Artículos de revistas sobre el tema "Chalcogenide Waveguides"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Chalcogenide Waveguides.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Chalcogenide Waveguides".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Наливайко, В. И. y М. А. Пономарева. "Оптические решеточно-волноводные сенсоры на основе халькогенидных стекол". Журнал технической физики 126, n.º 4 (2019): 523. http://dx.doi.org/10.21883/os.2019.04.47523.182-18.

Texto completo
Resumen
AbstractThe operating principle of the optical grating waveguide sensors is considered. The waveguide sensitivity and detection limit of sensors with waveguides of oxide and chalcogenide glasses are compared. The advantages of the grating waveguide sensors with waveguides with a high contrast of refraction indices are shown. The conditions of obtaining a maximum waveguide sensitivity of the grating waveguide sensors are formulated.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Mushahid, Husain y Raman Swati. "Chalcogenide Glass Optical Waveguides for Optical Communication". Advanced Materials Research 679 (abril de 2013): 41–45. http://dx.doi.org/10.4028/www.scientific.net/amr.679.41.

Texto completo
Resumen
The present research work is focused on fabricating the chalcogenide glass optical waveguides keeping in mind their application in optical communication. The propagation loss of the waveguides is also studied at three different wavelengths. The waveguides were fabricated by dry etching using ECR Plasma etching and the propagation loss is studied using Fabry-Perot technique. The waveguides having loss as low as 0.35 dB/cm at 1.3m is achieved. The technique used to fabricate waveguide is simple and cost effective.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Luo, Ye, Chunlei Sun, Hui Ma, Maoliang Wei, Jialing Jian, Chuyu Zhong, Junying Li et al. "Interlayer Slope Waveguide Coupler for Multilayer Chalcogenide Photonics". Photonics 9, n.º 2 (7 de febrero de 2022): 94. http://dx.doi.org/10.3390/photonics9020094.

Texto completo
Resumen
The interlayer coupler is one of the critical building blocks for optical interconnect based on multilayer photonic integration to realize light coupling between stacked optical waveguides. However, commonly used coupling strategies, such as evanescent field coupling, usually require a close distance, which could cause undesired interlayer crosstalk. This work presents a novel interlayer slope waveguide coupler based on a multilayer chalcogenide glass photonic platform, enabling light to be directly guided from one layer to another with a large interlayer gap (1 µm), a small footprint (6 × 1 × 0.8 µm3), low propagation loss (0.2 dB at 1520 nm), low device processing temperature, and a high bandwidth, similar to that in a straight waveguide. The proposed interlayer slope waveguide coupler could further promote the development of advanced multilayer integration in 3D optical communications systems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Chauvet, Mathieu, Gil Fanjoux, Kien Phan Huy, Virginie Nazabal, Frédéric Charpentier, Thierry Billeton, Georges Boudebs, Michel Cathelinaud y Simon-Pierre Gorza. "Kerr spatial solitons in chalcogenide waveguides". Optics Letters 34, n.º 12 (5 de junio de 2009): 1804. http://dx.doi.org/10.1364/ol.34.001804.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Dyatlov, Mikhail, Philippe Delaye, Laurent Vivien y Nicolas Dubreuil. "Bi-directional spectral broadening measurements for accurate characterisation of nonlinear hybrid integrated waveguides". EPJ Web of Conferences 266 (2022): 01007. http://dx.doi.org/10.1051/epjconf/202226601007.

