Literatura académica sobre el tema "Cellules souche pluripotente induite IPSC"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Cellules souche pluripotente induite IPSC".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Cellules souche pluripotente induite IPSC"

1

De Vos, John, Florent Foisset, Amel Nasri, Engi Ahmed, Isabelle Vachier, Arnaud Bourdin y Nelly Frossard. "Construction d’un épithélium bronchique innervé à partir de cellules souches pluripotentes induites iPSC". Morphologie 106, n.º 354 (septiembre de 2022): S3. http://dx.doi.org/10.1016/j.morpho.2022.06.057.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Foisset, F., C. Lehalle, A. Nasri, I. Vachier, S. Assou, A. Bourdin, J. De-Vos y N. Frossard. "Construction d’un épithélium bronchique innervé à partir de cellules souches pluripotentes induites Ipsc". Revue des Maladies Respiratoires 39, n.º 2 (febrero de 2022): 109. http://dx.doi.org/10.1016/j.rmr.2022.02.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

De Vos, John, Mathieu Fiedles, Chloé Bourguignon, Joffrey Mianne, Engi Ahmed, Isabelle Vachier, Arnaud Bourdin y Said Assou. "Modélisation de l’épithélium bronchique à partir de cellules souches humaines pluripotentes induites (iPSC)". Morphologie 103, n.º 342 (noviembre de 2019): 88. http://dx.doi.org/10.1016/j.morpho.2019.10.029.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Foisset, F., C. Lehalle, Q. Muller, V. Flacher y N. Frossard. "Construction d’une muqueuse sous-épithéliale bronchique innervée à partir de cellules souches pluripotentes induites iPSC". Revue des Maladies Respiratoires 38, n.º 6 (junio de 2021): 574. http://dx.doi.org/10.1016/j.rmr.2021.02.011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Foisset, F., C. Lehalle, A. Nasri, C. Bourdais, I. Vachier, S. Assou, Q. Muller et al. "Développement d’un modèle d’épithélium bronchique innervé par des neurones sensitifs à partir de cellules souches pluripotentes induites humaines (iPSCs)". Revue des Maladies Respiratoires 40, n.º 2 (febrero de 2023): 111. http://dx.doi.org/10.1016/j.rmr.2022.11.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Stasia, Marie José, Julie Brault, Sylvain Beaumel, Jean-Paul Brion, Jean-Louis Stephan, Vincent Barlogis, Cécile Bost-Bru y Dominique Plantaz. "Développement de nouvelles stratégies thérapeutiques pour la granulomatose septique chronique (CGD) grâce au modèle des cellules souches pluripotentes induites (iPSCs) générées à partir des fibroblastes de patients atteints de CGD". Revue d'Oncologie Hématologie Pédiatrique 4, n.º 4 (diciembre de 2016): 256–57. http://dx.doi.org/10.1016/j.oncohp.2016.10.014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Cellules souche pluripotente induite IPSC"

1

Jung, Laura. "Optimisation de protocoles de reprogrammation de cellules somatiques humaines en cellules souches à pluripotence induite (hiPSC)". Thesis, Strasbourg, 2013. http://www.theses.fr/2013STRAJ066.

Texto completo
Resumen
En 2006 et 2007, les équipes de Yamanaka et Thomson réalisent la reprogrammation de cellules somatiques murines et humaines en cellules souches pluripotentes à partir de deux cocktails de gènes : OCT4, SOX2, KLF4, cMYC (OSKM) et OCT4, NANOG, SOX2, LIN28 (ONSL). Les cellules souches à pluripotence induite générées (iPS) partagent les propriétés fondamentales des cellules souches embryonnaires : l’auto-renouvèlement, le maintien de la pluripotence et la capacité de différenciation. Ces cellules laissent entrevoir des applications considérables tant en recherche fondamentale (compréhension des mécanismes de développement et de pathologies, développement de modèles) qu’en recherche appliquée (médecine régénérative, toxicologie prédictive, criblage de médicaments). L’avantage majeur de l’utilisation des iPS réside dans leur origine non embryonnaire. Les contraintes d’ordre éthique sont écartées et une grande diversité de types cellulaires à partir de n’importe quel donneur a priori est disponible pour une reprogrammation. L’établissement d’une banque d’hiPS issus de donneurs sains ou de patients, serait d’une grande utilité pour la communauté scientifique se consacrant à l’étude des mécanismes physiopathologiques ou de développement et une source considérable pour la dérivation à des fins de thérapie cellulaire. Dans le but de mettre en place une telle banque, nous avons développé avec la société Vectalys des rétrovirus de reprogrammation contenant les cassettes polycistroniques ONSL et OSKM. Dans un premier temps, nous avons établi un protocole de reprogrammation robuste à l’aide des rétrovirus RV-ONSL. Nous avons ensuite mis en évidence la synergie entre les facteurs ONSL et OSKM, la combinaison équimolaire de RV-ONSL et RV-OSKM permettant d’atteindre 2% d’efficacité de reprogrammation. Nous avons également entrepris la reprogrammation propre par transfections d’ARNm polycistroniques ONSL et OKM mettant à profit cette incroyable synergie
In 2006 and 2007, Yamanaka and Thomson teams achieved the reprogramming of mouse and human somatic cells into pluripotent stem cells through the transfection of two cocktails of genes: OCT4, SOX2, KLF4, cMYC (OSKM) and OCT4, NANOG, SOX2, LIN28 (ONSL). The generated cells, called induced Pluripotent Stem Cells (iPSC) share the same fundamental properties of ESC : self-renewing, pluripotency maintenance and capacity of differentiation into the three germ layers and suggest the same application potential in basic research (developmental and epigenetic biology) as well as in therapy (regenerative medicine, disease modeling for drug development). One of the major advantages of iPSC lies in their non-embryonic origin. Indeed, the use of iPSC resolves the ethical constraints and offers the possibility to work with extensive cell types directly from the patient to treat. Stéphane Viville’s research team aims to develop a hiPSC bank from patient suffering from genetic or other diseases which will be available for the scientific community. We are experienced in human primary fibroblasts reprogramming especially with the use of two polycistronic cassettes: ONSL encoding Thomson’s cocktail and OSKM encoding Yamanaka’s cocktail separated with 2A peptides. Thanks to the combination of RV-ONSL and RV-OSKM retroviral vectors (developed with Vectalys) we are yielding more than 2% of reprogramming efficiency in a highly reproducible way. Indeed, we demonstrated the reprogramming synergy of ONSL and OSKM combination. We are now focusing our effort on non-integrative strategies (ie mRNA) which are more appropriate for clinical usage
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Raguin, Jérémy. "Modélisation de la niche tumorale des gliomes dans des organoïdes cérébraux humains vascularisés et immunocompétents". Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP5148.

Texto completo
Resumen
Malgré un traitement multimodal agressif associant chirurgie, radiothérapie et chimiothérapie, le glioblastome (GBM) récidive systématiquement. Les récidives sont dues, au moins en partie, à la présence de cellules souches de glioblastome (CSG) qui sont résistantes aux traitements et, en particulier, à l'irradiation. En outre, les CSG sont situées dans un microenvironnement tumoral favorisant leur développement. Notamment, les CSG sont associées aux vaisseaux qui régulent leur prolifération, leur survie et favorisent leur invasion. Par ailleurs, les macrophages associés aux tumeurs (MAT) représentent la population la plus abondante des cellules non tumorales au sein des GBM et leur abondance est corrélée à la gravité des GBM. Ces TAM proviennent du recrutement de monocytes circulants et des cellules microgliales (macrophages résidents) qui acquièrent des propriétés immunosuppressives (pro-tumorales). Le développement récent d'organoïdes cérébraux humains obtenus à partir de cellules souches pluripotentes induites humaines (IPSC) permet de modéliser la physiologie et la physiopathologie du cerveau tel que le gliome. Ces organoïdes sont des structures 3D avatars du cerveau et issus de la différenciation de cellules souches embryonnaires ou d'IPSC. Cependant, la plupart des modèles d'organoïdes sont dépourvus de systèmes vasculaire et immunitaire qui jouent un rôle essentiel dans le cerveau sain et dans les mécanismes physiopathologiques. L'objectif de ma thèse a été de développer un nouveau modèle d'organoïdes cérébraux complexes contenant une vascularisation et des cellules immunitaires afin de modéliser le microenvironnement tumoral du GBM. Plusieurs lignées humaines d'IPSC ont été différenciées pour obtenir d'une part des organoïdes cérébraux et d'autre part des hémangioblastes (progéniteurs bipotents hématopoïétiques /endothéliaux). L'incorporation d'hémangioblastes dans les organoïdes cérébraux a été réalisée précocement au cours de leur formation afin de mimer la colonisation du cerveau, au cours du développement cérébral, par les cellules endothéliales et les macrophages primitifs qui sont à l'origine des vaisseaux et des cellules microgliales. Ces organoïdes cérébraux complexes ont été caractérisés par différentes approches d'immunohistologie, FACS et RT-qPCR. De vastes structures vasculaires se sont développées dans les organoïdes et présentaient des caractéristiques de la barrière hématoencéphalique. De plus, ces structures vasculaires étaient perfusées lorsque les organoïdes ont été transplantés dans des souris immunodéficientes. Des cellules présentant un phénotype ainsi que des fonctionnalités caractéristiques des cellules microgliales se sont également développées dans les organoïdes complexes. Des lignées de CSG, dérivées de patients atteints de GBM ou d'astrocytome de grade IV, ont été co-cultivées dans les organoïdes complexes puis irradiés, ou non, afin de mimer la radiothérapie. J'ai montré que les CSG semblaient coopter les structures vasculaires et perturbaient l'expression d'une protéine d'adhésion cellulaire dans les cellules endothéliales. Par ailleurs, la présence de CSG dans les organoïdes complexes provoquait une reprogrammation des cellules microgliales en TAM immunosuppresseurs. Enfin, les CSG avaient une capacité de prolifération accrue après irradiation et présentaient un profil transcriptomique plus agressif. L'ensemble de ces résultats montre que ces organoïdes cérébraux complexes humains permettent de modéliser un microenvironnement tumoral du GBM ainsi que la récurrence après radiothérapie. En conclusion, notre modèle d'organoïdes cérébraux complexes vascularisés et immunocompétents devrait être utile pour comprendre les mécanismes physiopathologiques de diverses maladies du cerveau comme le GBM et permettra de découvrir de nouvelles thérapies
Despite an aggressive multimodal treatment combining surgery, radiotherapy and chemotherapy, glioblastoma (GBM) systematically recurs. Recurrence is due, at least, to the presence of glioblastoma stem cells (GSC) that are resistant to treatment and, in particular, to irradiation. In addition, GSC are located in a tumour microenvironment that favours their development. Specifically, GSC are associated with vessels, which regulate their proliferation and survival and encourage their invasion. Furthermore, tumour-associated macrophages (TAM) represent the most abundant population of non-tumour cells within GBM and their abundance correlates with GBM severity. These TAM originate from the recruitment of circulating monocytes and microglial cells (resident macrophages) which acquire immunosuppressive (pro-tumour) properties. The recent development of human cerebral organoids obtained from human induced pluripotent stem cells (IPSCs) makes it possible to model the physiology and pathophysiology of the brain, such as gliomas. These organoids are 3D avatars of the brain, derived from the differentiation of embryonic stem cells or induced pluripotent stem cells (IPSC). However, most organoid models lack the vascular and immune systems that play an essential role in the healthy brain and in pathophysiological mechanisms. The aim of my thesis was to develop a new model of complex cerebral organoids containing vascularisation and immune cells in order to model the tumour microenvironment of GBM. Several human IPSC lines were differentiated to obtain both cerebral organoids and hemangioblasts (bipotent hematopoietic/endothelial progenitors). The incorporation of hemangioblasts into the cerebral organoids was carried out early in their formation to mimic the colonisation of the brain, during cerebral development, by endothelial cells and primitive macrophages that are at the origin of vessels and microglial cells. These complex cerebral organoids were characterised using various approaches (immunohistological, FACS and RT-qPCR). Extensive vascular structures developed in the organoids and showed characteristics of the blood-brain barrier. In addition, these vascular structures were perfused when the organoids were transplanted into immunodeficient mice. Cells with a microglial phenotype and typical functionalities also developed in complex organoids. GSC lines derived from patients with GBM or grade IV astrocytoma were co-cultured in complex organoids and then irradiated, or not, to model radiotherapy. I showed that GSC appeared to co-opt vascular structures and disrupted the expression of a cell adhesion protein in endothelial cells. Furthermore, the presence of GSC in complex organoids induced reprogramming of microglial cells into immunosuppressive TAM. Finally, GSC had an increased proliferation capacity after irradiation and presented a more aggressive transcriptomic profile. Taken together, these results show that these complex human cerebral organoids can be used to model GBM tumour microenvironment and recurrence after radiotherapy. In conclusion, our model of complex vascularized and immunocompetent cerebral organoids should be useful for understanding the pathophysiological mechanisms of various brain diseases, such as GBM, and to discover new therapies
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Telliam, Gladys. "Leucémie myéloïde chronique : modélisation de l'hématopoïèse leucémique par les cellules souches pluripotentes induites". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS273/document.

Texto completo
Resumen
La leucémie myéloïde chronique (LMC) est un syndrome myéloprolifératif clonal initié par l’activité tyrosine kinase de l’oncoprotéine de fusion BCR-ABL dans une cellule souche hématopoïétique (CSH) très primitive et caractérisée par une instabilité génétique responsable de l’évolution clonale de la maladie. Les mécanismes de survie, d’autorenouvellement et ceux de la progression vers une phase de leucémie aigüe sont difficilement modélisables dans les CSH primaires de patients. La technologie des IPSC ; permettant de reprogrammer les cellules leucémiques à un état pluripotent ; pourrait permettre de générer in vitro des progéniteurs et des cellules leucémiques très primitives, dont l’évolution biologique pourrait être séquentiellement analysée. Dans ce but, nous avons généré une lignée IPSC à partir des cellules leucémiques d’un patient atteint de LMC. Nous avons montré que la lignée IPSC différenciée en hémangioblastes ou en progéniteurs hématopoïétiques présente un potentiel clonogénique accru. Ce potentiel est modulable sous l’action de l’imatinib mesylate ; qui inhibe l’autophosphorylation de BCR-ABL et celle de la protéine CRK-L ; mais également par la manipulation pharmacologique de la voie AHR impliquée dans la quiescence des CSH. En utilisant une stratégie de mutagénèse in vitro, nous avons montré la possibilté d’exacerber le potentiel hématopoietique des cellules hématopoïétiques dérivées des iPSC leucémiques. Les iPSC analysées après traitement par l’agent mutagène ENU présentent des anomalies cytologiques et cytogénétiques additionnelles reminiscentes de la phase blastiques de la maladie. Les analyses moléculaires par aCGH ont permis d’identifier dans les cellules hématopoïétiques dérivées d’IPSC traités par ENU, une signature moléculaire compatible avec celle décrite dans les cellules blastiques de patients. L’ensemble de nos résultats suggèrent qu’il est possible de modéliser certains aspects de la LMC ; notamment un phénotype myéloprolifératif ; et de génerer un modèle de progression blastique in vitro à partir des iPSC leucémiques, permettant ainsi d’identifier de nouveaux biomarquers prédictifs de progression tumorale ou le criblage de médicaments
Chronic myeloid leukemia (CML) is a clonal myeloproliferative malignancy initiated by tyrosine kinase activity of the fusion oncoprotein BCR-ABL in very primitive hematopoietic stem cell and characterized by a genetic instability leading to clonal progression. Mechanisms of survival, self-renewal and progression of the disease are difficult to model using primary leukemic cells. The use of iPSC technology could allow reprogramming of leukemic cells to pluripotency with generation of primitive leukemic cells whose evolution can be sequentially analyzed. For this purpose, we generated an IPSC cell line from the leukemic cells of a CML patient and analyzed the possibility to generate a myeloproliferative phenotype. We have shown that this iPSC exhibits an increased hematopoietic potential either via EB or Blast-CFC generation. This potential can be modulated by the action of imatinib, inhibiting autophosphorylation of BCR-ABL and that of CRKL. We show that hematopoietic potential of CML iPSC can also be modulated by using AHR antagonists, which allow further amplification of hematopoietic cells. To evaluate the possibility of generating a clonal progression model in vitro, we have used a mutagenesis strategy. CML iPSC treated by ENU for several weeks generated hematopoietic cells with increased efficiency. These cells showed evidence of cytological and cytogenetic abnormalities reminiscent of a blast crisis. aCGH analyses of hematopoietic cells generated revealed genomic abnormalities described in CML blast crisis and a molecular signature compatible with blast crisis described in CML patients. These results suggest the feasibility of using patient specific iPSC for modeling CML blast crisis, which could be used for discovery of novel biomarkers and drug screening
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Secardin, Lise. "Modélisation des néoplasmes myéloprolifératifs grâce aux cellules souches induites à la pluripotence (IPSC)". Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC313/document.

