Artículos de revistas sobre el tema "Chalcogenide Glass Waveguide"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Chalcogenide Glass Waveguide.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Chalcogenide Glass Waveguide".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Mushahid, Husain y Raman Swati. "Chalcogenide Glass Optical Waveguides for Optical Communication". Advanced Materials Research 679 (abril de 2013): 41–45. http://dx.doi.org/10.4028/www.scientific.net/amr.679.41.

Texto completo
Resumen
The present research work is focused on fabricating the chalcogenide glass optical waveguides keeping in mind their application in optical communication. The propagation loss of the waveguides is also studied at three different wavelengths. The waveguides were fabricated by dry etching using ECR Plasma etching and the propagation loss is studied using Fabry-Perot technique. The waveguides having loss as low as 0.35 dB/cm at 1.3m is achieved. The technique used to fabricate waveguide is simple and cost effective.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Luo, Ye, Chunlei Sun, Hui Ma, Maoliang Wei, Jialing Jian, Chuyu Zhong, Junying Li et al. "Interlayer Slope Waveguide Coupler for Multilayer Chalcogenide Photonics". Photonics 9, n.º 2 (7 de febrero de 2022): 94. http://dx.doi.org/10.3390/photonics9020094.

Texto completo
Resumen
The interlayer coupler is one of the critical building blocks for optical interconnect based on multilayer photonic integration to realize light coupling between stacked optical waveguides. However, commonly used coupling strategies, such as evanescent field coupling, usually require a close distance, which could cause undesired interlayer crosstalk. This work presents a novel interlayer slope waveguide coupler based on a multilayer chalcogenide glass photonic platform, enabling light to be directly guided from one layer to another with a large interlayer gap (1 µm), a small footprint (6 × 1 × 0.8 µm3), low propagation loss (0.2 dB at 1520 nm), low device processing temperature, and a high bandwidth, similar to that in a straight waveguide. The proposed interlayer slope waveguide coupler could further promote the development of advanced multilayer integration in 3D optical communications systems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Chen Yu, 陈昱, 沈祥 Shen Xiang, 徐铁峰 Xu Tiefeng, 张巍 Zhang Wei, 陈芬 Chen Fen, 李军 Li Jun, 宋宝安 Song Bao′an, 戴世勋 Dai Shixun, 聂秋华 Nie Qiuhua y 王占山 Wang Zhanshan. "Research Progress of Chalcogenide Glass Waveguide". Laser & Optoelectronics Progress 48, n.º 11 (2011): 111301. http://dx.doi.org/10.3788/lop48.111301.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Balan, V., C. Vigreux, A. Pradel, A. Llobera, C. Dominguez, M. I. Alonso y M. Garriga. "Chalcogenide glass-based rib ARROW waveguide". Journal of Non-Crystalline Solids 326-327 (octubre de 2003): 455–59. http://dx.doi.org/10.1016/s0022-3093(03)00452-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Mairaj, A. K., A. Fu, H. N. Rutt y D. W. Hewak. "Optical channel waveguide in chalcogenide (Ga:La:S) glass". Electronics Letters 37, n.º 19 (2001): 1160. http://dx.doi.org/10.1049/el:20010803.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Lin, Hongtao, Chul Soo Kim, Lan Li, Mijin Kim, William W. Bewley, Charles D. Merritt, Chadwick L. Canedy et al. "Monolithic chalcogenide glass waveguide integrated interband cascaded laser". Optical Materials Express 11, n.º 9 (5 de agosto de 2021): 2869. http://dx.doi.org/10.1364/ome.435061.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Cao, Lixiao, Yao Zhou, Jianxing Zhao, Hongfei Song y Jianhong Zhou. "Effect of Ag Doping on Photobleaching in Ge28Sb12Se60 Chalcogenide Films". Coatings 12, n.º 11 (17 de noviembre de 2022): 1760. http://dx.doi.org/10.3390/coatings12111760.