Texto completo
Resumen
The emerging interest in integrated optical technologies raises the need for precise characterisation techniques for waveguides presenting nonlinearities. Here we propose a non-interferometric measurement to accurately characterise the Kerr contribution in hybrid waveguides and illustrate its performances using SiN waveguides with a GSS chalcogenide top-layer. The sensitivity of our technique in terms of nonlinear phase reaches 10 mrad and its accuracy makes possible to extract the nonlinear contributions from the top-layer.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Anne, Marie-Laure, Julie Keirsse, Virginie Nazabal, Koji Hyodo, Satoru Inoue, Catherine Boussard-Pledel, Hervé Lhermite et al. "Chalcogenide Glass Optical Waveguides for Infrared Biosensing". Sensors 9, n.º 9 (15 de septiembre de 2009): 7398–411. http://dx.doi.org/10.3390/s90907398.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Huang, Ying, Perry Ping Shum, Feng Luan y Ming Tang. "Raman-Assisted Wavelength Conversion in Chalcogenide Waveguides". IEEE Journal of Selected Topics in Quantum Electronics 18, n.º 2 (marzo de 2012): 646–53. http://dx.doi.org/10.1109/jstqe.2011.2128856.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Curry, R. J., A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak y J. V. Badding. "Chalcogenide Glass Thin Films and Planar Waveguides". Journal of the American Ceramic Society 88, n.º 9 (septiembre de 2005): 2451–55. http://dx.doi.org/10.1111/j.1551-2916.2005.00349.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Zha, Yunlai, Pao Tai Lin, Lionel Kimerling, Anu Agarwal y Craig B. Arnold. "Inverted-Rib Chalcogenide Waveguides by Solution Process". ACS Photonics 1, n.º 3 (21 de febrero de 2014): 153–57. http://dx.doi.org/10.1021/ph400107s.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Andriesh, A. M. "Properties of chalcogenide glasses for optical waveguides". Journal of Non-Crystalline Solids 77-78 (diciembre de 1985): 1219–28. http://dx.doi.org/10.1016/0022-3093(85)90878-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Petkova, Tamara, Vania Ilcheva, P. Ilchev y P. Petkov. "Ge-Chalcogenide Glasses – Properties and Application as Optical Material". Key Engineering Materials 538 (enero de 2013): 316–19. http://dx.doi.org/10.4028/www.scientific.net/kem.538.316.

Texto completo
Resumen
The great interest toward chalcogenide materials is due to the simple technology of preparation in bulk forms and thin films; good thermal and mechanical properties; transparency and photo-sensibility in the IR spectral range. These advantages determine the possibilities for potential application of these materials like optical storage media, memory devices, optical elements (lenses, waveguides, gratings, etc). The idea of present study is to trace the impact of gallium or indium as metal introduction on the behaviors of the glasses from germanium - chalcogenide system.
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Zhang, Lin, Anuradha M. Agarwal, Lionel C. Kimerling y Jurgen Michel. "Nonlinear Group IV photonics based on silicon and germanium: from near-infrared to mid-infrared". Nanophotonics 3, n.º 4-5 (1 de agosto de 2014): 247–68. http://dx.doi.org/10.1515/nanoph-2013-0020.

Texto completo
Resumen
AbstractGroup IV photonics hold great potential for nonlinear applications in the near- and mid-infrared (IR) wavelength ranges, exhibiting strong nonlinearities in bulk materials, high index contrast, CMOS compatibility, and cost-effectiveness. In this paper, we review our recent numerical work on various types of silicon and germanium waveguides for octave-spanning ultrafast nonlinear applications. We discuss the material properties of silicon, silicon nitride, silicon nano-crystals, silica, germanium, and chalcogenide glasses including arsenic sulfide and arsenic selenide to use them for waveguide core, cladding and slot layer. The waveguides are analyzed and improved for four spectrum ranges from visible, near-IR to mid-IR, with material dispersion given by Sellmeier equations and wavelength-dependent nonlinear Kerr index taken into account. Broadband dispersion engineering is emphasized as a critical approach to achieving on-chip octave-spanning nonlinear functions. These include octave-wide supercontinuum generation, ultrashort pulse compression to sub-cycle level, and mode-locked Kerr frequency comb generation based on few-cycle cavity solitons, which are potentially useful for next-generation optical communications, signal processing, imaging and sensing applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Baker, Neil J., Ho W. Lee, Ian C. Littler, C. Martijn de Sterke, Benjamin J. Eggleton, Duk-Yong Choi, Steve Madden y Barry Luther-Davies. "Sampled Bragg gratings in chalcogenide (As2S3) rib-waveguides". Optics Express 14, n.º 20 (2006): 9451. http://dx.doi.org/10.1364/oe.14.009451.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Lee, Michael W., Christian Grillet, Cameron L. C. Smith, David J. Moss, Benjamin J. Eggleton, Darren Freeman, Barry Luther-Davies et al. "Photosensitive post tuning of chalcogenide photonic crystal waveguides". Optics Express 15, n.º 3 (2007): 1277. http://dx.doi.org/10.1364/oe.15.001277.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Mirnaziry, Sayyed Reza, Christian Wolff, M. J. Steel, Benjamin J. Eggleton y Christopher G. Poulton. "Stimulated Brillouin scattering in silicon/chalcogenide slot waveguides". Optics Express 24, n.º 5 (25 de febrero de 2016): 4786. http://dx.doi.org/10.1364/oe.24.004786.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Gai, Xin, Ting Han, Amrita Prasad, Steve Madden, Duk-Yong Choi, Rongping Wang, Douglas Bulla y Barry Luther-Davies. "Progress in optical waveguides fabricated from chalcogenide glasses". Optics Express 18, n.º 25 (6 de diciembre de 2010): 26635. http://dx.doi.org/10.1364/oe.18.026635.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Finsterbusch, K., N. Baker, V. G. Ta'eed, B. J. Eggleton, D. Choi, S. Madden y B. Luther-Davis. "Long-period gratings in chalcogenide (As2S3) rib waveguides". Electronics Letters 42, n.º 19 (2006): 1094. http://dx.doi.org/10.1049/el:20062257.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Canciamilla, Antonio, Francesco Morichetti, Stefano Grillanda, Philippe Velha, Marc Sorel, Vivek Singh, Anu Agarwal, Lionel C. Kimerling y Andrea Melloni. "Photo-induced trimming of chalcogenide-assisted silicon waveguides". Optics Express 20, n.º 14 (27 de junio de 2012): 15807. http://dx.doi.org/10.1364/oe.20.015807.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Serna, Samuel, Hongtao Lin, Carlos Alonso-Ramos, Anupama Yadav, Xavier Le Roux, Kathleen Richardson, Eric Cassan, Nicolas Dubreuil, Juejun Hu y Laurent Vivien. "Nonlinear optical properties of integrated GeSbS chalcogenide waveguides". Photonics Research 6, n.º 5 (13 de abril de 2018): B37. http://dx.doi.org/10.1364/prj.6.000b37.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Zhang, Yanbing, Jochen Schröder, Chad Husko, Simon Lefrancois, Duk-Yong Choi, Steve Madden, Barry Luther-Davies y Benjamin J. Eggleton. "Pump-degenerate phase-sensitive amplification in chalcogenide waveguides". Journal of the Optical Society of America B 31, n.º 4 (12 de marzo de 2014): 780. http://dx.doi.org/10.1364/josab.31.000780.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Ta’eed, Vahid G., Mehrdad Shokooh-Saremi, Libin Fu, David J. Moss, Martin Rochette, Ian C. M. Littler, Benjamin J. Eggleton, Yinlan Ruan y Barry Luther-Davies. "Integrated all-optical pulse regenerator in chalcogenide waveguides". Optics Letters 30, n.º 21 (1 de noviembre de 2005): 2900. http://dx.doi.org/10.1364/ol.30.002900.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Shiryaev, Vladimir S., Alexander P. Velmuzhov, Tatiana V. Kotereva, Elizaveta A. Tyurina, Maksim V. Sukhanov y Ella V. Karaksina. "Recent Achievements in Development of Chalcogenide Optical Fibers for Mid-IR Sensing". Fibers 11, n.º 6 (16 de junio de 2023): 54. http://dx.doi.org/10.3390/fib11060054.

Texto completo
Resumen
Recent results of research of passive and active optical waveguides made of high-purity chalcogenide glasses for middle infrared fiberoptic evanescent wave spectroscopy of liquid and gaseous substances are presented. On the basis of selenide and telluride glass fibers, novel types of highly sensitive fiber probes are developed. On the basis of Pr(3+)- and Tb(3+)-doped Ga(In)-Ge-As-Se and Ga-Ge-Sb-Se glass fibers, the 4.2–6 μm wavelength radiation sources are created for all-fiber sensor systems. Successful testing of chalcogenide glass fiber sensors for the analysis of some liquid and gaseous mixtures was carried out.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Robert, Bruno, Rémi Pélissier, Raphaël Escalier, Ahmad Mehdi, Csilla Gergely y Caroline Vigreux. "Strategies for selective functionalization of amorphous chalcogenide rib waveguides". Optical Materials 127 (mayo de 2022): 112327. http://dx.doi.org/10.1016/j.optmat.2022.112327.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Song, Jingcui, Xiaojie Guo, Wentao Peng, Jingshun Pan, Lei Wan, Tianhua Feng, Siqing Zeng et al. "Stimulated Brillouin Scattering in Low-Loss Ge25Sb10S65 Chalcogenide Waveguides". Journal of Lightwave Technology 39, n.º 15 (agosto de 2021): 5048–53. http://dx.doi.org/10.1109/jlt.2021.3078722.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Spälter, S., H. Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S. W. Cheong y R. E. Slusher. "Strong self-phase modulation in planar chalcogenide glass waveguides". Optics Letters 27, n.º 5 (1 de marzo de 2002): 363. http://dx.doi.org/10.1364/ol.27.000363.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Gmachl, C., H. Y. Hwang, R. Paiella, D. L. Sivco, J. N. Baillargeon, F. Capasso y A. Y. Cho. "Quantum cascade lasers with low-loss chalcogenide lateral waveguides". IEEE Photonics Technology Letters 13, n.º 3 (2001): 182–84. http://dx.doi.org/10.1109/68.914314.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

McMillen, Ben, Mingshan Li, Sheng Huang, Botao Zhang y Kevin P. Chen. "Ultrafast laser fabrication of Bragg waveguides in chalcogenide glass". Optics Letters 39, n.º 12 (10 de junio de 2014): 3579. http://dx.doi.org/10.1364/ol.39.003579.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

DeCorby, R. G., N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin y S. O. Kasap. "High index contrast waveguides in chalcogenide glass and polymer". IEEE Journal of Selected Topics in Quantum Electronics 11, n.º 2 (marzo de 2005): 539–46. http://dx.doi.org/10.1109/jstqe.2005.845610.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Suzuki, Keijiro, Yohei Hamachi y Toshihiko Baba. "Fabrication and characterization of chalcogenide glass photonic crystal waveguides". Optics Express 17, n.º 25 (23 de noviembre de 2009): 22393. http://dx.doi.org/10.1364/oe.17.022393.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Xiong, C., L. G. Helt, A. C. Judge, G. D. Marshall, M. J. Steel, J. E. Sipe y B. J. Eggleton. "Quantum-correlated photon pair generation in chalcogenide As_2S_3 waveguides". Optics Express 18, n.º 15 (16 de julio de 2010): 16206. http://dx.doi.org/10.1364/oe.18.016206.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Taleb Bendiab, Anis, Malick Bathily, Caroline Vigreux, Raphaël Escalier, Annie Pradel, Raphaël K. Kribich y Ryad Bendoula. "Chalcogenide rib waveguides for the characterization of spray deposits". Optical Materials 86 (diciembre de 2018): 298–303. http://dx.doi.org/10.1016/j.optmat.2018.10.021.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Rivero, C., P. Sharek, W. Li, K. Richardson, A. Schulte, G. Braunstein, R. Irwin, V. Hamel, K. Turcotte y E. Knystautas. "Structural analysis of chalcogenide waveguides using Rutherford backscattering spectroscopy". Thin Solid Films 425, n.º 1-2 (febrero de 2003): 59–67. http://dx.doi.org/10.1016/s0040-6090(02)01139-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Tremblay, Jean-Étienne, Marcin Malinowski, Kathleen A. Richardson, Sasan Fathpour y Ming C. Wu. "Picojoule-level octave-spanning supercontinuum generation in chalcogenide waveguides". Optics Express 26, n.º 16 (3 de agosto de 2018): 21358. http://dx.doi.org/10.1364/oe.26.021358.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Ganjoo, A., H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding y C. G. Pantano. "Planar chalcogenide glass waveguides for IR evanescent wave sensors". Journal of Non-Crystalline Solids 352, n.º 6-7 (mayo de 2006): 584–88. http://dx.doi.org/10.1016/j.jnoncrysol.2005.12.010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Jean, Philippe, Alexandre Douaud, Vincent Michaud-Belleau, Sandra Helena Messaddeq, Jérôme Genest, Sophie LaRochelle, Younès Messaddeq y Wei Shi. "Etchless chalcogenide microresonators monolithically coupled to silicon photonic waveguides". Optics Letters 45, n.º 10 (13 de mayo de 2020): 2830. http://dx.doi.org/10.1364/ol.392879.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Yan, Kunlun, Khu Vu y Steve Madden. "Internal gain in Er-doped As_2S_3 chalcogenide planar waveguides". Optics Letters 40, n.º 5 (24 de febrero de 2015): 796. http://dx.doi.org/10.1364/ol.40.000796.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Yan, Kunlun, Khu Vu, Rongping Wang y Steve Madden. "Greater than 50% inversion in Erbium doped Chalcogenide waveguides". Optics Express 24, n.º 20 (28 de septiembre de 2016): 23304. http://dx.doi.org/10.1364/oe.24.023304.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Jakobs, Sebastian, Alexander Petrov y Manfred Eich. "Suppression of stimulated Brillouin scattering in integrated chalcogenide waveguides". Journal of the Optical Society of America B 31, n.º 2 (3 de enero de 2014): 178. http://dx.doi.org/10.1364/josab.31.000178.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Godbout, Nicolas, Xavier Daxhelet, Suzanne Lacroix y Alain Villeneuve. "Methodology for the optimization of nonlinear properties of waveguides: application to chalcogenide channel waveguides". Journal of the Optical Society of America B 17, n.º 4 (1 de abril de 2000): 561. http://dx.doi.org/10.1364/josab.17.000561.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Cao, Tun, Zhongming Wang y Libang Mao. "Reconfigurable label-free shape-sieving of submicron particles in paired chalcogenide waveguides". Nanoscale 14, n.º 6 (2022): 2465–74. http://dx.doi.org/10.1039/d1nr05798g.

Texto completo
Resumen
A paired Sb2Se3 waveguides were demonstrated to sort polystyrene spherical and rod-shaped submicron particles. Reconfigurable shape-sieving of particles was achieved by reversibly transiting Sb2Se3 state.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Кришеник, В. М. "Relaxation processes in film waveguides based on chalcogenide vitreous semiconductors". Scientific Herald of Uzhhorod University.Series Physics 9 (15 de julio de 2001): 110–20. http://dx.doi.org/10.24144/2415-8038.2001.9.110-120.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Jean, Philippe, Alexandre Douaud, Sophie LaRochelle, Younès Messaddeq y Wei Shi. "Silicon subwavelength grating waveguides with high-index chalcogenide glass cladding". Optics Express 29, n.º 13 (17 de junio de 2021): 20851. http://dx.doi.org/10.1364/oe.430204.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Herzog, Amir, Benjamin Hadad, Victor Lyubin, Matvey Klebanov, Avraham Reiner, Avishay Shamir y Amiel A. Ishaaya. "Chalcogenide waveguides on a sapphire substrate for mid-IR applications". Optics Letters 39, n.º 8 (15 de abril de 2014): 2522. http://dx.doi.org/10.1364/ol.39.002522.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Ta'eed, V. G., M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, Yinlan Ruan y B. Luther-Davies. "Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides". IEEE Journal of Selected Topics in Quantum Electronics 12, n.º 3 (mayo de 2006): 360–70. http://dx.doi.org/10.1109/jstqe.2006.872727.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Suzuki, Keijiro y Toshihiko Baba. "Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides". Optics Express 18, n.º 25 (6 de diciembre de 2010): 26675. http://dx.doi.org/10.1364/oe.18.026675.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Shokooh-Saremi, M., V. G. Ta'eed, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan y B. Luther-Davies. "Ultra-strong, well-apodised Bragg gratings in chalcogenide rib waveguides". Electronics Letters 41, n.º 13 (2005): 738. http://dx.doi.org/10.1049/el:20050981.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

McMillen, Ben, Botao Zhang y Kevin Chen. "Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass". MATEC Web of Conferences 8 (2013): 06015. http://dx.doi.org/10.1051/matecconf/20130806015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Tsay, Candice, Elvis Mujagić, Christi K. Madsen, Claire F. Gmachl y Craig B. Arnold. "Mid-infrared characterization of solution-processed As_2S_3 chalcogenide glass waveguides". Optics Express 18, n.º 15 (7 de julio de 2010): 15523. http://dx.doi.org/10.1364/oe.18.015523.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Han, Ting, Steve Madden, Douglas Bulla y Barry Luther-Davies. "Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography". Optics Express 18, n.º 18 (26 de agosto de 2010): 19286. http://dx.doi.org/10.1364/oe.18.019286.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Caricato, A. P., M. De Sario, M. Fernández, M. Ferrari, G. Leggieri, A. Luches, M. Martino, M. Montagna, F. Prudenzano y A. Jha. "Chalcogenide glass thin film waveguides deposited by excimer laser ablation". Applied Surface Science 208-209 (marzo de 2003): 632–37. http://dx.doi.org/10.1016/s0169-4332(02)01409-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía