Literatura académica sobre el tema "Cell microscopy"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Cell microscopy".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Cell microscopy"
Radosavljević, Jasna Simonović, Aleksandra Lj Mitrović, Ksenija Radotić, László Zimányi, Győző Garab y Gábor Steinbach. "Differential Polarization Imaging of Plant Cells. Mapping the Anisotropy of Cell Walls and Chloroplasts". International Journal of Molecular Sciences 22, n.º 14 (17 de julio de 2021): 7661. http://dx.doi.org/10.3390/ijms22147661.
Texto completoYang, Shuntao. "Digital holographic microscopy of highly sensitive living cells". Journal of Computational Methods in Sciences and Engineering 21, n.º 6 (7 de diciembre de 2021): 1985–97. http://dx.doi.org/10.3233/jcm215504.
Texto completoWait, Eric C., Michael A. Reiche y Teng-Leong Chew. "Hypothesis-driven quantitative fluorescence microscopy – the importance of reverse-thinking in experimental design". Journal of Cell Science 133, n.º 21 (1 de noviembre de 2020): jcs250027. http://dx.doi.org/10.1242/jcs.250027.
Texto completoShotton, D. M. "Video-enhanced light microscopy and its applications in cell biology". Journal of Cell Science 89, n.º 2 (1 de febrero de 1988): 129–50. http://dx.doi.org/10.1242/jcs.89.2.129.
Texto completoYang, Thomas Zhirui y Yumin Wu. "Seeing cells without a lens: Compact 3D digital lensless holographic microscopy for wide-field imaging". Theoretical and Natural Science 12, n.º 1 (17 de noviembre de 2023): 61–72. http://dx.doi.org/10.54254/2753-8818/12/20230434.
Texto completoKosaka, Yudai y Tetsuhiko Ohba. "3P174 Study on membrane microfluidity of living cells using Muller Matrix microscopy(12. Cell biology,Poster)". Seibutsu Butsuri 53, supplement1-2 (2013): S240. http://dx.doi.org/10.2142/biophys.53.s240_5.
Texto completoSchneckenburger, Herbert y Christoph Cremer. "Axial Tomography in Live Cell Microscopy". Biophysica 4, n.º 2 (29 de marzo de 2024): 142–57. http://dx.doi.org/10.3390/biophysica4020010.
Texto completoSagvolden, G., I. Giaever, E. O. Pettersen y J. Feder. "Cell adhesion force microscopy". Proceedings of the National Academy of Sciences 96, n.º 2 (19 de enero de 1999): 471–76. http://dx.doi.org/10.1073/pnas.96.2.471.
Texto completoKonishi, Hiromi, Akira Ishikawa, Ying-Bing Jiang, Peter Buseck y Huifang Xu. "Sealed Environmental Cell Microscopy". Microscopy and Microanalysis 9, S02 (15 de julio de 2003): 902–3. http://dx.doi.org/10.1017/s1431927603444516.
Texto completoHillebrand, Merle, Sophie E. Verrier, Andreas Ohlenbusch, Annika Schäfer, Hans-Dieter Söling, Fred S. Wouters y Jutta Gärtner. "Live Cell FRET Microscopy". Journal of Biological Chemistry 282, n.º 37 (3 de julio de 2007): 26997–7005. http://dx.doi.org/10.1074/jbc.m702122200.
Texto completoTesis sobre el tema "Cell microscopy"
Jaritz, Fritz Simon. "Single Cell Expansion Microscopy". Thesis, KTH, Tillämpad fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279445.
Texto completoRaabe, Isabel. "Visualization of cell-to-cell communication by advanced microscopy techniques". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-178404.
Texto completoRonteix, Gustave. "Inferring cell-cell interactions from quantitative analysis of microscopy images". Thesis, Institut polytechnique de Paris, 2021. http://www.theses.fr/2021IPPAX111.
Texto completoIn his prescient article “More is different”, P. W. Anderson counters the reductionist argument by highlighting the crucial role of emergent properties in science. This is particularly true in biology, where complex macroscopic behaviours stem from communication and interaction loops between much simpler elements. As an illustration, I hereby present three different instances in which I developed and used quantitative methods in order to learn new biological processes.For instance, the regulation and eventual rejection of tumours by the immune system is the result of multiple positive and negative regulation networks, influencing both the behaviour of the cancerous and immune cells. To mimic these complex effects in-vitro, I designed a microfluidic assay to challenge melanoma tumour spheroids with multiple T cells and observe the resulting interactions with high spatiotemporal resolution over long (>24h) periods of time. Using advanced image analysis combined with mathematical modelling I demonstrate that a positive feedback loop drives T cell accumulation to the tumour site, leading to enhanced spheroid fragmentation. This study sheds light on the initiation if the immune response at the single cell scale: showing that even the very first contact between T cell and tumour spheroid increases the probability of the next T cell to come to the tumour. It also shows that it is possible to recapitulate complex antagonistic behaviours in-vitro, which paves the way for the elaboration of more sophisticated protocols, involving for example a more complex tumour micro-environment.Many biological processes are the result of complex interactions between cell types, particularly so during development. The foetal liver is the locus of the maturation and expansion of the hematopoietic system, yet little is known about its structure and organisation. New experimental protocols have been recently developed to image this organ and I developed tools to interpret and quantify these data, enabling the construction of a “network twin” of each foetal liver. This method makes it possible to combine the single-cell scale and the organ scale in the analysis, revealing the accumulation of myeloid cells around the blood vessels irrigating the foetal liver at the final stages of organ development. In the future, this technique will make it possible to analyse precisely the environmental niches of cell types of interest in a quantitative manner. This in turn could help us understand the developmental steps of crucial cell types such as hematopoietic stem cells.The interactions between bacteria and their environment is key to understanding the emergence of complex collective behaviours such a biofilm formation. One mechanism of interest is that of rheotaxis, whereby bacterial motion is driven by gradients in the shear stress of the fluid the cells are moving in. I developed a framework to calculate the semi-analytical equations guiding bacteria movement in shear stress. These equations predict behaviours that aren’t observed experimentally, but the discrepancy is solved once rotational diffusion is taken into account. Experimental results are well-fitted by the theoretical prediction: bacteria in droplets segregate asymmetrically when a shear is generated in the media.Although relating to very different topics, these three studies highlight the pertinence of quantitative approaches for understanding complex biological phenomena: biological systems are more than the sum of their constituents.a
Sjögren, Florence. "Dermal cell trafficking : from microscopy to microdialysis /". Linköping : Univ, 2005. http://www.bibl.liu.se/liupubl/disp/disp2005/med883s.pdf.
Texto completoSamsuri, Fahmi B. "Single Cell analysis using AtomicForce Microscopy (AFM)". Thesis, University of Canterbury. Electrical and Computer Engineering, 2010. http://hdl.handle.net/10092/5516.
Texto completoSun, Mingzhai. "Cell mechanics studied using atomic force microscopy". Diss., Columbia, Mo. : University of Missouri-Columbia, 2008. http://hdl.handle.net/10355/5499.
Texto completoThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on June 17, 2009) Vita. Includes bibliographical references.
Nguyen, Tran Thien Dat. "Bayesian Multi-Object Tracking for Cell Microscopy". Thesis, Curtin University, 2021. http://hdl.handle.net/20.500.11937/86947.
Texto completoLópez, Ayón Gabriela. "Applying a commercial atomic force microscope for scanning near-field optical microscopy techniques and investigation of Cell-cell signalling". Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=92400.
Texto completoLe domaine de recherche de cette thèse consiste en l'application de la physique de la matière condensée à la biologie. Plus précisément, ce travail décrit le développement de différentes techniques de Microscopie à Force Atomique (MFA) et d'outils permettant l'étude de cellules vivantes en solution physiologique. Un intérêt particulier est porté à la compréhension de l'influence du bruit dans la détermination de couches liquides ordonnées au-dessus d'une surface de mica - en tant que travail préalable à l'étude du rôle de l'eau et des ions dans les processus biologiques - et de l'influence d'une "cloche de plongée" pour renforcer le facteur Q ainsi que pour permettre l'imagerie stable et la spectrométrie de force avec des sondes basées sur la Microscopie Optique en Champ Proche (MOCP). En combinant des techniques MOCP, utilisées comme méthode d'éclairement local (évitant ainsi le photoblanchiment des molécules individuelles), et des techniques MFA haute résolution, nous serons capables d'investir la mécano-transduction et le signalement associé dans des cellules vivantes et dans des protéines individuelles.
Makarchuk, Stanislaw. "Measurement of cell adhesion forces by holographic microscopy". Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAE034/document.
Texto completoMechanical forces, generated by the cell plays crucial role in cell adhesion - common process for different cell lines. ln order to measure the force map during cellular adhesion, we use Traction Force Microscopy (TFM), where cell adheres to the soft substrate in 20 plane, and the forces are calculated from measured displacement field inside the substrate underneath the cell. We built the microscope, where instead of using fluorescent markers, we use spherical polystyrene beads in order to measure the displacement field. Positions of the markers are obtained by analyzing the interference pattern caused by the beads in bright-field light. With this technique, we reach nanometer accuracy of the microsphere position determination, that, respectively, influence accuracy of the calculated force field. With the microscope first measurements were performed with cancer cell line SW 480
Magnusson, Klas. "Cell tracking for automated analysis of timelapse microscopy". Thesis, KTH, Signalbehandling, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-53772.
Texto completoLibros sobre el tema "Cell microscopy"
Brian, Matsumoto y American Society for Cell Biology., eds. Cell biological applications of confocal microscopy. 2a ed. Amsterdam: Academic Press, 2002.
Buscar texto completoKevin, Foskett J. y Grinstein Sergio, eds. Non-invasivetechniques in cell biology. New York: Wiley-Liss, 1990.
Buscar texto completoKevin, Foskett J. y Grinstein Sergio 1950-, eds. Noninvasive techniques in cell biology. New York: Wiley-Liss, 1990.
Buscar texto completoP, Hemmerich y Diekmann Stephan, eds. Visions of the cell nucleus. Stevenson Ranch, Calif: American Scientific Publishers, 2005.
Buscar texto completo1939-, Plattner Helmut, ed. Electron microscopy of subcellular dynamics. Boca Raton, Fla: CRC Press, 1989.
Buscar texto completoNational Institute of Standards and Technology (U.S.), ed. Overlap-based cell tracker. Gaithersburg, Md.]: U.S. Dept. of Commerce, National Institute of Standards and Technology, 2009.
Buscar texto completoLansing, Taylor D., Wang Yu-Li y American Society for Cell Biology., eds. Methods in cell biology.: Imaging and spectroscopy. San Diego: Academic Press, 1990.
Buscar texto completoMasters, Barry R. Confocal microscopy and multiphoton excitation microscopy: The genesis of live cell imaging. Bellingham, WA: SPIE Press, 2006.
Buscar texto completoN, Harris y Oparka K. J, eds. Plant cell biology: Practical approach. Oxford: IRLPress, 1994.
Buscar texto completo1939-, Plattner Helmut, ed. Electron microscopy of subcellular dynamics. Boca Raton, Fla: CRC Press, 1989.
Buscar texto completoCapítulos de libros sobre el tema "Cell microscopy"
O'Farrell, Minnie. "Basic Light Microscopy". En Cell Biology Protocols, 1–19. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470033487.ch1.
Texto completoHarris, J. Robin, Jeffrey A. Nickerson y Jean Underwood. "Basic Electron Microscopy". En Cell Biology Protocols, 21–50. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470033487.ch2.
Texto completoPrins, F. A., I. Cornelese-ten Velde y E. Heer. "Reflection Contrast Microscopy". En Cell Imaging Techniques, 363–401. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1007/978-1-59259-993-6_18.
Texto completoGräf, Ralph, Jens Rietdorf y Timo Zimmermann. "Live Cell Spinning Disk Microscopy". En Microscopy Techniques, 57–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b102210.
Texto completoMiura, Kota. "Tracking Movement in Cell Biology". En Microscopy Techniques, 267–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b102218.
Texto completoCarrillo-Barberà, Pau, Jose M. Morante-Redolat y José F. Pertusa. "Cell Proliferation High-Content Screening on Adherent Cell Cultures". En Computer Optimized Microscopy, 299–329. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9686-5_14.
Texto completoGray, Colin y Daniel Zicha. "Microscopy of Living Cells". En Animal Cell Culture, 61–90. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470669815.ch3.
Texto completoAkkaya, Billur, Olena Kamenyeva, Juraj Kabat y Ryan Kissinger. "Visualizing the Dynamics of T Cell–Dendritic Cell Interactions in Intact Lymph Nodes by Multiphoton Confocal Microscopy". En Confocal Microscopy, 243–63. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1402-0_13.
Texto completoGierlinger, Notburga. "Raman Imaging of Plant Cell Walls". En Confocal Raman Microscopy, 471–82. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75380-5_19.
Texto completoGierlinger, Notburga. "Raman Imaging of Plant Cell Walls". En Confocal Raman Microscopy, 225–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12522-5_10.
Texto completoActas de conferencias sobre el tema "Cell microscopy"
Senju, Yosuke. "Three-dimensional ultrastructural analysis of cell-cell junctions in epithelial cells by using super-resolution fluorescence and electron microscopy". En European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1457.
Texto completoGalvez, Dominique, Ricky Cordova, Kelli Kiekens, Andrew D. Rocha, William Drake, Photini Rice, John M. Heusinkveld y Jennifer K. Barton. "Cell-acquiring fallopian endoscope for detection of ovarian cancer via reflectance imaging, fluorescence imaging, and cell collection". En Endoscopic Microscopy XVIII, editado por Melissa J. Suter, Guillermo J. Tearney y Thomas D. Wang. SPIE, 2023. http://dx.doi.org/10.1117/12.2650875.
Texto completoAlloyeau, Damien. "Monitoring the dynamic of cell-derived and synthetic vesicles by liquid-cell TEM". En European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1157.
Texto completoSchonbrun, Ethan, Giuseppe Di Caprio y Diane Schaak. "Dye Exclusion Cell Microscopy". En Imaging Systems and Applications. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/isa.2013.im3e.3.
Texto completoMulhern, P. J., B. L. Blackford y M. H. Jericho. "Scanning Force Microscopy of a Cell Sheath". En Scanned probe microscopy. AIP, 1991. http://dx.doi.org/10.1063/1.41413.
Texto completoDinant, Christoffel. "Whole cell segmentation of dense cell cultures in transmitted light images by deep learning". En European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.725.
Texto completo"Live-cell imaging of drug-treated cells – challenges beyond routine microscopy". En European Light Microscopy Initiative 2024. Royal Microscopical Society, 2024. http://dx.doi.org/10.22443/rms.elmi2024.28.
Texto completoZamir, Evan A. "What Forces Does Cell Traction Force Microscopy Measure?" En ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53266.
Texto completoJackson, Timothy. "Robust morphology-based classification of cells following label-free cell-by-cell segmentation using convolutional neural networks". En Microscience Microscopy Congress 2021 incorporating EMAG 2021. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.mmc2021.159.
Texto completoBOURGON, Julie. "Staining polymers in environmental liquid cell". En European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1366.
Texto completoInformes sobre el tema "Cell microscopy"
Lapeira, Javier. Breast Cancer Endothelial Cell Calcium Dynamics Using Two-Photon Microscopy. Fort Belvoir, VA: Defense Technical Information Center, enero de 2013. http://dx.doi.org/10.21236/ada579069.
Texto completoLapeira, Javier. Breast Cancer Endothelial Cell Calcium Dynamics Using Two-Photon Microscopy. Fort Belvoir, VA: Defense Technical Information Center, enero de 2012. http://dx.doi.org/10.21236/ada558870.
Texto completoNguy, Amanda. Investigating the use of in situ liquid cell scanning transmission electron microscopy. Office of Scientific and Technical Information (OSTI), febrero de 2016. http://dx.doi.org/10.2172/1342540.
Texto completoYang, Changhuei. Integrated Device for Circulating Tumor Cell Capture, Characterization, and Lens-Free Microscopy. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2012. http://dx.doi.org/10.21236/ada567187.
Texto completoCote, Richard y Changhuei Yang. Integrated Device for Circulating Tumor Cell Capture, Characterization and Lens-Free Microscopy. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2011. http://dx.doi.org/10.21236/ada574570.
Texto completoCote, Richard, Changhuei Yang y Ram Datar. Integrated Device for Circulating Tumor Cell Capture, Characterization and Lens-Free Microscopy. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2012. http://dx.doi.org/10.21236/ada581028.
Texto completoYang, Changhuei. Integrated Device for Circulating Tumor Cell Capture, Characterization, and Lens-Free Microscopy. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2011. http://dx.doi.org/10.21236/ada550879.
Texto completoHeo, Jaeyoung, Bruce McNamara y Edgar Buck. In-Situ Liquid Cell Transmission Electron Microscopy of Nanoparticles from Spent Nuclear Fuel. Office of Scientific and Technical Information (OSTI), noviembre de 2022. http://dx.doi.org/10.2172/1908677.
Texto completoZhang, Yun. Real time imaging of live cell ATP leaking or release events by chemiluminescence microscopy. Office of Scientific and Technical Information (OSTI), diciembre de 2008. http://dx.doi.org/10.2172/964390.
Texto completoJalali, Bahram y Dino Di Carlo. Massively Parallel Rogue Cell Detection Using Serial Time-Encoded Amplified Microscopy of Inertially Ordered Cells in High Throughput Flow. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2011. http://dx.doi.org/10.21236/ada566873.
Texto completo