Texto completo
Resumen
Les néoplasmes myéloprolifératifs (NMP) sont hémopathies malignes aboutissant à la surproduction d'une ou plusieurs lignées myéloïdes. Elles sont dues à l'acquisition de mutations sur l'axe de signalisation MPL/JAK2 incluant des mutations de JAK2V617F, de MPL et plus récemment de la calréticuline (CALR), dont les deux principales sont CALRdel52 et CALRins5. Ces mutations de signalisations peuvent être accompagnées de mutations de l'épigénétique, les plus importantes étant des mutations dans TET2. Le but de cette thèse était d'étudier le rôle des mutations de TET2 et de la calrdel52 dans les NMP grâce à une technologie de cellules souches induites à la pluripotence (IPSC). Dans la première partie j'ai pu démontrer que TET2 joue un rôle dans le processus de reprogrammation, vraisemblablement de manière indépendante de son activité catalytique. Dans la seconde partie, j'ai démontré que CALRdel52 joue un rôle dans les MPN en provoquant une hypersensibilité et une pousse indépendante de la TPO des progéniteurs mégakaryocytaires ainsi qu'une hyperprolifération des mégacaryocytes, liées à l'activation constitutive de stat3 et de ERK. J'ai également démontré une pousse indépendante du GCSF des granulocytes. Ce travail a donc permis de mettre en lumière le rôle du facteur épigénétique TET2 dans le processus de reprogrammation ainsi que le rôle de CALRdel52 dans les MPN dans un contexte d'expression endogène
Myeloproliferative neoplasms (NMP) are hematological malignancies that lead to an ovrproduction of one or more myeloid lineages. They are driving by mutations in MPLl/jak2 signaling pathway, mainly JAK2V617F, MPL, and more recently calreticulin (CARL), with two main mutations being calrdel52 and calrins5. These signaling mutations are sometimes associated with epigenetic mutations, the major one being in tet2. The objective of my thesis was to study the role of TET2 and CALRdel52 in MPN thanks to an induced pluripotent stem cells (IPSC) model. In the first part i demonstrated the role of TET2 in reprogramming process, probably independently of the catalytic domain. In the second part i demonstrated that CALRdel52 induced a TPO hypersensitivity and a TPO indenpendant growth of the megakaryocytic progenitors as well as a hyperproliferation of the megakaryocytes. This phenotype is associated with a constitutive activation of stat3 and ERK. A G-CSF independent growth of the granulocyte was also demonstrated. In conclusion this work underline the role of an epegenetic factor, TET2, in the reprogramming process and demonstrate the role of CALRdel52in MPN with an endogenous expression model
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Gatinois, Vincent. "Pathologies des hélicases et vieillissement précoce : modèle d'étude par dérivation de cellules souches pluripotentes induites (iPS)". Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT042/document.

Texto completo
Resumen
Les hélicases sont des enzymes ubiquitaires catalysant la séparation de l’ADN double-brin et impliquées dans la réplication, la réparation de l’ADN et dans le maintien des télomères. Chez l’Homme, 3 hélicases présentent des mutations responsables de syndromes cliniques : WRN pour le syndrome de Werner, BLM pour le syndrome de Bloom et RECQL4 pour le syndrome de Rothmund-Thomson. Tous ces syndromes associent un vieillissement pathologique accéléré à un risque accru de développement de cancer notamment par une augmentation de l’instabilité génomique. Les connaissances sur les mécanismes moléculaires et cellulaires impliqués dans ces maladies du vieillissement sont encore très partielles, notamment en ce qui concerne le lien entre l’instabilité génomique et le vieillissement. Au cours de ce projet, l'utilisation de prélèvements sanguins et cutanés de patients atteints de ces pathologies rares a permis de générer des modèles de cellules souches pluripotentes induites (iPS). Ces cellules présentent l’avantage de s’auto-renouveler et de pouvoir théoriquement se différencier dans tous les types cellulaires d’un organisme. Parallèlement, un témoin de sénescence a été généré de la même manière avec des cellules d’un patient souffrant du syndrome de la progéria de Hutchinson-Gilford. Après caractérisation de ces cellules, nous avons identifié des ensembles de phénotypes cellulaires et moléculaires dans le but de récapituler in vitro les pathologies. Nous avons également engagé les cellules iPS dans des voies de différenciation proches des tissus atteints dans les pathologies in vivo. Enfin, nous avons étudié la stabilité génomique de ces lignées dans les différents types cellulaires cultivés. Ainsi nous avons observé que la lignée Bloom est le siège de recombinaisons particulièrement fréquentes et est caractérisée par une instabilité du génome dans tous les types cellulaires étudiés. Egalement, la lignée Werner semblerait se distinguer par une instabilité de ses télomères. Enfin, l’ensemble des lignées des pathologies du vieillissement prématuré présenterait un défaut mitochondrial
Helicases process the double-stranded DNA dissociation. They are involved in replication, DNA repair and maintenance of telomeres. In human, 3 helicases display mutations responsible for clinical syndromes: WRN for the Werner syndrome, BLM for the Bloom syndrome and RECQL4 for the Rothmund-Thomson syndrome. All these diseases cause premature ageing and high risk of cancer. Molecular and cellular mechanisms involved in these diseases are not well defined. Particularly, little is known concerning the link between genomic instability and ageing. During this project, we used blood samples and skin biopsies of affected patients to generate models by reprogramming cells to induced pluripotent stem cells (iPSCs). These cells have the advantage of self-renewing and theoretically could be differentiated in all cell types. At the same time, an iPSC senescence control was performed from cells of a Hutchinson-Gilford Progeria syndrome patient. iPSCs were characterized for pluripotency. In the aim of recapitulate these pathologies in vitro, we identified sets of cellular and molecular phenotypes. We also engaged differentiation of iPSCs in cell pathways closed to the affected tissues in vivo. Finally, we studied the genomic stability of iPSCs and derived cells. We observed that Bloom cells are susceptible to frequent recombinations and are characterized by a genome instability through all studied cell types. Werner cells showed an instability of telomeres length. Finally, all premature ageing diseases displayed mitochondrial defects
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Steichen, Clara. "Eléments d'évaluation pour l'utilisation d'hépatocytes dérivés de cellules souches pluripotentes induites (iPSC) en thérapie cellulaire". Paris 7, 2014. http://www.theses.fr/2014PA077045.

Texto completo
Resumen
Parmi les nombreuses applications potentielles des cellules souches pluripotentes induites (iPSC), ce travail de thèse s'est intéressé à l'utilisation d'hépatocytes dérivés d'iPSC en thérapie cellulaire. Des hiPSC ont d'abord été générées par transfection itérative d'ARN messagers. L'intégrité génomique de ces cellules a été analysée, en comparaison avec des iPSC générées en parallèle par une méthode virale. Le profil SNP des iPSC-ARN ne diffère pas de celui des fibroblastes de départ, contrairement à celui des iPSC virales, mais le nombre de délétions ou duplications (CNV) ne dépend pas de la méthode de reprogrammation. Cette analyse génomique a également permis de mettre en évidence une lignée iPSC-ARN atypique présentant un remaniement caryotypique complexe, équilibré et stable qui comprend une importante disomie monoparentale, ainsi qu'un défaut dans la capacité de formation de tératomes. La seconde partie de ce travail rapporte la génération d'hiPSC à partir de fibroblastes de patients hémophiles B. Pour corriger le déficit génétique, nous avons utilisé, dans ces iPSC, des nucléases artificielles pour insérer une cassette thérapeutique codant le FIX. La différenciation en hépatocytes de ces iPSC modifiées nous permettra de valider la correction in vitro, et in vivo dans un modèle de souris hémophiles B. Le dernier volet de ce travail consiste à différencier des iPSC simiennes en hépatocytes pour une transplantation autologue dans le foie du singe donneur, après embolisation portale partielle. Nous souhaitons ainsi établir la preuve de principe d'une thérapie cellulaire autologue dans un modèle préclinique de primate non humain
Among the various potential applications of induced pluripotent stem cells (iPSCs), this Ph. D project focused on the use of iPSC-derived hepatocytes in cell therapy. Human iPSCs have been generated by repeated transfections of messenger RNAs. The genomic integrity of these cells was analyzed, in comparison with iPSCs generated in parallel by a viral method. The SNP profile of mRNA-iPSC is not significantly different from the parental fibroblasts one, in contrary to what we observed with viral-iPSCs. The number of deletions or duplications (CNVs) is not dependent on the reprogramming method. This genomic analysis also highlighted an atypical mRNA-iPSC line displaying a complex, stable and balanced genomic rearrangement including a large region of de novo uniparental disomy, and a defect in teratoma formation capacity. The second part of this work describes the generation of hiPSCs from hemophilia B patients biopsy. To correct the genetic defect, we used artificial nucleases to drive the insertion of a therapeutic cassette coding the FIX gene. The differentiation of these corrected iPSCs into hepatocytes will allow us to validate this correction approach in vitro first and in vivo in a hemophilia B mouse model. The last part of this PHD work focused on differentiating simian iPSCs into hepatocytes to perform an autologous transplantation into the liver of the donor monkey, alter a portal vein embolization. We would like to establish the proof of principle of an autologous iPSC-based therapy in a non-human primate preclinical model
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Hiriart, Emilye. "Modélisation cellulaire des étapes précoces de la valvulogenèse à partir d'un modèle de cellules souches embryonnaires humaines, et étude de l'implication d'Oct4 dans le phénomène de transition endothélio-mésenchymateuse lors de la formation des coussins endocardiques". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLE011.

Texto completo
Resumen
Les cardiopathies représentent la première cause de mortalité dans le monde, près de 30% des décès chaque année sont imputables à ce type de pathologies ; cette incidence a par ailleurs fortement augmentée au cours du siècle dernier (OMS). Les cardiopathies peuvent être classées en plusieurs sous-groupes de maladies cardio-vasculaires en fonction du tissu affecté par la pathologie. On différencie ainsi les maladies affectant les vaisseaux, le muscle cardiaque, le rythme (tissu pacemaker et de conduction) et les maladies des valves cardiaques. Les valvulopathies cardiaques peuvent être causées par des défauts des valves acquis ou innés et représentent près de 30 à 40% des malformations cardiaques recensées. Le pourcentage de patients atteints de valvulopathies augmente avec l’âge du patient, de plus, les valvulopathies représentent la principale cause de morbidité chez l’adulte, et l’enfant dans les pays développés.Ces défauts peuvent être d’origines génétiques, congénitales, toxicologique, ischémiques avec influence de différents facteurs de risques aussi bien génétiques qu’environnementaux, dans certains cas elles peuvent même être provoquées par des médicaments, le cas du Benfluorex (Mediator®) étant probablement le plus connu. Les défauts affectant les valves peuvent avoir de graves conséquences sur le fonctionnement du cœur. Ainsi, en 2008, aux États-Unis, il a été nécessaire de procéder au remplacement de près de 82000 valves cardiaques chez des patients adultes. Si le remplacement de valves cardiaques reste une avancée majeure pour les patients atteints de valvulopathies, l’utilisation de prothèses et de transplants valvulaires présentent néanmoins des limitations, notamment : une absence de croissance des prothèses, l’apparition de thromboses, ainsi que des rejets en cas de transplantation de valves allo-géniques, prélevées sur des donneurs en morts cérébrale. Ainsi, il est nécessaire d’étudier les mécanismes mis en jeu dès le développement embryonnaire, mécanismes qui pourrait avoir un effet délétère à plus ou moins long terme entrainant l’apparition d’une valvulopathie chez l’enfant, le jeune adulte ou chez la personne âgée. Pour cela l’utilisation d’un modèle cellulaire utilisable in vitro serait une avancée remarquable. Ce modèle permettrait à la fois d’élucider un certain nombre de mécanismes biologiques mis en place au cours du développement ou de la pathologie, mais aussi d’espérer la mise en place d’un protocole permettant l’utilisation clinique de cellules autologues reprogrammées pour la thérapie des tissus atteints de valvulopathies voire même une thérapie incluant une réparation endogène
Heart disease is the leading cause of death worldwide, nearly 30% of deaths each year are attributable to such diseases; this incidence has also greatly increased in the last century (WHO).Heart disease can be classified into several subgroups of cardiovascular disease based on the tissue affected by the pathology. It thus differs diseases affecting vessels, cardiac muscle, rhythm (fabric pacemaker and conduction) and heart valve disease. Heart valve disease can be caused by defects of innate and acquired or valves represent about 30-40% of heart defects identified. The percentage of patients with valvular heart disease patients increases with age of the patient, in addition, valvular heart disease is the leading cause of morbidity in adults and children in developed countries.These defects may be of genetic origin, congenital, toxicological, with ischemic influence of various risk factors both genetic and environmental, in some cases they can even be caused by medications, if the Benfluorex (Mediator®) are probably the most known. The defects in the valves can have serious consequences on the functioning of the heart. In 2008, the United States, it was necessary to proceed with the replacement of nearly 82,000 heart valves in adult patients.If the replacement heart valves remains a major advance for patients with valvular heart disease, the use of prostheses and transplants valves nevertheless have limitations, including: no growth prostheses, the occurrence of thrombosis and releases in cases of allo-transplantation of gene valves taken from brain dead donors. Thus, it is necessary to study the mechanisms involved early embryonic development, mechanisms that could have a deleterious effect more or less long term leading the development of valvular disease in children or young adults in the old person. For this the use of an in vitro cell model used is a remarkable achievement. This model would both elucidate a number of biological mechanisms during development or pathology, but also hope the development of a protocol for the clinical use of autologous cells reprogrammed to the therapy of patients with valvular tissue or even a therapy including an endogenous repair
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Sansac, Caroline. "Modélisation de l'épithélium bronchique humain par la technologie des cellules souches pluripotentes induites (iPS)". Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT014/document.

Texto completo
Resumen
Les cellules souches pluripotentes (CSP) incluent les cellules souches embryonnaires (ES) et les celles souches pluripotentes induites (iPS). Elles sont définies par deux propriétés fondamentales : l’auto-renouvellement et la capacité à se différencier dans tous les types cellulaires. Les ES sont dérivées de la masse cellulaire de l’embryon. Elles soulèvent l’intérêt de la communauté scientifique du fait de leur capacité à générer tous les tissus. Il s’agit d’un outil biotechnologique majeur dont les applications thérapeutiques et pharmacologiques comporteront notamment la médecine régénératrice, la modélisation in vitro de maladies humaines et le criblage de candidat-médicaments. Cependant l’utilisation d’embryons humains pour générer les ES soulève des problèmes éthiques. Les iPS contournent ces difficultés car elles sont dérivées de cellules somatiques différenciées. En effet, S. Yamanaka, qui a reçu le prix Nobel en 2012, a découvert en 2006 une technique simple de reprogrammation cellulaire. L’expression transitoire de quatre gènes (OCT4, SOX2, c-MYC and KLF4) est suffisante pour reprogrammer des fibroblastes murins en iPS. Ces cellules iPS ont la même morphologie et les mêmes propriétés que les cellules ES. L’année suivante, S. Yamanaka a appliqué avec succès son cocktail à des fibroblastes humains pour produire des iPS humaines (hiPS). Les hiPS peuvent également dépasser les problèmes immunologiques soulevés par l’utilisation d’ES dans la thérapie cellulaire, par le simple fait que les hiPS pourront être dérivées du patient à traiter. De plus, parce qu’il est possible de choisir les cellules du donneur à reprogrammer selon son génotype, il est plus facile de modéliser des maladies génétiques à partir d’hiPS que d’ES. Enfin, d’un point de vue pharmaceutique, les hiPS peuvent fournir une plateforme quasi-infinie pour le criblage de molécules afin de traiter diverses pathologies. Le but de mon projet de recherche est l’utilisation de la technologie hiPS afin de modéliser le développement de l’épithélium bronchique. Premièrement, in vivo, des tératomes ont été générés après injection d’hiPS dans des souris immunodéficientes. Les tératomes démontrent la capacité de nos hiPS à se différencier en épithélium bronchique. Secondairement, in vitro, reproduire le développement embryonnaire et fœtal permet d’offrir une méthode simple pour modéliser l’épithélium bronchique dans un puits. Cette technologie ouvre la voie vers de nombreuses recherches, du criblage de molécules à la production de cellules souches pour réparer l’épithélium bronchique, et in fine à la promotion de nouveaux traitements pharmacologiques ou de thérapie innovante pour les maladies respiratoires
Pluripotent stem cells (PSC) include embryonic stem cells (ES) and induced pluripotent stem cells (iPS). They are defined by two fundamental properties: self-renewal and the capacity to differentiate into all cell types. ES cells are derived from the inner cell mass of embryos. They arouse the interest of the scientific community in particular for their ability to generate all tissues. They provide major therapeutic and pharmacological applications, including regenerative medicine, in vitro modelling of human diseases and molecular screening. However, the use of human blastocysts to generate ES cells raises many ethical problems. iPS circumvent these ethical issues as they can be derived from differentiated somatic tissues. Indeed, S. Yamanaka, Nobel Prize in 2012, discovered in 2006 a simple technique of cellular reprogramming. The transient expression of four genes (OCT4, SOX2, c-MYC and KLF4) is sufficient to reprogram mouse fibroblasts into iPS. These iPS cells have the same morphology and the same properties than ES cells. The following year, S. Yamanaka applied successfully his cocktail to human fibroblasts to produce human iPS (hiPS). hiPS may also overcome immunological problems raised by the use of ES cell for cellular therapy, as hiPS can be derived from the patient to be treated. In addition, it is easier to model genetic diseases from hiPS than ES, because it is possible to choose the donor cells to reprogram according to its genotype. Finally, from a pharmacological point of view, hiPS can provide a broad platform of molecular screening to treat various diseases. The aim of my research project is to use the hiPS technology to model the development of bronchial epithelium. First, in vivo, teratomas were formed by the injection of hiPS into immunodeficient mice. Teratomas highlight the ability of differentiation of our hiPS into bronchial epithelium. Second, in vitro, reproducing embryonic and foetal bronchial development provides a way to model bronchial epithelium in a dish.These techniques open the door to many potential research avenues from screening small molecules to engineering stem cells to repair bronchial epithelium, and will in fine promote new pharmacologic or cell-based treatments for respiratory diseases
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Lemonnier, Thomas. "Modélisation de maladies neurodégénératives à l’aide de cellules souches pluripotentes induites humaines". Thesis, Paris 5, 2012. http://www.theses.fr/2012PA05T074/document.

Texto completo
Resumen
La technologie de reprogrammation de cellules somatiques en cellules souches pluripotentes induites (iPS) offre aujourd’hui l’opportunité de modéliser des maladies neurodégénératives et d’étudier des neurones de patients. Nous avons utilisé cette technologie pour générer deux modèles de maladies neurodégénératives : la mucopolysaccharidose de type IIIB (MPSIIIB) et la forme ALS2 de la sclérose latérale amyotrophique (SLA). Dans le modèle MPSIIIB, nous avons montré que les iPS et les neurones de patients présentaient des défauts caractéristiques de la pathologie telle que l’accumulation de vésicules de surcharge. Des altérations de l’appareil de Golgi dans ces cellules ont également été mises en évidence. Une analyse du transcriptome de précurseurs neuraux MPSIIIB a montré des modifications transcriptionnelles touchant notamment des gènes impliqués dans les interactions de la cellule avec la matrice extracellulaire. Ainsi, dans une seconde étude, des altérations de la migration et de l’orientation de cellules de souris mutantes MPSIIIB ou de patients ont été démontrées. Ces altérations pourraient être responsables des perturbations de la neurogénèse et de la neuritogénèse chez les enfants malades. Dans le modèle SLA/ALS2, nous avons montré que les neurones de patients présentaient des défauts incluant une diminution de la surface des endosomes et des anomalies de la croissance neuritique. Alors qu’il n’existait jusqu’alors aucun modèle cellulaire pertinent reproduisant cette maladie, ce modèle permettra à présent d’étudier les processus physiopathologiques impliqués dans la maladie. En conclusion, la génération de cellules iPS permet de modéliser des maladies neurodégénératives et d’étudier les processus physiopathologiques qui sont associés sur des neurones humains en culture. Ces modèles cellulaires pourraient permettre dans un avenir proche de réaliser des criblages de molécules à visée thérapeutique
Reprogramming technology of somatic cells in induced pluripotent stem cells (iPS) now offers the opportunity to model neurodegenerative diseases and to study patient’s neurons. We used this technology for generating two models of neurodegenerative diseases: the muccopolysaccharidosis type IIIB (MPSIIIB) and the ALS2 form of amyotrophic lateral sclerosis (ALS). In the MPSIIIB model, we have shown that iPS and neurons of patients had characteristic defects of the disease such as the accumulation of storage vesicles. Alterations of the Golgi apparatus in these cells were also highlighted. Transcriptome analysis of MPSIIIB neural precursors showed transcriptional changes involving particularly genes implicated in cell-extracellular matrix interactions. Thus, in a subsequent study, alterations of migration and orientation of MPSIIIB mutant mouse cells and MPSIIIB patients’ cells have been demonstrated. These alterations may be responsible for the disruption of neurogenesis and neuritogenesis in sick children. In the ALS2 model, we have shown that patients’ neurons had defects including decreased endosomes’ surface and abnormal neurite outgrowth. As there was previously no relevant cellular model reproducing the disease, this model will now allow the study of physiopathological processes involved in the disease. In conclusion, the generation of iPS cells allows to model neurodegenerative diseases and to study associated physiopathological processes on cultured human neurons. These cell models could allow in the near future the screening of molecules of potential therapeutical interest
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Faye, Pierre-Antoine. "Cellules souches pluripotentes induites (iPSc) différenciées en motoneurones spinaux : vers des modèles cellulaires de neuropathies périphériques d'origine génétique". Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0051/document.

Texto completo
Resumen
Les cellules souches induites à la pluripotence (iPSc) apparaissent comme une solution très intéressante pour créer et observer le comportement de cellules spécifiques et inaccessibles d'un patient. Notre équipe travaille sur les pathologies génétiques des nerfs périphériques et en particulier la maladie de Charcot-Marie-Tooth (CMT). Un de nos objectifs est le développement de modèles de motoneurones de patients utilisant la stratégie des iPSc afin de mieux comprendre la physiopathologie des neuropathies liées au gène GDAP1. Ce gène a été décrit en 1998 pour être responsable d'une forme axonale de CMT ; il code une protéine de la membrane externe mitochondriale dont la fonction précise reste encore méconnue. Des fibroblastes dermiques (FD) ont été obtenus après une biopsie de peau d'une personne saine (témoin) et d'un patient homozygote porteur de la mutation non-sens p.Gln163* dans le gène GDAP1. Par la suite, les FDs ont été reprogrammés en cellules iPSc en utilisant le cocktail de Yamanaka (plasmides non intégratifs composés d’Oct4, Sox2, Klf4 et l-Myc). Après amplification, tous les contrôles ont été effectués pour conclure que nos iPSc avaient les mêmes propriétés et les mêmes capacités que les cellules souches embryonnaires ainsi qu’un caryotype normal. Enfin, nous avons optimisé le protocole de différenciation avec succès de manière à obtenir à partir des iPSc des rosettes (structures pleines de progéniteurs neuronaux), puis des neurones et finalement des motoneurones pour le contrôle et le patient. Les premières différences entre le contrôle et le patient ont été observées lors de l’obtention de rosettes. Les cellules du patient présentaient de nombreuses gouttelettes lipidiques et la proportion de rosettes obtenue était plus faible. Une fois les motoneurones obtenus, des tests de microscopie confocale et électroniques ont montré des différences du réseau mitochondrial entre le témoin et le patient, ainsi qu’une morphologie des mitochondries se rapprochant de celle observée lors de biopsie de nerf de patient (rondes / accumulées). De manière à réduire la durée de différenciation, une méthode de tri cellulaire a été utilisée la SdFFF. Cette méthode nous a permis de trier différents progéniteurs (neuraux / endothéliaux). La génération de motoneurones à partir de fibroblastes dermiques de patient atteint de CMT axonale via les iPSc était une première étape cruciale pour mieux comprendre le rôle de GDAP1 dans cette pathologie. Ce modèle cellulaire de CMT4A est un premier pas pour réaliser des tests précliniques de médicaments afin d'identifier de futurs candidats pharmacologiques
Induced pluripotent stem cells (iPSc) are a highly interesting tool to create and observe the behavior of specific and unattainable cells from a patient. Our team is interested in genetic peripheral nerves disorders and especially in Charcot-Marie-Tooth disease (CMT). One of our objectives is the development of motor neurons models from patients using the iPSc strategy in order to better understand the pathophysiology of GDAP1-related neuropathies. This gene was found in 1998 to be mutated in an axonal form of CMT and encodes a mitochondrial outer membrane protein, which function remains unclear. We first obtained dermal fibroblasts (DF) from skin biopsies of a healthy person and of a homozygous patient carrying GDAP1 non-sense mutation (p.Gln163*). Then, we reprogrammed DFs into iPSc using non-integrative plasmids (Oct4, Sox2, Klf4 and l-Myc). After amplification, all quality controls were performed to conclude that our iPSc had the same properties and capacities than embryonic stem cells and a normal karyotype. Finally, we optimized protocols to successfully differentiate these iPSc into rosettes (structures full of neural progenitors), then into neurons and finally into motor neurons for control and GDAP1 patients. The first differences between control and patient cells were observed during the rosette formation, where a lot of patient cells were full of lipid droplets, and the rosette proportion was lower than the control cells. Mitochondria morphology was totally different in motor neurons between control and patient, where mitochondria had the same morphology than the mitochondria observed in patient nerve biopsies (round and accumulated). In order to reduce the time of differentiation, a cell sorting method was used (SdFFF). It allowed us to sort different progenitors (neural / endothelial). Generation of motor neurons using axonal CMT-patient-derived iPSc was a first crucial step to better understand the role of GDAP1 in this pathology. This cellular model of CMT4A should ultimately allow us to perform preclinical drug screening in order to identify candidate pharmacological treatments for CMT patients
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía