Literatura académica sobre el tema "Charring ablator"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Charring ablator".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Charring ablator"

1

Hakkaki-Fard, A. y F. Kowsary. "Heat Flux Estimation in a Charring Ablator". Numerical Heat Transfer, Part A: Applications 53, n.º 5 (6 de noviembre de 2007): 543–60. http://dx.doi.org/10.1080/10407780701678240.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Guo, Jin y Haiming Huang. "A novel method for analysing the thermal behaviour of charring ablator". Thermal Science and Engineering Progress 7 (septiembre de 2018): 107–14. http://dx.doi.org/10.1016/j.tsep.2018.05.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Weng, Haoyue, Ümran Düzel, Rui Fu y Alexandre Martin. "Geometric Effects on Charring Ablator: Modeling the Full-Scale Stardust Heat Shield". Journal of Spacecraft and Rockets 58, n.º 2 (marzo de 2021): 302–15. http://dx.doi.org/10.2514/1.a34828.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Chen, Yih-Kanq y Frank S. Milos. "Effects of Nonequilibrium Chemistry and Darcy—Forchheimer Pyrolysis Flow for Charring Ablator". Journal of Spacecraft and Rockets 50, n.º 2 (marzo de 2013): 256–69. http://dx.doi.org/10.2514/1.a32289.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Li, Weijie, Haiming Huang, Ye Tian y Zhe Zhao. "A nonlinear pyrolysis layer model for analyzing thermal behavior of charring ablator". International Journal of Thermal Sciences 98 (diciembre de 2015): 104–12. http://dx.doi.org/10.1016/j.ijthermalsci.2015.07.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Wang, Yeqing, Timothy K. Risch y Joseph H. Koo. "Assessment of a one-dimensional finite element charring ablation material response model for phenolic-impregnated carbon ablator". Aerospace Science and Technology 91 (agosto de 2019): 301–9. http://dx.doi.org/10.1016/j.ast.2019.05.039.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

SZASZ, Bianca, Kei-ichi OKUYAMA, Sumio KATO, Takayuki SHIMODA y Sean Lee TUTTLE. "S1910102 Study of the Heat Shield Characteristics of a Lightweight Charring CFRP-based Ablator". Proceedings of Mechanical Engineering Congress, Japan 2015 (2015): _S1910102a. http://dx.doi.org/10.1299/jsmemecj.2015._s1910102a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Xu, Yi Hua, Chun Bo Hu, Zhuo Xiong Zeng y Yu Xin Yang. "Research on Mechanical Model of EPDM Insulation Charring Layer". Applied Mechanics and Materials 152-154 (enero de 2012): 57–63. http://dx.doi.org/10.4028/www.scientific.net/amm.152-154.57.

Texto completo
Resumen
The coupling effect of physics, chemistry and mechanics is through charring layer in the process of ablation of the insulation material. Description of the structure and mechanical properties of charring layer is the critical factor to numerical computation for foretelling the ablation of insulation material. The characteristic of charring layer structure of EPDM insulation at sorts of ablating condition were analyzed, and based on characteristic of porous medium of charring layer, the mechanical model with porosity as parameter was modeled by using theory of solid porous medium. According to the intensity determination of charring layer, the coefficient of intensity model was determined, then, the failure criterion of charring layer was set up, which can provide the mechanical parameters of charring layer for numerical computation to foretell the ablation of insulation material.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Xiao, Jie, Lin Jiang y Qiang Xu. "Insight into chemical reaction kinetics effects on thermal ablation of charring material". Thermal Science, n.º 00 (2021): 85. http://dx.doi.org/10.2298/tsci201010085x.

Texto completo
Resumen
Thermal ablation plays an important role in the aerospace field. In this paper, to study the chemical kinetics effects on heat transfer and surface ablation of the charring ablative material during aerodynamic heating, a charring ablation model was established using the finite element method. AVCOAT5026-39H/CG material, one typical thermal protection material used in thermal protection system, was employed as the ablative material and heated by aerodynamic heating condition experienced by Apollo 4. The finite element model considers the decomposition of the resin within the charring material and the removal of the surface material, and uses Darcy?s law to simulate the fluid flow in the porous char. Results showed that the model can be used for the ablation analysis of charring materials. Then effects of chemical kinetics on ablation were discussed in terms of four aspects, including temperature, surface recession, density distribution, and mass flux of pyrolysis gas. The pre-exponential factor and activation energy have different effects on ablation, while the effect of the reaction order is little. This paper is helpful to understand the heating and ablation process of charring ablative materials and to provide technical references for the selection and design of thermal protection materials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Fu, Rui, Haoyue Weng, Jonathan F. Wenk y Alexandre Martin. "Thermomechanical Coupling for Charring Ablators". Journal of Thermophysics and Heat Transfer 32, n.º 2 (abril de 2018): 369–79. http://dx.doi.org/10.2514/1.t5194.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Charring ablator"

1

Omidy, Ali D. "Multiphase Interaction in Low Density Volumetric Charring Ablators". UKnowledge, 2018. https://uknowledge.uky.edu/me_etds/128.

Texto completo
Resumen
The present thesis provides a description of historical and current modeling methods with recent discoveries within the ablation community. Several historical assumptions are challenged, namely the presence of water in Thermal Protection System (TPS) materials, presence of coking in TPS materials, non-uniform elemental production during pyrolysis reactions, and boundary layer gases, more specifically oxygen, interactions with the charred carbon interface. The first topic assess the potential effect that water has when present within the ablator by examining the temperature prole histories of the recent flight case Mars Science Laboratory. The next topic uses experimental data to consider the instantaneous gas species produced as the ablator pyrolyzes. In this study, key gas species are identified and assumed to be unstable within the gas phase; thus, equilibrating to the solid phase. This topic investigates the potential effects due to the these process. The finial topic uses a simplified configuration to study the role of carbon oxidation, from diatomic oxygen, on the ablation modes of a TPS, surface versus volumetric ablation. Although each of these topics differ in their own right, a common theme is found by understanding the role that common pyrolysis and boundary layer gases species have as they interacts with the porous TPS structure. The main objective of the present thesis is to investigate these questions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Weng, Haoyue. "Multidimensional Modeling of Pyrolysis Gas Transport Inside Orthotropic Charring Ablators". UKnowledge, 2014. https://uknowledge.uky.edu/me_etds/50.

Texto completo
Resumen
During hypersonic atmospheric entry, spacecraft are exposed to enormous aerodynamic heat. To prevent the payload from overheating, charring ablative materials are favored to be applied as the heat shield at the exposing surface of the vehicle. Accurate modeling not only prevents mission failures, but also helps reduce cost. Existing models were mostly limited to one-dimensional and discrepancies were shown against measured experiments and flight-data. To help improve the models and analyze the charring ablation problems, a multidimensional material response module is developed, based on a finite volume method framework. The developed computer program is verified through a series of test-cases, and through code-to-code comparisons with a validated code. Several novel models are proposed, including a three-dimensional pyrolysis gas transport model and an orthotropic material model. The effects of these models are numerically studied and demonstrated to be significant.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Fadigati, Luca. "Numerical investigation of charring thermal protection pyrolysis and ablation in solid rocket motors". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.

Buscar texto completo
Resumen
The solid rocket propulsion is a simple and reliable system, it is less complex than liquid propulsion because it does not require tanks, pumps and the propellant is already stored into the combustion chamber. The main issues are the lower propulsive performance and the lack of controllability. The solid rocket motor thrust can be controlled only moving the nozzle direction of few degrees while its magnitude can not be controlled, therefore it is very important to well know the thrust profile because there is no possibility to control its magnitude during the flight. The thrust shape can be obtained experimentally or performing simulations. The first way is quite expensive therefore the second one is preferable. The tool ROBOOST (ROcket BOOst Simulation Tool), developed by the university of Bologna propulsion laboratory in collaboration with Avio S.p.A., already achieves the goal to predict the thrust profile during the ignition phase and the combustion one. But it fails to follow the experimental curve in the tail-off, underestimating the residual thrust. This discrepancy can be due to different phenomena that are not considered in the this simulation: heat coming from the nozzle, heat coming from slugs and the mass flow rate due to the thermal protection pyrolysis and ablation. This thesis focuses on simulate thermal protection pyrolysis and ablation obtaining their behavior when they are exposed to the hot gases of the combustion chamber.
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Charring ablator"

1

Weng, Haoyue, Huai-Bao Zhang, Ovais Khan y Alexandre Martin. "Multi-Dimensional Modeling of Charring Ablator". En 43rd AIAA Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-2748.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Mansour, Nagi, Jean Lachaud, Thierry Magin, Julien de Mûelenaere y Yih-Kanq Chen. "High-Fidelity Charring Ablator Thermal Response Model". En 42nd AIAA Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-3124.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Amar, Adam J., Brandon Oliver, Benjamin Kirk, Giovanni Salazar y Justin Droba. "Overview of the CHarring Ablator Response (CHAR) Code". En 46th AIAA Thermophysics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-3385.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Martin, Alexandre. "Modeling of chemical nonequilibrium effects in a charring ablator". En 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-301.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Titov, Evgeny, Rakesh Kumar, Deborah Levin y Brian Anderson. "Development and Application of a Charring Ablator Thermal Response Model". En 42nd AIAA Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-3785.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Salazar, Giovanni y Adam J. Amar. "Contact Boundary Conditions in the CHarring Ablator Response (CHAR) Code". En AIAA AVIATION 2021 FORUM. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2021. http://dx.doi.org/10.2514/6.2021-3134.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Rostkowski, Przemyslaw y Marco Panesi. "Quantification of Uncertainty in Extrapolation of Charring Ablator Material Performance to Flight". En AIAA SCITECH 2022 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2022. http://dx.doi.org/10.2514/6.2022-2360.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Salazar, Giovanni, Justin Droba, Brandon Oliver y Adam J. Amar. "Development and Verification of Enclosure Radiation Capabilities in the CHarring Ablator Response (CHAR) code". En 46th AIAA Thermophysics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-3388.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Congdon, William, Donald Curry y Douglas Rarick. "Validation Arc-Jet Testing and Thermal-Response Modeling of Advanced Lightweight Charring-Ablator Families". En 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-2999.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Congdon, William y Donald Curry. "Thermal performance of advanced charring ablator systems for future robotic and manned missions to Mars". En 35th AIAA Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-2829.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía