Artículos de revistas sobre el tema "Charge transfer in biology"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Charge transfer in biology.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Charge transfer in biology".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Wahadoszamen, Md, Tjaart P. J. Krüger, Anjue Mane Ara, Rienk van Grondelle y Michal Gwizdala. "Charge transfer states in phycobilisomes". Biochimica et Biophysica Acta (BBA) - Bioenergetics 1861, n.º 7 (julio de 2020): 148187. http://dx.doi.org/10.1016/j.bbabio.2020.148187.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Kozma, Balázs, Romain Berraud-Pache, Attila Tajti y Péter G. Szalay. "Potential energy surfaces of charge transfer states". Molecular Physics 118, n.º 19-20 (16 de junio de 2020): e1776903. http://dx.doi.org/10.1080/00268976.2020.1776903.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Pepi, Lauren E., Zachary J. Sasiene, Praneeth M. Mendis, Glen P. Jackson y I. Jonathan Amster. "Structural Characterization of Sulfated Glycosaminoglycans Using Charge-Transfer Dissociation". Journal of the American Society for Mass Spectrometry 31, n.º 10 (21 de agosto de 2020): 2143–53. http://dx.doi.org/10.1021/jasms.0c00252.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Torrens, Francisco y Gloria Castellano. "Topological Charge-Transfer Indices: From Small Molecules to Proteins". Current Proteomics 6, n.º 4 (1 de diciembre de 2009): 204–13. http://dx.doi.org/10.2174/157016409789973770.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Kornyshev, Alexei, Marshall Newton, Jens Ulstrup y Brett Sanderson. "Molecular charge transfer in condensed media – from physics and chemistry to biology and nanoengineering". Chemical Physics 319, n.º 1-3 (diciembre de 2005): 1–3. http://dx.doi.org/10.1016/j.chemphys.2005.09.014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Rigin, Sergei, Georgii Bogdanov, Marina Fonari y Tatiana V. Timofeeva. "Computational analysis of charge-transfer crystalline complexes". Acta Crystallographica Section A Foundations and Advances 74, a1 (20 de julio de 2018): a310. http://dx.doi.org/10.1107/s0108767318096903.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Bacchus-Montabonel, Marie-Christine. "Charge Transfer in Ionic and Molecular Systems". International Journal of Molecular Sciences 3, n.º 3 (28 de marzo de 2002): 114. http://dx.doi.org/10.3390/i3030114.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Bacchus-Montabonel, Marie-Christine, Ezinvi Baloïtcha, Michèle Desouter-Lecomte y Nathalie Vaeck. "Rate Coefficient Determination in Charge Transfer Reactions". International Journal of Molecular Sciences 3, n.º 3 (28 de marzo de 2002): 176–89. http://dx.doi.org/10.3390/i3030176.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Li, Xiaojuan, Cheng Lin, Liang Han, Catherine E. Costello y Peter B. O’Connor. "Charge remote fragmentation in electron capture and electron transfer dissociation". Journal of the American Society for Mass Spectrometry 21, n.º 4 (abril de 2010): 646–56. http://dx.doi.org/10.1016/j.jasms.2010.01.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Craven, Galen T. y Abraham Nitzan. "Electron transfer across a thermal gradient". Proceedings of the National Academy of Sciences 113, n.º 34 (22 de julio de 2016): 9421–29. http://dx.doi.org/10.1073/pnas.1609141113.

Texto completo
Resumen
Charge transfer is a fundamental process that underlies a multitude of phenomena in chemistry and biology. Recent advances in observing and manipulating charge and heat transport at the nanoscale, and recently developed techniques for monitoring temperature at high temporal and spatial resolution, imply the need for considering electron transfer across thermal gradients. Here, a theory is developed for the rate of electron transfer and the associated heat transport between donor–acceptor pairs located at sites of different temperatures. To this end, through application of a generalized multidimensional transition state theory, the traditional Arrhenius picture of activation energy as a single point on a free energy surface is replaced with a bithermal property that is derived from statistical weighting over all configurations where the reactant and product states are equienergetic. The flow of energy associated with the electron transfer process is also examined, leading to relations between the rate of heat exchange among the donor and acceptor sites as functions of the temperature difference and the electronic driving bias. In particular, we find that an open electron transfer channel contributes to enhanced heat transport between sites even when they are in electronic equilibrium. The presented results provide a unified theory for charge transport and the associated heat conduction between sites at different temperatures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Lin, Tzong-Yuan, Tobias Werther, Jae-Hun Jeoung y Holger Dobbek. "Suppression of Electron Transfer to Dioxygen by Charge Transfer and Electron Transfer Complexes in the FAD-dependent Reductase Component of Toluene Dioxygenase". Journal of Biological Chemistry 287, n.º 45 (19 de septiembre de 2012): 38338–46. http://dx.doi.org/10.1074/jbc.m112.374918.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Burggraf, Fabian y Thorsten Koslowski. "Charge transfer through a cytochrome multiheme chain: Theory and simulation". Biochimica et Biophysica Acta (BBA) - Bioenergetics 1837, n.º 1 (enero de 2014): 186–92. http://dx.doi.org/10.1016/j.bbabio.2013.09.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Tadini-Buoninsegni, Francesco, Gianluca Bartolommei, Maria Rosa Moncelli y Klaus Fendler. "Charge transfer in P-type ATPases investigated on planar membranes". Archives of Biochemistry and Biophysics 476, n.º 1 (agosto de 2008): 75–86. http://dx.doi.org/10.1016/j.abb.2008.02.031.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Kottke, Tilman, Aihua Xie, Delmar S. Larsen y Wouter D. Hoff. "Photoreceptors Take Charge: Emerging Principles for Light Sensing". Annual Review of Biophysics 47, n.º 1 (20 de mayo de 2018): 291–313. http://dx.doi.org/10.1146/annurev-biophys-070317-033047.

Texto completo
Resumen
The first stage in biological signaling is based on changes in the functional state of a receptor protein triggered by interaction of the receptor with its ligand(s). The light-triggered nature of photoreceptors allows studies on the mechanism of such changes in receptor proteins using a wide range of biophysical methods and with superb time resolution. Here, we critically evaluate current understanding of proton and electron transfer in photosensory proteins and their involvement both in primary photochemistry and subsequent processes that lead to the formation of the signaling state. An insight emerging from multiple families of photoreceptors is that ultrafast primary photochemistry is followed by slower proton transfer steps that contribute to triggering large protein conformational changes during signaling state formation. We discuss themes and principles for light sensing shared by the six photoreceptor families: rhodopsins, phytochromes, photoactive yellow proteins, light-oxygen-voltage proteins, blue-light sensors using flavin, and cryptochromes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Rawtani, Deepak, Binal Kuntmal y Y. Agrawal. "Charge transfer in DNA and its diverse modelling approaches". Frontiers in Life Science 9, n.º 3 (2 de julio de 2016): 214–25. http://dx.doi.org/10.1080/21553769.2016.1207570.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Tosi, G., L. Cardellini y G. Bocelli. "Charge-transfer complexes of hydrazones. VI. Structures of six hydrazone derivatives. Infrared and structural evidence for substituent effects on charge-transfer interactions". Acta Crystallographica Section B Structural Science 44, n.º 1 (1 de febrero de 1988): 55–63. http://dx.doi.org/10.1107/s0108768187009042.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Tadini-Buoninsegni, Francesco y Serena Smeazzetto. "Mechanisms of charge transfer in human copper ATPases ATP7A and ATP7B". IUBMB Life 69, n.º 4 (5 de febrero de 2017): 218–25. http://dx.doi.org/10.1002/iub.1603.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Reece, Steven Y., Justin M. Hodgkiss, JoAnne Stubbe y Daniel G. Nocera. "Proton-coupled electron transfer: the mechanistic underpinning for radical transport and catalysis in biology". Philosophical Transactions of the Royal Society B: Biological Sciences 361, n.º 1472 (17 de julio de 2006): 1351–64. http://dx.doi.org/10.1098/rstb.2006.1874.

Texto completo
Resumen
Charge transport and catalysis in enzymes often rely on amino acid radicals as intermediates. The generation and transport of these radicals are synonymous with proton-coupled electron transfer (PCET), which intrinsically is a quantum mechanical effect as both the electron and proton tunnel. The caveat to PCET is that proton transfer (PT) is fundamentally limited to short distances relative to electron transfer (ET). This predicament is resolved in biology by the evolution of enzymes to control PT and ET coordinates on highly different length scales. In doing so, the enzyme imparts exquisite thermodynamic and kinetic controls over radical transport and radical-based catalysis at cofactor active sites. This discussion will present model systems containing orthogonal ET and PT pathways, thereby allowing the proton and electron tunnelling events to be disentangled. Against this mechanistic backdrop, PCET catalysis of oxygen–oxygen bond activation by mono-oxygenases is captured at biomimetic porphyrin redox platforms. The discussion concludes with the case study of radical-based quantum catalysis in a natural biological enzyme, class I Escherichia coli ribonucleotide reductase. Studies are presented that show the enzyme utilizes both collinear and orthogonal PCET to transport charge from an assembled diiron-tyrosyl radical cofactor to the active site over 35 Å away via an amino acid radical-hopping pathway spanning two protein subunits.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Torrens, Francisco. "Valence topological charge-transfer indices for dipole moments". Molecular Diversity 8, n.º 4 (2004): 365–70. http://dx.doi.org/10.1023/b:modi.0000047508.78271.b1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Bull, James N., Robert G. A. R. Maclagan y Peter W. Harland. "Orientation dependence of the Na + CH3NO2 charge-transfer reaction". Molecular Physics 107, n.º 8-12 (20 de abril de 2009): 1123–37. http://dx.doi.org/10.1080/00268970902755017.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Li, Pengfei y Glen P. Jackson. "Charge Transfer Dissociation (CTD) Mass Spectrometry of Peptide Cations: Study of Charge State Effects and Side-Chain Losses". Journal of The American Society for Mass Spectrometry 28, n.º 7 (13 de enero de 2017): 1271–81. http://dx.doi.org/10.1007/s13361-016-1574-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Henriksson-Enflo, A. y H. Holmgren. "Metals in biology: Electronic structure, properties and charge transfer for copper complexes of glyoxal and dithiene". Theoretica Chimica Acta 87, n.º 4-5 (enero de 1994): 247–66. http://dx.doi.org/10.1007/bf01113382.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Nishida, H. I., H. Arai y T. Nishida. "Cholesterol ester transfer mediated by lipid transfer protein as influenced by changes in the charge characteristics of plasma lipoproteins". Journal of Biological Chemistry 268, n.º 22 (agosto de 1993): 16352–60. http://dx.doi.org/10.1016/s0021-9258(19)85428-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Reece, Steven Y., JoAnne Stubbe y Daniel G. Nocera. "pH dependence of charge transfer between tryptophan and tyrosine in dipeptides". Biochimica et Biophysica Acta (BBA) - Bioenergetics 1706, n.º 3 (febrero de 2005): 232–38. http://dx.doi.org/10.1016/j.bbabio.2004.11.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Krishtalik, Lev I. "The medium reorganization energy for the charge transfer reactions in proteins". Biochimica et Biophysica Acta (BBA) - Bioenergetics 1807, n.º 11 (noviembre de 2011): 1444–56. http://dx.doi.org/10.1016/j.bbabio.2011.07.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Siletsky, Sergey A., Ashtamurthy S. Pawate, Kara Weiss, Robert B. Gennis y Alexander A. Konstantinov. "Transmembrane Charge Separation during the Ferryl-oxo → Oxidized Transition in a Nonpumping Mutant of CytochromecOxidase". Journal of Biological Chemistry 279, n.º 50 (22 de septiembre de 2004): 52558–65. http://dx.doi.org/10.1074/jbc.m407549200.

Texto completo
Resumen
The N139D mutant of cytochromecoxidase fromRhodobacter sphaeroidesretains full steady state oxidase activity but completely lacks proton translocation coupled to turnover in reconstituted liposomes (Pawate, A. S., Morgan, J., Namslauer, A., Mills, D., Brzezinski, P., Ferguson-Miller, S., and Gennis, R. B. (2002)Biochemistry41, 13417–13423). Here, time-resolved electron transfer and vectorial charge translocation in the ferryl-oxo → oxidized transition (transfer of the 4th electron in the catalytic cycle) have been studied with the N139D mutant using ruthenium(II)-tris-bipyridyl complex as a photoactive single-electron donor. With the wild type oxidase, the flash-induced generation of Δφ in the ferryl-oxo → oxidized transition begins with rapid vectorial electron transfer from CuAto heme a (τ ∼15 μs), followed by two protonic phases, referred to as the intermediate (0.4 ms) and slow electrogenic phases (1.5 ms). In the N139D mutant, only a single protonic phase (τ ∼0.6 ms) is observed, which was associated with electron transfer from heme a to the heme a3/CuBsite and decelerates ∼4-fold in D2O. With the wild type oxidase, such a high H2O/D2O solvent isotope effect is characteristic of only the slow (1.5 ms) phase. Presumably, the 0.6-ms electrogenic phase in the N139D mutant reports proton transfer from the inner aqueous phase to Glu-286, replacing the “chemical” proton transferred from Glu-286 to the heme a3/CuBsite. The transfer occurs through the D-channel, because it is observed also in the N139D/K362M double mutant in which the K-channel is blocked. It is concluded that the intermediate electrogenic phase observed in the wild type enzyme is missing in the N139D mutant and is because of translocation of the “pumped” proton from Glu-286 to the D-ring propionate of heme a3or to release of this proton to the outer aqueous phase. Significantly, with the wild type oxidase, the protonic electrogenic phase associated with proton pumping (∼0.4 ms) precedes the electrogenic phase associated with the oxygen chemistry (∼1.5 ms).
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Hosomi, Hiroyuki, Shigeru Ohba y Yoshikatsu Ito. "Charge-transfer complexes ofN-methyl-andN-ethylcarbazole with 3,5-dinitrobenzonitrile". Acta Crystallographica Section C Crystal Structure Communications 56, n.º 4 (15 de abril de 2000): e147-e148. http://dx.doi.org/10.1107/s0108270100003851.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Wang, J., S.-J. Gao, P.-C. Zhang, S. Wang, H.-Q. Mao y K. W. Leong. "Polyphosphoramidate gene carriers: effect of charge group on gene transfer efficiency". Gene Therapy 11, n.º 12 (26 de febrero de 2004): 1001–10. http://dx.doi.org/10.1038/sj.gt.3302248.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Elson, Edward. "Developmental control in animals and a biological role for DNA charge transfer". Progress in Biophysics and Molecular Biology 95, n.º 1-3 (septiembre de 2007): 1–15. http://dx.doi.org/10.1016/j.pbiomolbio.2006.07.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Levendis, Demetrius y David Reid. "Hypervalent chalcogen–chalcogen heteropentalenes and their charge-transfer adducts". Acta Crystallographica Section A Foundations and Advances 75, a2 (18 de agosto de 2019): e506-e506. http://dx.doi.org/10.1107/s2053273319090508.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Ogorzalek Loo, Rachel R., Brian E. Winger y Richard D. Smith. "Proton transfer reaction studies of multiply charged proteins in a high mass-to-charge ratio quadrupole mass spectrometer". Journal of the American Society for Mass Spectrometry 5, n.º 12 (diciembre de 1994): 1064–71. http://dx.doi.org/10.1016/1044-0305(94)85067-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Rauk, A., G. Hamilton y G. J. Moore. "Mechanistic consequences of charge transfer systems in serine proteases and angiotensin: Semiempirical computations". Biochemical and Biophysical Research Communications 145, n.º 3 (junio de 1987): 1349–55. http://dx.doi.org/10.1016/0006-291x(87)91586-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

McDowell, Lynda M., Christine Kirmaier y Dewey Holten. "Charge transfer and charge resonance states of the primary electron donor in wild-type and mutant bacterial reaction centers". Biochimica et Biophysica Acta (BBA) - Bioenergetics 1020, n.º 3 (diciembre de 1990): 239–46. http://dx.doi.org/10.1016/0005-2728(90)90153-u.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Hasan, S. Saif, Eiki Yamashita y William A. Cramer. "Transmembrane signaling and assembly of the cytochrome b6f-lipidic charge transfer complex". Biochimica et Biophysica Acta (BBA) - Bioenergetics 1827, n.º 11-12 (noviembre de 2013): 1295–308. http://dx.doi.org/10.1016/j.bbabio.2013.03.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Kleinherenbrink, F. A. M. y J. Amesz. "Stoichiometries and rates of electron transfer and charge recombination in Heliobacterium chlorum". Biochimica et Biophysica Acta (BBA) - Bioenergetics 1143, n.º 1 (junio de 1993): 77–83. http://dx.doi.org/10.1016/0005-2728(93)90218-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Kruk, Jerzy y Kazimierz Strzafka. "Charge-transfer complexes of plastoquinone and α-tocopherol quinone in phosphatidylcholine and octadecane". Chemistry and Physics of Lipids 70, n.º 2 (abril de 1994): 199–204. http://dx.doi.org/10.1016/0009-3084(94)90087-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Kufner, Corinna L., Wolfgang Zinth y Dominik B. Bucher. "UV‐Induced Charge‐Transfer States in Short Guanosine‐Containing DNA Oligonucleotides". ChemBioChem 21, n.º 16 (5 de mayo de 2020): 2306–10. http://dx.doi.org/10.1002/cbic.202000103.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Juretić, Davor y Paško Županović. "Photosynthetic models with maximum entropy production in irreversible charge transfer steps". Computational Biology and Chemistry 27, n.º 6 (diciembre de 2003): 541–53. http://dx.doi.org/10.1016/j.compbiolchem.2003.09.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Wang, Donghui, Ji Tan, Hongqin Zhu, Yongfeng Mei y Xuanyong Liu. "Biomedical Implants with Charge‐Transfer Monitoring and Regulating Abilities". Advanced Science 8, n.º 16 (24 de junio de 2021): 2004393. http://dx.doi.org/10.1002/advs.202004393.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Hoffmann, William D. y Glen P. Jackson. "Charge Transfer Dissociation (CTD) Mass Spectrometry of Peptide Cations Using Kiloelectronvolt Helium Cations". Journal of The American Society for Mass Spectrometry 25, n.º 11 (18 de septiembre de 2014): 1939–43. http://dx.doi.org/10.1007/s13361-014-0989-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Semenov, Alexey Yu, Mahir D. Mamedov y Sergey K. Chamorovsky. "Photoelectric studies of the transmembrane charge transfer reactions in photosystem I pigment-protein complexes". FEBS Letters 553, n.º 3 (25 de septiembre de 2003): 223–28. http://dx.doi.org/10.1016/s0014-5793(03)01032-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Malojčić, Goran, Robin L. Owen, John P. A. Grimshaw y Rudi Glockshuber. "Preparation and structure of the charge-transfer intermediate of the transmembrane redox catalyst DsbB". FEBS Letters 582, n.º 23-24 (5 de septiembre de 2008): 3301–7. http://dx.doi.org/10.1016/j.febslet.2008.07.063.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Wang, Shi, Wenrui He y Wei Huang. "Synthesis and Crystal Structure of Charge-Transfer Salt (TTF)[Pt(mnt)2]". Journal of Chemical Crystallography 41, n.º 3 (19 de enero de 2011): 430–33. http://dx.doi.org/10.1007/s10870-010-9975-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Permentier, Hjalmar P., Sieglinde Neerken, Kristiane A. Schmidt, Jörg Overmann y Jan Amesz. "Energy transfer and charge separation in the purple non-sulfur bacterium Roseospirillum parvum". Biochimica et Biophysica Acta (BBA) - Bioenergetics 1460, n.º 2-3 (noviembre de 2000): 338–45. http://dx.doi.org/10.1016/s0005-2728(00)00200-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Björck, Markus L. y Peter Brzezinski. "Control of transmembrane charge transfer in cytochrome c oxidase by the membrane potential". Biochimica et Biophysica Acta (BBA) - Bioenergetics 1859 (septiembre de 2018): e70. http://dx.doi.org/10.1016/j.bbabio.2018.09.209.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Han, Yulun, Sergei Tretiak y Dmitri Kilin. "Dynamics of charge transfer at Au/Si metal-semiconductor nano-interface". Molecular Physics 112, n.º 3-4 (14 de octubre de 2013): 474–84. http://dx.doi.org/10.1080/00268976.2013.842007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

KELEMEN, MARC, CHRISTOPH WACHTER, HUBERT WINTER, ELMAR DORMANN, RUDOLF GOMPPER y DOMINIK HERMANN. "Magnetic properties of new charge-transfer complexes based on manganese porphyrins". Molecular Physics 90, n.º 3 (20 de febrero de 1997): 407–13. http://dx.doi.org/10.1080/00268979709482621.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Lee, Sebok, Myungsam Jen y Yoonsoo Pang. "Twisted Intramolecular Charge Transfer State of a “Push-Pull” Emitter". International Journal of Molecular Sciences 21, n.º 21 (27 de octubre de 2020): 7999. http://dx.doi.org/10.3390/ijms21217999.

Texto completo
Resumen
The excited state Raman spectra of 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) in the locally-excited (LE) and the intramolecular charge transfer (ICT) states have been separately measured by time-resolved stimulated Raman spectroscopy. In a polar dimethylsulfoxide solution, the ultrafast ICT of DCM with a time constant of 1.0 ps was observed in addition to the vibrational relaxation in the ICT state of 4–7 ps. On the other hand, the energy of the ICT state of DCM becomes higher than that of the LE state in a less polar chloroform solution, where the initially-photoexcited ICT state with the LE state shows the ultrafast internal conversion to the LE state with a time constant of 300 fs. The excited-state Raman spectra of the LE and ICT state of DCM showed several major vibrational modes of DCM in the LE and ICT conformer states coexisting in the excited state. Comparing to the time-dependent density functional theory simulations and the experimental results of similar push-pull type molecules, a twisted geometry of the dimethylamino group is suggested for the structure of DCM in the S1/ICT state.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Avenson, Thomas J., Tae Kyu Ahn, Krishna K. Niyogi, Matteo Ballottari, Roberto Bassi y Graham R. Fleming. "Lutein Can Act as a Switchable Charge Transfer Quencher in the CP26 Light-harvesting Complex". Journal of Biological Chemistry 284, n.º 5 (6 de noviembre de 2008): 2830–35. http://dx.doi.org/10.1074/jbc.m807192200.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Young, Meggie N. y Christian Bleiholder. "Molecular Structures and Momentum Transfer Cross Sections: The Influence of the Analyte Charge Distribution". Journal of The American Society for Mass Spectrometry 28, n.º 4 (1 de marzo de 2017): 619–27. http://dx.doi.org/10.1007/s13361-017-1605-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía