136/jnnp-2016-314154.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Teyssou, Elisa, Laura Chartier, Mélanie Albert, Alexandra Bouscary, Jean-Christophe Antoine, Jean-Philippe Camdessanché, Francesco Rotolo et al. "Genetic analysis of CHCHD10 in French familial amyotrophic lateral sclerosis patients". Neurobiology of Aging 42 (junio de 2016): 218.e1–218.e3. http://dx.doi.org/10.1016/j.neurobiolaging.2016.03.022.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Penttilä, S., M. Jokela, A. Saukkonen, J. Toivanen y B. Udd. "Occurrence of CHCHD10 mutations in Finnish patients with motor neuron disorder". Neuromuscular Disorders 25 (octubre de 2015): S224. http://dx.doi.org/10.1016/j.nmd.2015.06.143.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Shen, Shen, Ji He, Lu Tang, Nan Zhang y Dongsheng Fan. "CHCHD10 mutations in patients with amyotrophic lateral sclerosis in Mainland China". Neurobiology of Aging 54 (junio de 2017): 214.e7–214.e10. http://dx.doi.org/10.1016/j.neurobiolaging.2017.02.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Jokela, Manu E., Juho Joutsa y Bjarne Udd. "Evolving neuromuscular phenotype in a patient with a heterozygous CHCHD10 p.G66V mutation". Journal of Neurology 263, n.º 7 (13 de mayo de 2016): 1461–62. http://dx.doi.org/10.1007/s00415-016-8134-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Woo, Jung A. A., Tian Liu, Courtney Penn, Emilio De Narvaez, Drew Maslar, Cenxiao Fang, Anusha Bukhari et al. "P4-090: Chchd10 Mutations Synergize with TDP-43 to Promote Neuronal Apoptosis". Alzheimer's & Dementia 12 (julio de 2016): P1046—P1047. http://dx.doi.org/10.1016/j.jalz.2016.06.2179.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Bannwarth, Sylvie, Samira Ait-El-Mkadem, Annabelle Chaussenot, Emmanuelle C. Genin, Sandra Lacas-Gervais, Konstantina Fragaki, Laetitia Berg-Alonso et al. "A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement". Brain 137, n.º 8 (13 de junio de 2014): 2329–45. http://dx.doi.org/10.1093/brain/awu138.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Zhou, QingQing, YongPing Chen, QianQian Wei, Bei Cao, Ying Wu, Bi Zhao, RuWei Ou et al. "Mutation Screening of the CHCHD10 Gene in Chinese Patients with Amyotrophic Lateral Sclerosis". Molecular Neurobiology 54, n.º 5 (7 de abril de 2016): 3189–94. http://dx.doi.org/10.1007/s12035-016-9888-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Gladyck, Stephanie, Siddhesh Aras, Maik Hüttemann y Lawrence I. Grossman. "Regulation of COX Assembly and Function by Twin CX9C Proteins—Implications for Human Disease". Cells 10, n.º 2 (20 de enero de 2021): 197. http://dx.doi.org/10.3390/cells10020197.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Oxidative phosphorylation is a tightly regulated process in mammals that takes place in and across the inner mitochondrial membrane and consists of the electron transport chain and ATP synthase. Complex IV, or cytochrome c oxidase (COX), is the terminal enzyme of the electron transport chain, responsible for accepting electrons from cytochrome c, pumping protons to contribute to the gradient utilized by ATP synthase to produce ATP, and reducing oxygen to water. As such, COX is tightly regulated through numerous mechanisms including protein–protein interactions. The twin CX9C family of proteins has recently been shown to be involved in COX regulation by assisting with complex assembly, biogenesis, and activity. The twin CX9C motif allows for the import of these proteins into the intermembrane space of the mitochondria using the redox import machinery of Mia40/CHCHD4. Studies have shown that knockdown of the proteins discussed in this review results in decreased or completely deficient aerobic respiration in experimental models ranging from yeast to human cells, as the proteins are conserved across species. This article highlights and discusses the importance of COX regulation by twin CX9C proteins in the mitochondria via COX assembly and control of its activity through protein–protein interactions, which is further modulated by cell signaling pathways. Interestingly, select members of the CX9C protein family, including MNRR1 and CHCHD10, show a novel feature in that they not only localize to the mitochondria but also to the nucleus, where they mediate oxygen- and stress-induced transcriptional regulation, opening a new view of mitochondrial-nuclear crosstalk and its involvement in human disease.
40

Johnson, Janel O., Shannon M. Glynn, J. Raphael Gibbs, Mike A. Nalls, Mario Sabatelli, Gabriella Restagno, Vivian E. Drory, Adriano Chiò, Ekaterina Rogaeva y Bryan J. Traynor. "Mutations in the CHCHD10 gene are a common cause of familial amyotrophic lateral sclerosis". Brain 137, n.º 12 (26 de septiembre de 2014): e311-e311. http://dx.doi.org/10.1093/brain/awu265.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Martherus, Ruben S. R. M., Willem Sluiter, Erika D. J. Timmer, Sabina J. V. VanHerle, Hubert J. M. Smeets y Torik A. Y. Ayoubi. "Functional annotation of heart enriched mitochondrial genes GBAS and CHCHD10 through guilt by association". Biochemical and Biophysical Research Communications 402, n.º 2 (noviembre de 2010): 203–8. http://dx.doi.org/10.1016/j.bbrc.2010.09.109.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Kusakari, Shinya, Yuri Kobayashi, Hiroaki Suzuki y Masaaki Matsuoka. "Analysis of molecular mechanism underlying cell death induced by an ALS/FTD-causative gene CHCHD10". Proceedings for Annual Meeting of The Japanese Pharmacological Society 95 (2022): 3—O—115. http://dx.doi.org/10.1254/jpssuppl.95.0_3-o-115.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Bannwarth, Sylvie, Samira Ait-El-Mkadem, Annabelle Chaussenot, Emmanuelle C. Genin, Sandra Lacas-Gervais, Konstantina Fragaki, Laetitia Berg-Alonso et al. "Reply: Mutations in the CHCHD10 gene are a common cause of familial amyotrophic lateral sclerosis". Brain 137, n.º 12 (26 de septiembre de 2014): e312-e312. http://dx.doi.org/10.1093/brain/awu267.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Liu, Tian, Jung‐A A. Woo, Mohammed Zaheen Bukhari, Patrick LePochat, Ann Chacko, Maj‐Linda B. Selenica, Yan Yan et al. "CHCHD10‐regulated OPA1‐mitofilin complex mediates TDP‐43‐induced mitochondrial phenotypes associated with frontotemporal dementia". FASEB Journal 34, n.º 6 (5 de mayo de 2020): 8493–509. http://dx.doi.org/10.1096/fj.201903133rr.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Perrone, Federica, Hung Phuoc Nguyen, Sara Van Mossevelde, Matthieu Moisse, Anne Sieben, Patrick Santens, Jan De Bleecker et al. "Investigating the role of ALS genes CHCHD10 and TUBA4A in Belgian FTD-ALS spectrum patients". Neurobiology of Aging 51 (marzo de 2017): 177.e9–177.e16. http://dx.doi.org/10.1016/j.neurobiolaging.2016.12.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Chaussenot, Annabelle, Isabelle Le Ber, Sylvie Bannwarth, Samira Ait El Kadem, Annie Verschueren, Jean Pouget y Véronique Paquis-Flucklinger. "Preuve d’une origine mitochondriale pour les phénotypes SLA/DFT à travers l’identification d’un nouveau gène CHCHD10". Revue Neurologique 171 (abril de 2015): A209—A210. http://dx.doi.org/10.1016/j.neurol.2015.01.476.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Ajroud-Driss, S., F. Fecto, K. Ajroud y T. Siddique. "Mutations in the Nuclear Encoded Novel Mitochondrial Protein CHCHD10 Cause an Autosomal Dominant Mitochondrial Myopathy (S55.001)". Neurology 78, Meeting Abstracts 1 (22 de abril de 2012): S55.001. http://dx.doi.org/10.1212/wnl.78.1_meetingabstracts.s55.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Müller, Kathrin, Peter M. Andersen, Annemarie Hübers, Nicolai Marroquin, Alexander E. Volk, Karin M. Danzer, Thomas Meitinger, Albert C. Ludolph, Tim M. Strom y Jochen H. Weishaupt. "Two novel mutations in conserved codons indicate that CHCHD10 is a gene associated with motor neuron disease". Brain 137, n.º 12 (9 de agosto de 2014): e309-e309. http://dx.doi.org/10.1093/brain/awu227.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Fratter, C., E. Dombi, J. Carver, K. Sergeant, I. A. Barbosa, M. Hofer, M. Esiri et al. "Mitochondrial disease and lipid storage myopathy due to mutation in CHCHD10 or DNM1L and disordered mitochondrial dynamics". Neuromuscular Disorders 27 (marzo de 2017): S21. http://dx.doi.org/10.1016/s0960-8966(17)30279-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Ajroud-Driss, Senda, Faisal Fecto, Kaouther Ajroud, Irfan Lalani, Sarah E. Calvo, Vamsi K. Mootha, Han-Xiang Deng et al. "Mutation in the novel nuclear-encoded mitochondrial protein CHCHD10 in a family with autosomal dominant mitochondrial myopathy". neurogenetics 16, n.º 1 (6 de septiembre de 2014): 1–9. http://dx.doi.org/10.1007/s10048-014-0421-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Pasar a la bibliografía