Texto completo
Resumen
Chalcogenide glass is an optical material with excellent mid-infrared and far-infrared penetration properties. The silver-doped Ge28Sb12Se60 (GSS) chalcogenide films in this paper were deposited on a glass substrate by the co-evaporation technique. A continuous laser with different power outputs was then used to scan the glass material at a constant speed, and the photobleaching (PB) effects were observed using optical microscopy. The results show that silver doping can speed up the PB of GSS film only under high-power laser irradiation. While silver doping helps to speed up the PB effect, it also increases the risk of film damage. This study is beneficial in the development of embedded optical waveguide structures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Deckoff-Jones, Skylar, Hongtao Lin, Derek Kita, Hanyu Zheng, Duanhui Li, Wei Zhang y Juejun Hu. "Chalcogenide glass waveguide-integrated black phosphorus mid-infrared photodetectors". Journal of Optics 20, n.º 4 (27 de febrero de 2018): 044004. http://dx.doi.org/10.1088/2040-8986/aaadc5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Wang Xianwang, 王贤旺, 张巍 Zhang Wei, 章亮 Zhang Liang, 李军建 Li Junjian y 徐铁峰 Xu Tiefeng. "Research Progress of Fabrication of Chalcogenide Glass Photonic Crystal Waveguide". Laser & Optoelectronics Progress 50, n.º 12 (2013): 120001. http://dx.doi.org/10.3788/lop50.120001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Han, Z., V. Singh, D. Kita, C. Monmeyran, P. Becla, P. Su, J. Li et al. "On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors". Applied Physics Letters 109, n.º 7 (15 de agosto de 2016): 071111. http://dx.doi.org/10.1063/1.4961532.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Han, Z., P. Lin, V. Singh, L. Kimerling, J. Hu, K. Richardson, A. Agarwal y D. T. H. Tan. "On-chip mid-infrared gas detection using chalcogenide glass waveguide". Applied Physics Letters 108, n.º 14 (4 de abril de 2016): 141106. http://dx.doi.org/10.1063/1.4945667.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Psaila, Nicholas D., Robert R. Thomson, Henry T. Bookey, Shaoxiong Shen, Nicola Chiodo, Roberto Osellame, Giulio Cerullo, Animesh Jha y Ajoy K. Kar. "Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide". Optics Express 15, n.º 24 (2007): 15776. http://dx.doi.org/10.1364/oe.15.015776.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Cai, Dawei, Yu Xie, Xin Guo, Pan Wang y Limin Tong. "Chalcogenide Glass Microfibers for Mid-Infrared Optics". Photonics 8, n.º 11 (5 de noviembre de 2021): 497. http://dx.doi.org/10.3390/photonics8110497.

Texto completo
Resumen
With diameters close to the wavelength of the guided light, optical microfibers (MFs) can guide light with tight optical confinement, strong evanescent fields and manageable waveguide dispersion and have been widely investigated in the past decades for a variety of applications. Compared to silica MFs, which are ideal for working in visible and near-infrared regions, chalcogenide glass (ChG) MFs are promising for mid-infrared (mid-IR) optics, owing to their easy fabrication, broad-band transparency and high nonlinearity, and have been attracting increasing attention in applications ranging from near-field coupling and molecular sensing to nonlinear optics. Here, we review this emerging field, mainly based on its progress in the last decade. Starting from the high-temperature taper drawing technique for MF fabrication, we introduce basic mid-IR waveguiding properties of typical ChG MFs made of As2S3 and As2Se3. Then, we focus on ChG-MF-based passive optical devices, including optical couplers, resonators and gratings and active and nonlinear applications of ChG MFs for mid-IR Raman lasers, frequency combs and supercontinuum (SC) generation. MF-based spectroscopy and chemical/biological sensors are also introduced. Finally, we conclude the review with a brief summary and an outlook on future challenges and opportunities of ChG MFs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Zhai, Yanfen, Renduo Qi, Chenzhi Yuan, Wei Zhang y Yidong Huang. "Ultra broadband flat dispersion tailoring on reversed-rib chalcogenide glass waveguide". Chinese Physics B 25, n.º 11 (noviembre de 2016): 114211. http://dx.doi.org/10.1088/1674-1056/25/11/114211.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Yang, X. M., Yaping Zhang y Ahad Syed. "Infrared waveguide fabrications with an E-beam evaporated chalcogenide glass film". Journal of Modern Optics 62, n.º 7 (23 de febrero de 2015): 548–55. http://dx.doi.org/10.1080/09500340.2014.992990.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Ayiriveetil, Arunbabu, G. Sreevidya Varma, Abhishek Chaturvedi, Tamilarasan Sabapathy, Upadrasta Ramamurty y Sundarrajan Asokan. "Structural, mechanical and optical studies on ultrafast laser inscribed chalcogenide glass waveguide". Optical Materials 66 (abril de 2017): 386–91. http://dx.doi.org/10.1016/j.optmat.2017.02.030.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Wang, Junli, Borong He, Shixun Dai, Jiangfeng Zhu y Zhiyi Wei. "Waveguide in Tm3+-Doped Chalcogenide Glass Fabricated by Femtosecond Laser Direct Writing". IEEE Photonics Technology Letters 27, n.º 3 (1 de febrero de 2015): 237–40. http://dx.doi.org/10.1109/lpt.2014.2365619.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Zhai, Yanfen, Chenzhi Yuan, Renduo Qi, Wei Zhang y Yidong Huang. "Reverse Ridge/Slot Chalcogenide Glass Waveguide With Ultrabroadband Flat and Low Dispersion". IEEE Photonics Journal 7, n.º 5 (octubre de 2015): 1–9. http://dx.doi.org/10.1109/jphot.2015.2456062.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Alizadeh, Mohammad Reza y Mahmood Seifouri. "Design and Analysis of a Dispersion-engineered and Highly Nonlinear Rib Waveguide for Generation of Broadband Supercontinuum Spectra". Frequenz 74, n.º 3-4 (26 de marzo de 2020): 153–61. http://dx.doi.org/10.1515/freq-2019-0098.

Texto completo
Resumen
AbstractIn this paper, a waveguide consisting of a core of As2Se3 chalcogenide glass and the upper and lower claddings of MgF2 with two zero-dispersion wavelengths (ZDW) has been proposed. By optimization of the dimensions of the core and the claddings, their effects on the dispersion curve have been investigated and a suitable structure with a flat dispersion curve, an effective mode area of ​​1.6 μm2 in a pump wavelength of 2.8 μm, and hence, a nonlinear coefficient greater than 34 w−1 m−1 has been obtained. A broadband supercontinuum in a wavelength range of 1.5 μm to 15 μm has been generated by applying an input pulse with duration of 100 fs and a maximum power of 2 kw to this waveguide. Due to the large width of the supercontinuum generated (SCG), the short length of the waveguide (maximum 5 mm), and a low input power, this structure is suitable for use in optical integrated circuits and its various applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Sabapathy, Tamilarasan, Arunbabu Ayiriveetil, Ajoy K. Kar, Sundarrajan Asokan y Stephen J. Beecher. "Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass". Optical Materials Express 2, n.º 11 (5 de octubre de 2012): 1556. http://dx.doi.org/10.1364/ome.2.001556.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Qiu, Feng y Tadashi Narusawa. "Ion-implanted Ti-doped chalcogenide glass waveguide as a candidate for tunable lasers". Journal of the Optical Society of America B 28, n.º 6 (19 de mayo de 2011): 1490. http://dx.doi.org/10.1364/josab.28.001490.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Yu, Yi, Xin Gai, Pan Ma, Duk-Yong Choi, Zhiyong Yang, Rongping Wang, Sukanta Debbarma, Stephen J. Madden y Barry Luther-Davies. "A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide". Laser & Photonics Reviews 8, n.º 5 (19 de mayo de 2014): 792–98. http://dx.doi.org/10.1002/lpor.201400034.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Zhai, Yanfen, Renduo Qi, Chenzhi Yuan, Wei Zhang y Yidong Huang. "High-quality chalcogenide glass waveguide fabrication by hot melt smoothing and micro-trench filling". Applied Physics Express 9, n.º 5 (31 de marzo de 2016): 052201. http://dx.doi.org/10.7567/apex.9.052201.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Hu, Juejun, Nathan Carlie, Ning-Ning Feng, Laeticia Petit, Anu Agarwal, Kathleen Richardson y Lionel Kimerling. "Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing". Optics Letters 33, n.º 21 (24 de octubre de 2008): 2500. http://dx.doi.org/10.1364/ol.33.002500.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Shi, Yuxiu, Peipeng Xu, Zenghui Yu, Xiang Shen y Qiuhua Nie. "Rib chalcogenide glass waveguide with simultaneous dispersion flatting for both transverse electric and magnetic modes". Optik 138 (junio de 2017): 433–39. http://dx.doi.org/10.1016/j.ijleo.2017.03.101.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Mairaj, Arshad K., Christos Riziotis, Alain M. Chardon, Peter G. R. Smith, David P. Shepherd y Daniel W. Hewak. "Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification". Applied Physics Letters 81, n.º 20 (11 de noviembre de 2002): 3708–10. http://dx.doi.org/10.1063/1.1520698.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

QI Renduo, 齐人铎, 翟彦芬 ZHAI Yanfen, 张巍 ZHANG Wei y 黄翊东 HUANG Yidong. "热熔融自回流方法制备硫化物玻璃非线性集成光学波导(特邀)". ACTA PHOTONICA SINICA 51, n.º 5 (2022): 0551303. http://dx.doi.org/10.3788/gzxb20225105.0551303.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Du, Qingyang, Zhengqian Luo, Huikai Zhong, Yifei Zhang, Yizhong Huang, Tuanjie Du, Wei Zhang, Tian Gu y Juejun Hu. "Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide". Photonics Research 6, n.º 6 (26 de abril de 2018): 506. http://dx.doi.org/10.1364/prj.6.000506.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Lamont, M. R. E., V. G. Ta'eed, M. A. F. Roelens, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden y B. Luther-Davies. "Error-free wavelength conversion via cross-phase modulation in 5 cm of As2S3 chalcogenide glass rib waveguide". Electronics Letters 43, n.º 17 (2007): 945. http://dx.doi.org/10.1049/el:20071470.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Wang, Yuefeng, Weiwei Chen, Pengjun Wang, Shixun Dai, Jun Li, Yan Li, Qiang Fu, Tingge Dai, Hui Yu y Jianyi Yang. "Ultra-high-power-confinement-factor integrated mid-infrared gas sensor based on the suspended slot chalcogenide glass waveguide". Sensors and Actuators B: Chemical 347 (noviembre de 2021): 130466. http://dx.doi.org/10.1016/j.snb.2021.130466.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Saini, Than Singh, Umesh Kumar Tiwari y Ravindra Kumar Sinha. "Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-IR supercontinuum sources: Design and analysis". Journal of Applied Physics 122, n.º 5 (7 de agosto de 2017): 053104. http://dx.doi.org/10.1063/1.4997541.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Chen, Zhi, Guande Wang, Xiong Wang y Quanzhong Zhao. "Moving toward optoelectronic logic circuits for visible light: a chalcogenide glass single-mode single-polarization optical waveguide switch". Applied Optics 56, n.º 5 (7 de febrero de 2017): 1405. http://dx.doi.org/10.1364/ao.56.001405.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Gonzalez, Guillermo Fernando Camacho, Marcin Malinowski, Amirmahdi Honardoost y Sasan Fathpour. "Design of a hybrid chalcogenide-glass on lithium-niobate waveguide structure for high-performance cascaded third- and second-order optical nonlinearities". Applied Optics 58, n.º 13 (15 de febrero de 2019): D1. http://dx.doi.org/10.1364/ao.58.0000d1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Zou, L. E., P. P. He, B. X. Chen y M. Iso. "Nonlinear optical properties of As20S80 system chalcogenide glass using Z-scan and its strip waveguide under bandgap light using the self-phase modulation". AIP Advances 7, n.º 2 (febrero de 2017): 025003. http://dx.doi.org/10.1063/1.4976107.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Shiryaev, Vladimir S., Alexander P. Velmuzhov, Tatiana V. Kotereva, Elizaveta A. Tyurina, Maksim V. Sukhanov y Ella V. Karaksina. "Recent Achievements in Development of Chalcogenide Optical Fibers for Mid-IR Sensing". Fibers 11, n.º 6 (16 de junio de 2023): 54. http://dx.doi.org/10.3390/fib11060054.

Texto completo
Resumen
Recent results of research of passive and active optical waveguides made of high-purity chalcogenide glasses for middle infrared fiberoptic evanescent wave spectroscopy of liquid and gaseous substances are presented. On the basis of selenide and telluride glass fibers, novel types of highly sensitive fiber probes are developed. On the basis of Pr(3+)- and Tb(3+)-doped Ga(In)-Ge-As-Se and Ga-Ge-Sb-Se glass fibers, the 4.2–6 μm wavelength radiation sources are created for all-fiber sensor systems. Successful testing of chalcogenide glass fiber sensors for the analysis of some liquid and gaseous mixtures was carried out.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Anne, Marie-Laure, Julie Keirsse, Virginie Nazabal, Koji Hyodo, Satoru Inoue, Catherine Boussard-Pledel, Hervé Lhermite et al. "Chalcogenide Glass Optical Waveguides for Infrared Biosensing". Sensors 9, n.º 9 (15 de septiembre de 2009): 7398–411. http://dx.doi.org/10.3390/s90907398.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Curry, R. J., A. K. Mairaj, C. C. Huang, R. W. Eason, C. Grivas, D. W. Hewak y J. V. Badding. "Chalcogenide Glass Thin Films and Planar Waveguides". Journal of the American Ceramic Society 88, n.º 9 (septiembre de 2005): 2451–55. http://dx.doi.org/10.1111/j.1551-2916.2005.00349.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Spälter, S., H. Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S. W. Cheong y R. E. Slusher. "Strong self-phase modulation in planar chalcogenide glass waveguides". Optics Letters 27, n.º 5 (1 de marzo de 2002): 363. http://dx.doi.org/10.1364/ol.27.000363.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

McMillen, Ben, Mingshan Li, Sheng Huang, Botao Zhang y Kevin P. Chen. "Ultrafast laser fabrication of Bragg waveguides in chalcogenide glass". Optics Letters 39, n.º 12 (10 de junio de 2014): 3579. http://dx.doi.org/10.1364/ol.39.003579.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

DeCorby, R. G., N. Ponnampalam, M. M. Pai, H. T. Nguyen, P. K. Dwivedi, T. J. Clement, C. J. Haugen, J. N. McMullin y S. O. Kasap. "High index contrast waveguides in chalcogenide glass and polymer". IEEE Journal of Selected Topics in Quantum Electronics 11, n.º 2 (marzo de 2005): 539–46. http://dx.doi.org/10.1109/jstqe.2005.845610.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Suzuki, Keijiro, Yohei Hamachi y Toshihiko Baba. "Fabrication and characterization of chalcogenide glass photonic crystal waveguides". Optics Express 17, n.º 25 (23 de noviembre de 2009): 22393. http://dx.doi.org/10.1364/oe.17.022393.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Ganjoo, A., H. Jain, C. Yu, R. Song, J. V. Ryan, J. Irudayaraj, Y. J. Ding y C. G. Pantano. "Planar chalcogenide glass waveguides for IR evanescent wave sensors". Journal of Non-Crystalline Solids 352, n.º 6-7 (mayo de 2006): 584–88. http://dx.doi.org/10.1016/j.jnoncrysol.2005.12.010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Jean, Philippe, Alexandre Douaud, Sophie LaRochelle, Younès Messaddeq y Wei Shi. "Silicon subwavelength grating waveguides with high-index chalcogenide glass cladding". Optics Express 29, n.º 13 (17 de junio de 2021): 20851. http://dx.doi.org/10.1364/oe.430204.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

McMillen, Ben, Botao Zhang y Kevin Chen. "Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass". MATEC Web of Conferences 8 (2013): 06015. http://dx.doi.org/10.1051/matecconf/20130806015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Tsay, Candice, Elvis Mujagić, Christi K. Madsen, Claire F. Gmachl y Craig B. Arnold. "Mid-infrared characterization of solution-processed As_2S_3 chalcogenide glass waveguides". Optics Express 18, n.º 15 (7 de julio de 2010): 15523. http://dx.doi.org/10.1364/oe.18.015523.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Han, Ting, Steve Madden, Douglas Bulla y Barry Luther-Davies. "Low loss Chalcogenide glass waveguides by thermal nano-imprint lithography". Optics Express 18, n.º 18 (26 de agosto de 2010): 19286. http://dx.doi.org/10.1364/oe.18.019286.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Caricato, A. P., M. De Sario, M. Fernández, M. Ferrari, G. Leggieri, A. Luches, M. Martino, M. Montagna, F. Prudenzano y A. Jha. "Chalcogenide glass thin film waveguides deposited by excimer laser ablation". Applied Surface Science 208-209 (marzo de 2003): 632–37. http://dx.doi.org/10.1016/s0169-4332(02)01409-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Almeida, J. M. P., E. C. Barbano, C. B. Arnold, L. Misoguti y C. R. Mendonça. "Nonlinear optical waveguides in As_2S_3-Ag_2S chalcogenide glass thin films". Optical Materials Express 7, n.º 1 (6 de diciembre de 2016): 93. http://dx.doi.org/10.1364/ome.7.000093.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Hughes, Mark A., Weijia Yang y Daniel W. Hewak. "Spectral broadening in femtosecond laser written waveguides in chalcogenide glass". Journal of the Optical Society of America B 26, n.º 7 (15 de junio de 2009): 1370. http://dx.doi.org/10.1364/josab.26.001370.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Tsay, Candice, Yunlai Zha y Craig B. Arnold. "Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides". Optics Express 18, n.º 25 (6 de diciembre de 2010): 26744. http://dx.doi.org/10.1364/oe.18.026744.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía