Literatura académica sobre el tema "Cellular Migration"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Cellular Migration".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Cellular Migration"
Mcclay, D. "Cellular migration". Reproductive Toxicology 11, n.º 2-3 (junio de 1997): 321–29. http://dx.doi.org/10.1016/s0890-6238(96)00215-8.
Texto completoSchönfisch, Birgitt y Claude Lacoursière. "Migration in cellular automata". Physica D: Nonlinear Phenomena 103, n.º 1-4 (abril de 1997): 537–53. http://dx.doi.org/10.1016/s0167-2789(96)00284-9.
Texto completoZhao, Jieling, Youfang Cao, Luisa A. DiPietro y Jie Liang. "Dynamic cellular finite-element method for modelling large-scale cell migration and proliferation under the control of mechanical and biochemical cues: a study of re-epithelialization". Journal of The Royal Society Interface 14, n.º 129 (abril de 2017): 20160959. http://dx.doi.org/10.1098/rsif.2016.0959.
Texto completoKravets, E. A., A. I. Yemets y Ya B. Blume. "Cellular mechanisms of nuclear migration". Cytology and Genetics 51, n.º 3 (mayo de 2017): 192–201. http://dx.doi.org/10.3103/s0095452717030069.
Texto completoVaughan, Douglas E. "PAI-1 and Cellular Migration". Arteriosclerosis, Thrombosis, and Vascular Biology 22, n.º 10 (octubre de 2002): 1522–23. http://dx.doi.org/10.1161/01.atv.0000037901.89736.0a.
Texto completoChang, Stephanie S., Andrew D. Rape, Stephanie A. Wong, Wei-hui Guo y Yu-li Wang. "Migration regulates cellular mechanical states". Molecular Biology of the Cell 30, n.º 26 (15 de diciembre de 2019): 3104–11. http://dx.doi.org/10.1091/mbc.e19-02-0099.
Texto completoVerdoorn, Cornelis. "Cellular Migration, Proliferation, and Contraction". Archives of Ophthalmology 104, n.º 8 (1 de agosto de 1986): 1216. http://dx.doi.org/10.1001/archopht.1986.01050200122064.
Texto completoNagayama, M., H. Haga, M. Takahashi y K. Kawabata. "Cellular migration coordinated by cortical tension". Seibutsu Butsuri 43, supplement (2003): S108. http://dx.doi.org/10.2142/biophys.43.s108_3.
Texto completoSCHUBERT, THOMAS, ALEXANDRA E. DENK, ANKE RUEDEL, SIMONE KAUFMANN, ELISABETH HUSTERT, PATRIZIA BASTONE y ANJA K. BOSSERHOFF. "Fragments of SLIT3 inhibit cellular migration". International Journal of Molecular Medicine 30, n.º 5 (20 de agosto de 2012): 1133–37. http://dx.doi.org/10.3892/ijmm.2012.1098.
Texto completoReyes-Aldasoro, C. C., D. Biram, G. M. Tozer y C. Kanthou. "Measuring cellular migration with image processing". Electronics Letters 44, n.º 13 (2008): 791. http://dx.doi.org/10.1049/el:20080943.
Texto completoTesis sobre el tema "Cellular Migration"
Dimchev, Georgi Aleksandrov. "Cellular regulators of myoblast migration and myogenesis". Thesis, Manchester Metropolitan University, 2012. http://e-space.mmu.ac.uk/315695/.
Texto completoCorvaglia, Valentina. "pna - assisted cellular migration on patterned surfaces". Doctoral thesis, Università degli studi di Trieste, 2013. http://hdl.handle.net/10077/8646.
Texto completoABSTRACT - The ability to control the cellular microenvironment, such as cell-substrate and cell-cell interactions at the micro- and nanoscale, is important for advances in several fields such as medicine and immunology, biochemistry, biomaterials, and tissue engineering. In order to undergo fundamental biological processes, most mammalian cells must adhere to the underlying extracellular matrix (ECM), eliciting cell adhesion and migration processes that are critical to embryogenesis, angiogenesis, wound healing, tissue repair, and immunity response, to cite few. For instance, upon receiving and responding to complex molecular signals, cells migrate from the epithelial layers to target locations, where they differentiate to form specialised cells that make up various organs and tissues. However, improper cell adhesion and migration have been implicated in disease states such as tumour invasion and cancer cell metastasis. In the past few years, several tailored surfaces that aim to mimic cell-ECM interactions have been developed, including biodevices based on proteins and shorter peptide chains, DNA, RNA, and lipids. Among the different nanomaterials employed in such studies, those resulting from self-assembled monolayers (SAMs) of alkanethiols on gold (Au) probably represent the most useful and flexible model systems of surface engineering for cell biology evaluations. These platforms are promising for tuning surface properties or to introduce novel biofunctionalities via coupling reactions with various alkanethiols tail groups that can be exposed to the solution phase. Deeply involved in this research field, the aim of this doctoral work was to gain a basic understanding and develop chemical strategies towards the controlled multidirectional (i. e. bidirectional) cellular migration on tailored Au surfaces. As already described, several artificial substrates were prepared in the last years to better understand the cellular responses to different mechanical and biochemical surface properties. To date, however, no reports concerning the bidirectional movement of the cells along a defined substrate have been published. The controlled multidirectional migration offers several advantages respect to the monodirectional approach, since the cellular functions can be obtained and, in principle, recycled with spatio-temporal control. In fact, once the cells reach the target position along the surface and perform specific biochemical or physiological cellular functions (repair, growth, movement, immunity, communication, and phago/endocytosis), the reversible movement could allow to recall them back to the starting position. By this way, also studies of dynamic cell-cell interactions can also be exploited allowing for a deeper knowledge about the fundamentals of the cell biology and biochemistry. The multidirectional migration can be determined through the production of dynamic haptotactic chemical gradients along Au surfaces. Specifically, the long-term idea of this project is to use SAMs of thiolated DNA chains (DNA-SH) adsorbed onto Au surfaces as a template for the hybridisation with complementary peptidic nucleic acid (PNA) strands functionalised with peptidic motifs able to stimulate cellular motility. By this way, supramolecular chemical gradients of motogenic motifs can be bound in a directional manner onto Au surfaces and dictate a dynamic bidirectional cell migration. Framed in such research project, this doctoral thesis focused on the production of a static, monodirectional and motogenic gradient along Au surfaces, to prove the efficacy of a specific peptidic motif, and generate modified PNA strands necessary for the production of the corresponding dynamic gradients. Chapter 1 deals with a careful description of the biochemical mechanisms involved in the cellular migration process, focusing on the chemotaxis and haptotaxis phenomena. Through a comprehensive overview on the state of the art concerning the biomimetic approaches for studying the cellular migration, the main strategies towards the engineering of different surfaces, have been thoroughly reviewed by means of key examples reported in the literature. Chapter 2 is centred on the results obtained by producing and using the thiolated peptide isoleucine-glycine-aspartic acid-glutammine-lysine-1-thiol decanoic acid (IGDQK-SH) as a motogenic motif for both cells found in physiologic environment (fibroblasts) and phatological conditions (MDA-MB-231 cancer cells). Upon synthesising IGDQK-SH (1), a systematic approach for the generation of the motogenic chemical gradient along Au surfaces has been developed. Evidences of the success of the preparation of such static chemical gradient were obtaining by engaging specific characterisation methodologies, such as water contact angle (WCA), Atomic Force Microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) analysis, along with computational analysis of peptide’s conformations once bound to the different Au surfaces. This allowed determining the biophysical properties, morphology, chemical composition and possible structure of the resulting Au surfaces, respectively. IGDQK-SH chemical gradient was able to induce and control the cellular migration of the two different cell lines showing interesting differences related to the surface properties and peptide’s conformations after the formation of SAMs in the presence of filler molecules with different hydrophobicity. In particular, the experimental findings suggested a pronounced migration attitude of the cancer cells upon their exposition to the IGDQK-SH-bearing surfaces, compared to the fibroblasts. This result might suggest a role of the IGD motif in the stimulation of the cancer cells towards their enhanced motility and metastatic progression in vivo, and is currently under investigation. Once proved the efficiency of the motogenic peptide, we moved towards the final goal of the project synthesising two functionalised single-stranded PNA dodecamers (ssPNA 12-mers) 30 and 31 bearing the Rhodamine B and the tetrapeptide IGDQ for characterising the chemical gradient through microscopy-based investigations and stimulate cell motility, respectively. Chapter 3 indeed provides a general overview on the different methodologies available for the solid phase peptide synthesis (SPPS) describing the synthetic attempts to produce the desired PNAs. Attention will be focused on the Fmoc/Cbz protecting group strategy, which allowed us to isolate the target PNA oligomers.
RIASSUNTO - Lo studio e il controllo dei microambienti cellulari, quali interazioni cellula-superficie e cellula-cellula, assumono particolare rilevanza in diversi campi scientifici come medicina e immunologia, biochimica, ingegneria dei tessuti e dei biomateriali. Al fine di svolgere le funzioni biologiche fondamentali, le cellule dei mammiferi devono poter aderire alla matrice extra-cellulare (ECM) sottostante, provocando adesione e migrazione cellulare che risultano essenziali, ad esempio, nei processi di embriogenesi, angiogenesi e riparazione dei tessuti. Infatti, stimolate da complessi segnali molecolari, le cellule migrano dagli strati epiteliali verso il loro target, raggiunto il quale si differenziano e specializzano formando organi e tessuti. Al contrario, anomalie nell’adesione e migrazione cellulare possono dar luogo al sorgere di diverse malattie, quali tumori e metastasi cancerose. Negli ultimi anni sono state progettate e sviluppate diverse superfici, compresi biodispositivi basati su proteine, DNA, RNA e lipidi, con lo scopo di mimare le interazioni cellula-ECM. Tra i nanomateriali impiegati in questi studi, quelli derivanti dalla formazione di self-assembled monolayers (SAMs) di tioli alchilici su oro (Au) rappresentano probabilmente il modello più adatto e flessibile di superfici ingegnerizzate al fine di valutare i fenomeni biologici. Questi sistemi permettono di modulare le proprietà delle superfici o di introdurre nuovi gruppi funzionali attraverso reazioni di coupling, sfruttando la presenza dei gruppi terminali dei tioli che risultano esposti al solvente. Lo scopo di questo lavoro di dottorato è quello di acquisire le conoscenze di base e di sviluppare metodologie chimiche al fine di indurre e controllare la migrazione cellulare multidirezionale (i.e. bidirezionale) su superfici di Au funzionalizzate. Come già descritto, negli anni sono stati impiegati diversi substrati artificiali con lo scopo di meglio comprendere le reazioni cellulari alle differenti proprietà meccaniche e biochimiche di tali superfici. Tuttavia, ad oggi, non sono stati ancora pubblicati studi riguardanti il movimento bidirezionale di cellule lungo un substrato. Rispetto all’approccio monodirezionale, la migrazione multidirezionale controllata offre diversi vantaggi, poiché in questo modo le funzioni cellulari possono essere indotte e, in principio, replicate attraverso un controllo spazio-temporale. Infatti, una volta raggiunto l’obiettivo sulla superficie e svolte le funzioni cellulari specifiche (riparazione, crescita, movimento, immunità, comunicazione, fagocitosi), il movimento reversibile permette di richiamare le cellule alla posizione iniziale. Pertanto, anche lo studio delle interazioni dinamiche cellula-cellula potrà fornire una più approfondita conoscenza della biologia e della biochimica cellulare. La migrazione multidirezionale può essere determinata attraverso la produzione di gradienti chimici dinamici aptotattici su superfici di Au. Nel dettaglio, l’idea alla base di questo progetto è quella di utilizzare SAMs di catene di DNA aventi un tiolo terminale (ssDNA-SH) per la funzionalizzazione di superfici di Au, e usarle come template nell’ibridizzazione con catene complementari di acido nucleico peptidico (PNA) aventi un peptide in grado di stimolare la migrazione cellulare. In questo modo è possibile generare un gradiente chimico supramolecolare direzionale lungo le superfici di Au al fine di ottenere al migrazione cellulare bidirezionale. Questa tesi di dottarato è focalizzata sulla produzione di un gradiente statico, monodirezionale e motogenico su superfici di Au, per provare l’efficacia di un motivo peptidico specifico, e generare filamenti di PNA modificati, necessari per la produzione di corrispondenti gradienti dinamici. Il Capitolo 1 riporta un’accurata descrizione dei meccanismi biochimici coinvolti nei processi di migrazione cellulare, concentrandosi sui fenomeni di chemiotassi e aptotassi. Dopo un’esauriente studio dello stato dell’arte, le principali strategie di funzionalizzazione di diverse superfici sono state dettagliatamente riviste attraverso gli esempi chiave riportati in letteratura. Il Capitolo 2 è centrato sui risultati ottenuti producendo e utilizzando il pentapeptide composto da isoleucina-glicina-acido aspartico-glutammina-lisina-acido decanoico-1-tiolo (IGDQK-SH) come motivo motogenico per le cellule presenti in ambienti fisiologici (fibroblasti) e in condizioni patologiche (MDA-MB-231 cellule cangerogene). Una volta sintetizzato l’IGDQK-SH(1) è stato sviluppato un approccio sistematico per la produzione del gradiente motogenico sulle superfici di Au. Al fine di verificare l’effettiva presenza di tale gradiente sono state utilizzate differenti tecniche di caratterizzazione, quali water contact angle (WCA), Atomic Force Microscopy (AFM) e X-ray photoelectron spectroscopy (XPS) analysis, oltre all’analisi computazionale per stabilire la conformazione del peptide una volta legato alla superficie di Au. Questo ha permesso di determinare le proprietà biofisiche, la morfologia, la composizione chimica e la possibile struttura delle superfici finali di Au funzionalizzate. Il gradiente chimico di IGDQK-SH ha permesso di indurre e controllare la migrazione di due differenti linee cellulari, mostrando interessanti differenze relative alle proprietà della superficie e alla conformazione del peptide dopo la formazione del SAMs in presenza di molecole filler aventi diversa idrofobicità. In particolare, i risultati sperimentali suggeriscono una maggiore attitudine alla migrazione da parte delle cellule cancerogene su superfici di Au funzionalizzate con il peptide IGDQK-SH rispetto ai fibroblasti. Questo risultato potrebbe suggerire un ruolo del motivo IGD nella stimolazione della mobilità e della progressione metastatica in vivo delle cellule cancerogene, ed è attualmente oggetto di ricerca. Una volta provata l’efficienza del peptide motogenico, obiettivo finale di questo lavoro è stata la sintesi di due singoli filamenti di dodecamero di PNA 30 e 31 funzionalizzati rispettivamente con la Rodammina B e il tetrapeptide IGDKQ al fine di caratterizzare il gradiente chimico utilizzando tecniche microscopiche e stimolare la migrazione cellulare. Il Capitolo 3 offre una visione generale sulle differenti metodologie impiegate nella sintesi peptidica in fase solida (SPPS), descrivendo le strategie sintetiche utilizzate per produrre gli oligomeri di PNA necessari, con particolare attenzione per la strategia dei gruppi protettivi Fmoc/Cbz.
RéSUMé - La possibilité de contrôler le microenvironnement cellulaire, telles que les interactions cellule-substrat et cellule-cellule à l’échelle micro et nano, est importante pour les avancées dans certains domaines tels que la médecine et l’immunologie, la biochimie, les biomatériaux, et l’ingénierie tissulaire. Afin d’être soumis aux processus biologiques fondamentaux, la plupart des cellules mammifères doivent adhérer à la matrice extracellulaire sous-jacente (ECM), en induisant des procédés d’adhésion et de migration cellulaires qui sont critiques à l’embryogenèse, l’angiogenèse, la cicatrisation des blessures, la réparation des tissus, et la réponse immunitaire, pour n’en citer que quelques-uns. Par exemple, lorsque les cellules reçoivent et répondent à des signaux moléculaires complexes, elles migrent des couches épithéliales aux emplacements cibles, où elles se différencient afin de former des cellules spécialisées qui constituent divers organes et tissus. Cependant, une adhésion et une migration cellulaire incorrecte ont été impliquées dans des états de maladie tels que l’invasion de tumeur et les métastases de cellules cancéreuses. Au cours des dernières années, plusieurs surfaces confectionnées dans le but d’imiter les interactions cellule-ECM ont été développées, incluant des bio dispositifs basés sur des protéines et des chaines peptidiques courtes, sur l’ADN, l’ARN, et sur des lipides. Parmi les différents nanomatériaux employés dans de telles études, ceux résultants de monocouches auto-assemblées (SAMs) d’alcanethiols sur l’or (Au) représentent probablement les systèmes modèles les plus utiles et flexibles d’ingénierie de surface pour des évaluations biologiques cellulaires. Ces plateformes sont prometteuses pour moduler des propriétés de surface ou pour introduire de nouvelles biofonctionnalités via des réactions de couplage avec divers groupements alcanethiols qui peuvent être exposés à la phase liquide. Fortement impliqué dans ce domaine de recherche, l’objectif de ce travail de doctorat était d’acquérir une compréhension basique et de développer des stratégies chimiques à l’égard de la migration cellulaire multidirectionnelle contrôlée (i.e. bidirectionnelle) sur des surfaces d’Au fonctionnalisées. Comme cela a déjà été décrit, plusieurs substrats artificiels ont été préparés au cours des dernières années afin de mieux comprendre les réponses cellulaires à différentes propriétés mécaniques et biochimiques de surface. Cependant, jusqu’à présent, aucun rapport sur le mouvement bidirectionnel de cellules le long d’un substrat défini n’a été publié. La migration multidirectionnelle contrôlée offre plusieurs avantages par rapport à l’approche monodirectionnelle, puisque les fonctions cellulaires peuvent être obtenues et, en principe, recyclées avec un contrôle spatio-temporel. En fait, une fois que les cellules atteignent la position cible le long de la surface et réalisent des fonctions cellulaires biochimiques ou physiologiques spécifiques (réparation, croissance, mouvement, immunité, communication, et phago/endocytose), le mouvement réversible pourrait permettre de les rappeler à la position de départ. De cette façon, des études d’interactions cellule-cellule dynamiques peuvent également être exploitées, menant à une connaissance plus approfondie des fondamentaux de la biologie et biochimie des cellules. La migration multidirectionnelle peut être établie par la production de gradients dynamiques chimiques haptotactiques le long de surfaces d’Au. Plus précisément, l’idée à long terme de ce projet est d’utiliser des SAMs de chaînes d’ADN thiolées (ADN-SH) adsorbées sur des surfaces d’Au comme modèles pour l’hybridation avec des brins d’acides nucléiques peptidiques (ANP) complémentaires, fonctionnalisés avec des motifs peptidiques capables de stimuler la motilité cellulaire. De cette façon, les gradients chimiques supramoléculaires de motifs motogéniques peuvent être liés d’une manière directionnelle sur des surfaces d’Au et peuvent dicter une migration cellulaire bidirectionnelle dynamique. Cette thèse de doctorat, incluse dans un tel projet de recherche, s’est concentrée sur la production d’un gradient statique, directionnel et motogénique le long de surfaces d’Au, afin de prouver l’efficacité d’un motif peptidique spécifique, et de générer des brins d’ANP modifiés nécessaires à la production des gradients dynamiques correspondant. Le Chapitre 1 donne une description minutieuse des mécanismes biochimiques impliqués dans le procédé de migration cellulaire, se concentrant sur les phénomènes de chimitaxie et haptotaxie. A travers une vue d’ensemble complète sur l’état de l’art des approches biomimétiques pour l’étude de la migration cellulaire, les stratégies principales menant à l’ingénierie de différentes surfaces, ont été revues en détails à l’aide d’exemples clés reportés dans la littérature. Le Chapitre 2 est centré sur les résultats obtenus par la formation et l’utilisation du peptide thiolé isoleucine-glycine-aspartic acid-glutammine-lysine-1-thiol decanoic acid (IGDQK-SH) en tant que motif motogénique pour les cellules à la fois trouvées dans un environnement physiologique (fibroblastes) et dans des conditions pathologiques (cellules cancéreuses MDA-MB-231). Après avoir synthétisé IGDQK-SH (1), une approche systématique pour la génération du gradient chimique motogénique le long de surfaces d’Au a été développée. Des preuves du succès de la préparation de tels gradients chimiques statiques ont été obtenus par des méthodologies de caractérisation spécifiques, telles que des analyses d’angle de contact (WCA), par microscopie à force atomique (AFM) et par spectrométrie photoélectronique X (XPS), accompagné d’analyses informatiques des conformations du peptide une fois lié aux différentes surfaces d’Au. Ceci a permis de déterminer les propriétés biophysiques, la morphologie, la composition chimique et la structure possible des surfaces d’Au résultantes, respectivement. Le gradient chimique de IGDQK-SH a pu induire et contrôler la migration cellulaire de deux différentes lignes cellulaires montrant des différences intéressantes liées aux propriétés de surface et aux conformations du peptide après la formation des SAMs en présence de molécules de remplissage présentant différentes hydrophobicités. En particulier, les résultats expérimentaux ont suggéré une attitude de migration prononcée des cellules cancéreuses, après leur exposition aux surfaces portant l’IGDQK-SH, comparé aux fibroblastes. Ce résultat peut suggérer un rôle du motif IGD dans la stimulation des cellules cancéreuses à l’égard de leur mobilité accrue et progression métastatique in vivo, et est actuellement analysé. Une fois que l’efficacité du peptide motogénique fut prouvée, nous nous sommes penchés sur l’objectif final du projet, en synthétisant deux dodécamères d’ANPs simples brins fonctionnalisés 30 et 31, portant la Rhodamine B et le tétrapeptide IGDQ pour caractériser le gradient chimique par des analyses de microscopie et pour stimuler la motilité de la cellule, respectivement. En effet, le Chapitre 3 donne une vue d’ensemble sur les différentes méthodologies disponibles pour la SPPS décrivant les essais synthétiques afin de synthétiser les ANPs désirés. L’attention sera concentrée sur la stratégie impliquant les groupements protecteurs Fmoc/Cbz, qui nous a permis d’isoler les oligomères d’ANP cibles.
XXV Ciclo
1984
Hennig, Katharina. "Dynamique des forces motiles et brisure de symétrie chez la cellule migrante". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAY040/document.
Texto completoDirectional cell motility during organism and tissue development, homeostasis and disease requires symmetry breaking. This process relies on the ability of single cells to establish a front-rear polarity, and can occur in absence of external cues. The initiation of migration has been attributed to the spontaneous polarization of cytoskeleton components, while the spatio- temporal evolution of cytoskeletal forces arising from continuous mechanical cell-substrate interaction has yet to be resolved. Here, we establish a one- dimensional microfabricated migration assay that mimics complex in vivo fibrillar environment while being compatible with high-resolution force measurements, quantitative microscopy, and optogenetics. Quantification of morphometric and mechanical parameters reveals a generic stick-slip behavior initiated by contractility-dependent stochastic detachment of adhesive contacts at one side of the cell, which is sufficient to drive directional cell motility in absence of pre-established cytoskeleton polarity or morphogen gradients. A theoretical model validates the crucial role of adhesion dynamics during spontaneous symmetry breaking, proposing that the examined phenomenon can emerge independently of a complex self-polarizing system
English, Jane Louise. "Cellular regulation of matrix metalloproteinase function". Thesis, University of East Anglia, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247107.
Texto completoAshrafzadeh, Parham. "Exploring Cellular Dynamics : From Vesicle Tethering to Cell Migration". Doctoral thesis, Uppsala universitet, Institutionen för medicinsk cellbiologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-306174.
Texto completoRodriguez, Marbelys. "Two Adaptation Mechanisms Regulate Cellular Migration in Dictyostelium discouideum". FIU Digital Commons, 2014. http://digitalcommons.fiu.edu/etd/1144.
Texto completoPetrolli, Vanni. "Confinement induced transition between wave-like cellular migration modes". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY056.
Texto completoThe ability of organisms to spontaneously generate order relies on the intricate interplay of mechanical and bio-chemical signals. If the general consensus is that chemical signaling governs the behavior of cells, an increasing amount of evidence points towards the impact of mechanical factors into differentiation, proliferation, motility and cancer progression. In this context, several studies recently highlighted the existence of long-range mechanical excitations (i.e. waves) at the supra-cellular level.Here, we investigate the origins of those velocity waves in tissues and their correlation with the presence of boundaries. Practically, we confine epithelial cell mono-layers to quasi-one dimensional geometries, to force the almost ubiquitous establishment of tissue-level waves. By tuning the length of the tissues, we uncover the existence of a phase transition between global and multi-nodal oscillations, and prove that in the latter regime, wavelength and period are independent of the confinement length. Together, these results demonstrate the intrinsic origin of tissue oscillations, which could provide cells with a mechanism to accurately measure distances at the supra-cellular level and ultimately lead to spatial patterning. Numerical simulations based on a Self-propelled Voronoi model reproduce the phase transition we measured experimentally and help in guiding our preliminary investigations on the origin of these wave-like phenomena, and their potential role for the spontaneous appearance of hair follicles in mouse skin explants
da, Silva Barbara Luisa. "Glioblastoma cell behaviour : a study of chemically-induced cellular connectivity and 3D modelling of cellular migration". Thesis, University of Leeds, 2018. http://etheses.whiterose.ac.uk/22479/.
Texto completoKumar, Arun. "Cellular and molecular mechanism controlling collective glial cell migration in drosophila". Thesis, Strasbourg, 2013. http://www.theses.fr/2013STRAJ071/document.
Texto completoThe functionality of the complex neural network depends on the interactions between neurons and glia. While many efforts have been made to understand the neuron-neuron interactions, less is known about those amongst glial cells. Due to the complexity of the vertebrate nervous system, which comprises manifold more glia than neurons, it is hard to tackle the role of glia-glia interactions. The nervous system of Drosophila, however, has a lower glia-neuron ratio, which makes this simple animal an ideal model. I use genetic approaches at cellular resolution to dissect the cellular and molecular mechanisms of glial collective migration in vivo. In Sum, I have shown some basic mechanism controlling collective cell migration: 1) cells at the front of the collective interact with each other through anterograde and retrograde bidirectional interaction. 2) N-cad appears necessary for timely movement of glial community
Myer, Nicole M. "CLASP1 Regulated Endothelial Cell Branching Morphology and Directed Migration". Thesis, University of the Sciences in Philadelphia, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10631484.
Texto completoThe eukaryotic cytoskeleton is composed of varying proteinaceous filaments and is responsible for intracellular transport, cell proliferation, cell morphogenesis, and cell motility. Microtubules are one of three cytoskeletal components and have a unique polymer structure. The hollow cylinders undergo rapid polymerization and depolymerization events (i.e. dynamic instability) to promote assembly at the leading edge of the cell and disassembly in the rear of the cell to drive the cell front forward and facilitate directional migration. High-resolution light microscopy and automated tracking allow visualization and quantification of microtubule dynamics (i.e. growth speeds and growth lifetimes) during time-lapse imaging. These techniques were used to understand how the physical environment influences molecular control of endothelial cell morphology. The ultimate goal of this work is to test hypotheses relevant to vascular development and diseases associated with endothelial cell angiogenesis – defined as the development of new blood vessels from pre-existing vessels. Angiogenesis is of particular relevance because it is a commonality underlying many diseases affecting over one billion people worldwide, including all cancers, cardiovascular disease, blindness, arthritis, and Alzheimer's disease.
Libros sobre el tema "Cellular Migration"
Nguyen, Laurent y Simon Hippenmeyer, eds. Cellular and Molecular Control of Neuronal Migration. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7687-6.
Texto completo1949-, Husband Alan J., ed. Migration and homing of lymphoid cells. Boca Raton, Fla: CRC Press, 1988.
Buscar texto completoLaboratory, Cold Spring Harbor, ed. The Cell surface. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory, 1992.
Buscar texto completoLaboratory, Cold Spring Harbor, ed. The cell surface. Plainview, N.Y: Cold Spring Harbor Laboratory Press, 1992.
Buscar texto completoCellular Migration and Formation of Neuronal Connections. Elsevier, 2013. http://dx.doi.org/10.1016/c2011-0-07731-1.
Texto completoNguyen, Laurent y Simon Hippenmeyer. Cellular and Molecular Control of Neuronal Migration. Springer, 2016.
Buscar texto completoNguyen, Laurent y Simon Hippenmeyer. Cellular and Molecular Control of Neuronal Migration. Springer London, Limited, 2013.
Buscar texto completoCellular And Molecular Control Of Neuronal Migration. Springer, 2013.
Buscar texto completoNguyen, Laurent y Simon Hippenmeyer. Cellular and Molecular Control of Neuronal Migration. Springer, 2013.
Buscar texto completoCellular Migration and Formation of Axons and Dendrites. Elsevier, 2020. http://dx.doi.org/10.1016/c2017-0-00859-5.
Texto completoCapítulos de libros sobre el tema "Cellular Migration"
Wagstaff, John. "Lymphocyte Migration Studies in Man". En Radiolabeled Cellular Blood Elements, 319–42. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4922-8_16.
Texto completoWylie, C. C., D. Stott y P. J. Donovan. "Primordial Germ Cell Migration". En The Cellular Basis of Morphogenesis, 433–48. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2141-5_11.
Texto completoSolursh, Michael. "Migration of Sea Urchin Primary Mesenchyme Cells". En The Cellular Basis of Morphogenesis, 391–431. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2141-5_10.
Texto completoSanders, Esmond J. "Mesoderm Migration in the Early Chick Embryo". En The Cellular Basis of Morphogenesis, 449–80. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2141-5_12.
Texto completoDeutsch, Andreas y Sabine Dormann. "Cell Migration in Heterogeneous Environments". En Cellular Automaton Modeling of Biological Pattern Formation, 141–58. Boston, MA: Birkhäuser Boston, 2017. http://dx.doi.org/10.1007/978-1-4899-7980-3_6.
Texto completoIrianto, Jerome, Irena L. Ivanovska, Joe Swift y Dennis E. Discher. "The Nuclear Lamina: From Mechanosensing in Differentiation to Cancer Cell Migration". En Molecular and Cellular Mechanobiology, 175–95. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-5617-3_9.
Texto completoBosanquet, David C., Keith G. Harding y Wen G. Jiang. "ECIS, Cellular Adhesion and Migration in Keratinocytes". En Electric Cell-Substrate Impedance Sensing and Cancer Metastasis, 217–37. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4927-6_12.
Texto completoMcCarthy, James B., Daryl F. Sas y Leo T. Furcht. "Mechanisms of Parenchymal Cell Migration into Wounds". En The Molecular and Cellular Biology of Wound Repair, 281–319. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-1795-5_13.
Texto completoMcCarthy, James B., Joji Iida y Leo T. Furcht. "Mechanisms of Parenchymal Cell Migration into Wounds". En The Molecular and Cellular Biology of Wound Repair, 373–90. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-0185-9_12.
Texto completoDiMilla, P. A. "Receptor-Mediated Adhesive Interactions at the Cytoskeleton/Substratum Interface During Cell Migration". En Cell Mechanics and Cellular Engineering, 490–514. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4613-8425-0_27.
Texto completoActas de conferencias sobre el tema "Cellular Migration"
Trusiak, Maciej, Piotr Arcab, Mikołaj Rogalski, Piotr Rogujski y Luiza Stanaszek. "Multiplexed label-free high-throughput holographic lensless method for live cell migration sensing". En Computational Optical Sensing and Imaging, CTu1B.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cosi.2024.ctu1b.3.
Texto completoGee, A. P. "Hematopoietic Stem Cell Engineering: The Magic Bullet of the Next Millenium?" En ASME 1997 International Mechanical Engineering Congress and Exposition, 95–96. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1317.
Texto completoBoppart, Stephen A., Brett E. Bouma, Costas Pitris, James F. Southern, Mark E. Brezinski y James G. Fujimoto. "Optical Coherence Tomographic Imaging of In Vivo Cellular Dynamics". En Advances in Optical Imaging and Photon Migration. Washington, D.C.: OSA, 1998. http://dx.doi.org/10.1364/aoipm.1998.amc1.
Texto completoBoppart, Stephen A., Gary J. Tearney, Brett E. Bouma, James G. Fujimoto y Mark E. Brezinski. "Optical Coherence Tomography of Embryonic Morphology During Cellular Differentiation". En Advances in Optical Imaging and Photon Migration. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/aoipm.1996.cit231.
Texto completoNg, Colin y Amrinder Nain. "Cellular Dynamics on Aligned Fibrous PLGA Scaffolds". En ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-54014.
Texto completoSchmidt, Lars Henning, Tilmann Spieker, Julia Humberg, Alessandro Marra, Ludger Hillejan, Wolfgang E. Berdel, Carsten Muller-Tidow y Rainer Wiewrodt. "MALAT-1 NcRNA Enhances Cellular Migration And Wound Healing". En American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a6369.
Texto completoPenney, C. M., D. N. Pattanayak y W. T. Lotshaw. "Modeling the Wavelength Dependence of the Early Arriving Fraction of a Short Optical Pulse Transmitted Through a Highly Scattering Medium". En Advances in Optical Imaging and Photon Migration. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/aoipm.1996.trit87.
Texto completoJacques, Steven L. "Origins of Tissue Optical Properties in the UVA, Visible, and NIR Regions". En Advances in Optical Imaging and Photon Migration. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/aoipm.1996.opc364.
Texto completoApplewhite-Grosso, Terri, Nancy Davis Griffeth, Elisa Lannon, Uchenna Unachukwu, Stephen Redenti y Naralys Batista. "A multi-scale, physics engine-based simulation of cellular migration". En 2015 Winter Simulation Conference (WSC). IEEE, 2015. http://dx.doi.org/10.1109/wsc.2015.7408248.
Texto completoRoddy, Meagan, John Rauch, Lindy O’Clair y Daniel M. Appledorn. "Abstract 5084: Real-time, quantitative cellular analysis of migration and invasion". En Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-5084.
Texto completo