Artículos de revistas sobre el tema "Charge storage memory"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Charge storage memory".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Mabrook, M. F., Youngjun Yun, C. Pearson, D. A. Zeze y M. C. Petty. "Charge Storage in Pentacene/Polymethylmethacrylate Memory Devices". IEEE Electron Device Letters 30, n.º 6 (junio de 2009): 632–34. http://dx.doi.org/10.1109/led.2009.2018128.
Texto completoSpassov, Dencho y Albena Paskaleva. "Challenges to Optimize Charge Trapping Non-Volatile Flash Memory Cells: A Case Study of HfO2/Al2O3 Nanolaminated Stacks". Nanomaterials 13, n.º 17 (30 de agosto de 2023): 2456. http://dx.doi.org/10.3390/nano13172456.
Texto completoTsoukalas, Dimitris, S. Kolliopoulou, P. Dimitrakis, P. Normand y M. C. Petty. "Nanoparticles for Charge Storage Using Hybrid Organic Inorganic Devices". Advances in Science and Technology 54 (septiembre de 2008): 451–57. http://dx.doi.org/10.4028/www.scientific.net/ast.54.451.
Texto completoGong, Changjie, Xin Ou, Bo Xu, Xuexin Lan, Yan Lei, Jianxin Lu, Yan Chen et al. "Enhanced charge storage performance in AlTi4Ox/Al2O3multilayer charge trapping memory devices". Japanese Journal of Applied Physics 53, n.º 8S3 (7 de julio de 2014): 08NG02. http://dx.doi.org/10.7567/jjap.53.08ng02.
Texto completoTang, Zhen-Jie, Rong Li y Jiang Yin. "The charge storage characteristics of ZrO2nanocrystallite-based charge trap nonvolatile memory". Chinese Physics B 22, n.º 6 (junio de 2013): 067702. http://dx.doi.org/10.1088/1674-1056/22/6/067702.
Texto completoTsoukalas, Dimitris y Emanuele Verrelli. "Inorganic Nanoparticles for either Charge Storage or Memristance Modulation". Advances in Science and Technology 77 (septiembre de 2012): 196–204. http://dx.doi.org/10.4028/www.scientific.net/ast.77.196.
Texto completoBandić, Zvonimir Z., Dmitri Litvinov y M. Rooks. "Nanostructured Materials in Information Storage". MRS Bulletin 33, n.º 9 (septiembre de 2008): 831–37. http://dx.doi.org/10.1557/mrs2008.178.
Texto completoLee, Meng Chuan y Hin Yong Wong. "Technical Solutions to Mitigate Reliability Challenges due to Technology Scaling of Charge Storage NVM". Journal of Nanomaterials 2013 (2013): 1–17. http://dx.doi.org/10.1155/2013/195325.
Texto completoWang, Shuai, Jing Pu, Daniel S. H. Chan, Byung Jin Cho y Kian Ping Loh. "Wide memory window in graphene oxide charge storage nodes". Applied Physics Letters 96, n.º 14 (5 de abril de 2010): 143109. http://dx.doi.org/10.1063/1.3383234.
Texto completoLee, Gae-Hun, Jung-Min Lee, Yun Heub Song, Ji Chel Bea, Tetsu Tanaka y Mitsumasa Koyanagi. "Multilevel Charge Storage in a Multiple Alloy Nanodot Memory". Japanese Journal of Applied Physics 50, n.º 9R (1 de septiembre de 2011): 095001. http://dx.doi.org/10.7567/jjap.50.095001.
Texto completoLee, Gae-Hun, Jung-Min Lee, Yun Heub Song, Ji Chel Bea, Tetsu Tanaka y Mitsumasa Koyanagi. "Multilevel Charge Storage in a Multiple Alloy Nanodot Memory". Japanese Journal of Applied Physics 50, n.º 9 (20 de septiembre de 2011): 095001. http://dx.doi.org/10.1143/jjap.50.095001.
Texto completoFujiwara, Ichiro, Sigeru Kojima y Jun'etsu Seto. "High Density Charge Storage Memory with Scanning Probe Microscopy". Japanese Journal of Applied Physics 35, Part 1, No. 5A (15 de mayo de 1996): 2764–69. http://dx.doi.org/10.1143/jjap.35.2764.
Texto completoCui, J. B., R. Sordan, M. Burghard y K. Kern. "Carbon nanotube memory devices of high charge storage stability". Applied Physics Letters 81, n.º 17 (21 de octubre de 2002): 3260–62. http://dx.doi.org/10.1063/1.1516633.
Texto completoSpassov, Dencho, Albena Paskaleva, Elżbieta Guziewicz, Wojciech Wozniak, Todor Stanchev, Tsvetan Ivanov, Joanna Wojewoda-Budka y Marta Janusz-Skuza. "Charge Storage and Reliability Characteristics of Nonvolatile Memory Capacitors with HfO2/Al2O3-Based Charge Trapping Layers". Materials 15, n.º 18 (9 de septiembre de 2022): 6285. http://dx.doi.org/10.3390/ma15186285.
Texto completoSalaoru, Iulia y Shashi Paul. "Memory Effect of a Different Materials as Charge Storage Elements for Memory Applications". Advances in Science and Technology 77 (septiembre de 2012): 205–8. http://dx.doi.org/10.4028/www.scientific.net/ast.77.205.
Texto completoYin, Changyong, Ziqi Zhao, Shiqi Zhang y Zexiang Gao. "Research on the operation state prediction of energy storage unit based on neural network". Journal of Physics: Conference Series 2558, n.º 1 (1 de agosto de 2023): 012035. http://dx.doi.org/10.1088/1742-6596/2558/1/012035.
Texto completoKim, Eunkyeom, Kyoungmin Kim, Daeho Son, Jeongho Kim, Kyungsu Lee, Moonsup Han, Sunghwan Won, Junghyun Sok, Wan-Shick Hong y Kyoungwan Park. "Nonvolatile memory characteristics of metallic nanodots as charge-storage nodes". Microelectronic Engineering 85, n.º 12 (diciembre de 2008): 2366–69. http://dx.doi.org/10.1016/j.mee.2008.09.037.
Texto completoYeh, P. H., L. J. Chen, P. T. Liu, D. Y. Wang y T. C. Chang. "Metal nanocrystals as charge storage nodes for nonvolatile memory devices". Electrochimica Acta 52, n.º 8 (febrero de 2007): 2920–26. http://dx.doi.org/10.1016/j.electacta.2006.09.006.
Texto completoNakamura, Taichi. "Multilevel storage memory using serial—parallel–serial charge—coupled device". Electronics and Communications in Japan (Part II: Electronics) 72, n.º 2 (1989): 23–34. http://dx.doi.org/10.1002/ecjb.4420720204.
Texto completoLiu, Weihua, Fei Wu, Xiang Chen, Meng Zhang, Yu Wang, Xiangfeng Lu y Changsheng Xie. "Characterization Summary of Performance, Reliability, and Threshold Voltage Distribution of 3D Charge-Trap NAND Flash Memory". ACM Transactions on Storage 18, n.º 2 (31 de mayo de 2022): 1–25. http://dx.doi.org/10.1145/3491230.
Texto completoLu, X. B. y J. Y. Dai. "Memory effects of carbon nanotubes as charge storage nodes for floating gate memory applications". Applied Physics Letters 88, n.º 11 (13 de marzo de 2006): 113104. http://dx.doi.org/10.1063/1.2179374.
Texto completoLiu, W. J., L. Chen, P. Zhou, Q. Q. Sun, H. L. Lu, S. J. Ding y David W. Zhang. "Chemical-Vapor-Deposited Graphene as Charge Storage Layer in Flash Memory Device". Journal of Nanomaterials 2016 (2016): 1–6. http://dx.doi.org/10.1155/2016/6751497.
Texto completoShih, Wen-Chieh, Chih-Hao Cheng, Joseph Ya-min Lee y Fu-Chien Chiu. "Charge-Trapping Devices Using Multilayered Dielectrics for Nonvolatile Memory Applications". Advances in Materials Science and Engineering 2013 (2013): 1–5. http://dx.doi.org/10.1155/2013/548329.
Texto completoKim, Moon Kyung y Sandip Tiwari. "NON-VOLATILE HIGH SPEED & LOW POWER CHARGE TRAPPING DEVICES". International Journal of High Speed Electronics and Systems 17, n.º 01 (marzo de 2007): 147–52. http://dx.doi.org/10.1142/s0129156407004369.
Texto completoCui, Ziyang, Dongxu Xin, Taeyong Kim, Jiwon Choi, Jaewoong Cho y Junsin Yi. "Improvement of the Charge Retention of a Non-Volatile Memory by a Bandgap-Engineered Charge Trap Layer". ECS Journal of Solid State Science and Technology 10, n.º 12 (1 de diciembre de 2021): 125002. http://dx.doi.org/10.1149/2162-8777/ac3f1d.
Texto completoYang, Yang, Liping Ma y Jianhua Wu. "Organic Thin-Film Memory". MRS Bulletin 29, n.º 11 (noviembre de 2004): 833–37. http://dx.doi.org/10.1557/mrs2004.237.
Texto completoChou, Ying-Hsuan, Hsuan-Chun Chang, Cheng-Liang Liu y Wen-Chang Chen. "Polymeric charge storage electrets for non-volatile organic field effect transistor memory devices". Polymer Chemistry 6, n.º 3 (2015): 341–52. http://dx.doi.org/10.1039/c4py01213e.
Texto completoZhou, H. C., Y. X. Zhou, Yu Qiu y Jun Zhu. "Enhanced charge storage capability of (Bi2O3)0.4(ZrO2)0.6 charge trapping layer in nanocrystal memory devices". Functional Materials Letters 12, n.º 04 (agosto de 2019): 1950046. http://dx.doi.org/10.1142/s1793604719500462.
Texto completoKwon, Wookhyun, In Jun Park y Changhwan Shin. "Highly Scalable NAND Flash Memory Cell Design Embracing Backside Charge Storage". JSTS:Journal of Semiconductor Technology and Science 15, n.º 2 (30 de abril de 2015): 286–91. http://dx.doi.org/10.5573/jsts.2015.15.2.286.
Texto completoEl-Atab, N. y A. Nayfeh. "Ultra-Small ZnO Nanoparticles for Charge Storage in MOS-Memory Devices". ECS Transactions 72, n.º 5 (19 de mayo de 2016): 73–79. http://dx.doi.org/10.1149/07205.0073ecst.
Texto completoGanguly, Udayan, Edwin C. Kan y Yuegang Zhang. "Carbon nanotube-based nonvolatile memory with charge storage in metal nanocrystals". Applied Physics Letters 87, n.º 4 (25 de julio de 2005): 043108. http://dx.doi.org/10.1063/1.1999014.
Texto completoAlba-Martin, Maria, Timothy Firmager, Joseph Atherton, Mark C. Rosamond, Daniel Ashall, Amal Al Ghaferi, Ahmad Ayesh et al. "Improved memory behaviour of single-walled carbon nanotubes charge storage nodes". Journal of Physics D: Applied Physics 45, n.º 29 (2 de julio de 2012): 295401. http://dx.doi.org/10.1088/0022-3727/45/29/295401.
Texto completoRay, Sounak K., Debashis Panda y Rakesh Aluguri. "Enhanced charge storage characteristics of nickel nanocrystals embedded flash memory structures". Journal of Experimental Nanoscience 8, n.º 3 (abril de 2013): 389–95. http://dx.doi.org/10.1080/17458080.2012.708440.
Texto completoZheng, Chaoyue, Tong Tong, Yueming Hu, Yuming Gu, Huarui Wu, Dequn Wu, Hong Meng et al. "Charge-Storage Aromatic Amino Compounds for Nonvolatile Organic Transistor Memory Devices". Small 14, n.º 25 (27 de mayo de 2018): 1800756. http://dx.doi.org/10.1002/smll.201800756.
Texto completoLiu, L., J. P. Xu, F. Ji, J. X. Chen y P. T. Lai. "Improved memory characteristics by NH3-nitrided GdO as charge storage layer for nonvolatile memory applications". Applied Physics Letters 101, n.º 3 (16 de julio de 2012): 033501. http://dx.doi.org/10.1063/1.4737158.
Texto completoYang, Kun, Hongxia Liu, Shulong Wang, Wenlong Yu y Tao Han. "Comprehensive Performance Quasi-Non-Volatile Memory Compatible with Large-Scale Preparation by Chemical Vapor Deposition". Nanomaterials 10, n.º 8 (27 de julio de 2020): 1471. http://dx.doi.org/10.3390/nano10081471.
Texto completoLi, Chao, Bo Lei, Wendy Fan, Daihua Zhang, M. Meyyappan y Chongwu Zhou. "Molecular Memory Based on Nanowire–Molecular Wire Heterostructures". Journal of Nanoscience and Nanotechnology 7, n.º 1 (1 de enero de 2007): 138–50. http://dx.doi.org/10.1166/jnn.2007.18011.
Texto completoZhang, Guoxian, Yu-Jung Lee, Prabhat Gautam, Chia-Chi Lin, Cheng-Liang Liu y Julian M. W. Chan. "Pentafluorosulfanylated polymers as electrets in nonvolatile organic field-effect transistor memory devices". Journal of Materials Chemistry C 7, n.º 26 (2019): 7865–71. http://dx.doi.org/10.1039/c9tc00756c.
Texto completoIslam, Sk Masiul y P. Banerji. "Size effect of InAs quantum dots grown by metal organic chemical vapor deposition technique in storing electrical charges for memory applications". RSC Advances 5, n.º 9 (2015): 6906–11. http://dx.doi.org/10.1039/c4ra13317j.
Texto completoLU, CHIH-YUAN. "NONVOLATILE MEMORY TECHNOLOGY: A DRIVER TO FUTURE NANOELECTRONICS". SPIN 02, n.º 01 (marzo de 2012): 1230001. http://dx.doi.org/10.1142/s2010324712300010.
Texto completoJin, Risheng, Keli Shi, Beibei Qiu y Shihua Huang. "Photoinduced-reset and multilevel storage transistor memories based on antimony-doped tin oxide nanoparticles floating gate". Nanotechnology 33, n.º 2 (22 de octubre de 2021): 025201. http://dx.doi.org/10.1088/1361-6528/ac2dc5.
Texto completoJames, David D., Akhtar Bayat, Scott R. Smith, Jean-Christophe Lacroix y Richard L. McCreery. "Nanometric building blocks for robust multifunctional molecular junctions". Nanoscale Horizons 3, n.º 1 (2018): 45–52. http://dx.doi.org/10.1039/c7nh00109f.
Texto completoLo, Chen-Tsyr, Yu Watanabe, Hiroshi Oya, Kazuhiro Nakabayashi, Hideharu Mori y Wen-Chang Chen. "Non-volatile transistor memory devices using charge storage cross-linked core–shell nanoparticles". Chemical Communications 52, n.º 45 (2016): 7269–72. http://dx.doi.org/10.1039/c6cc02750d.
Texto completoKim, Jaemin, Donghee Son, Mincheol Lee, Changyeong Song, Jun-Kyul Song, Ja Hoon Koo, Dong Jun Lee et al. "A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement". Science Advances 2, n.º 1 (enero de 2016): e1501101. http://dx.doi.org/10.1126/sciadv.1501101.
Texto completoWang, Jer-Chyi, Chih-Ting Lin y Chi-Feng Chang. "Effects of charge storage dielectric thickness on hybrid gadolinium oxide nanocrystal and charge trapping nonvolatile memory". Current Applied Physics 14, n.º 3 (marzo de 2014): 232–36. http://dx.doi.org/10.1016/j.cap.2013.11.019.
Texto completoNovak, Steven, Bongmook Lee, Xiangyu Yang y Veena Misra. "Platinum Nanoparticles Grown by Atomic Layer Deposition for Charge Storage Memory Applications". Journal of The Electrochemical Society 157, n.º 6 (2010): H589. http://dx.doi.org/10.1149/1.3365031.
Texto completoMiura, Atsushi, Yukiharu Uraoka, Takashi Fuyuki, Shigeo Yoshii y Ichiro Yamashita. "Floating nanodot gate memory fabrication with biomineralized nanodot as charge storage node". Journal of Applied Physics 103, n.º 7 (abril de 2008): 074503. http://dx.doi.org/10.1063/1.2888357.
Texto completoLin, Chao-Cheng, Ting-Chang Chang, Chun-Hao Tu, Wei-Ren Chen, Chih-Wei Hu, Simon M. Sze, Tseung-Yuen Tseng, Sheng-Chi Chen y Jian-Yang Lin. "Charge Storage Characteristics of Mo Nanocrystal Memory Influenced by Ammonia Plasma Treatment". Journal of The Electrochemical Society 156, n.º 9 (2009): H716. http://dx.doi.org/10.1149/1.3155446.
Texto completoLiu, L., J. P. Xu, F. Ji, X. D. Huang y P. T. Lai. "A Novel MONOS Memory With High-$\kappa$ HfLaON as Charge-Storage Layer". IEEE Transactions on Device and Materials Reliability 11, n.º 2 (junio de 2011): 244–47. http://dx.doi.org/10.1109/tdmr.2011.2117428.
Texto completoSargentis, Ch, K. Giannakopoulos, A. Travlos, P. Normand y D. Tsamakis. "Study of charge storage characteristics of memory devices embedded with metallic nanoparticles". Superlattices and Microstructures 44, n.º 4-5 (octubre de 2008): 483–88. http://dx.doi.org/10.1016/j.spmi.2008.03.003.
Texto completo