Siga este enlace para ver otros tipos de publicaciones sobre el tema: Cell-based immunotherapy.

Artículos de revistas sobre el tema "Cell-based immunotherapy"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Cell-based immunotherapy".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Osada, Takuya, Timothy M. Clay, Christopher Y. Woo, Michael A. Morse y H. Kim Lyerly. "Dendritic Cell-Based Immunotherapy". International Reviews of Immunology 25, n.º 5-6 (enero de 2006): 377–413. http://dx.doi.org/10.1080/08830180600992456.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Sabado, Rachel L., Sreekumar Balan y Nina Bhardwaj. "Dendritic cell-based immunotherapy". Cell Research 27, n.º 1 (27 de diciembre de 2016): 74–95. http://dx.doi.org/10.1038/cr.2016.157.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Razzak, Mina. "New cell-based immunotherapy?" Nature Reviews Urology 9, n.º 3 (21 de febrero de 2012): 122. http://dx.doi.org/10.1038/nrurol.2012.18.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Chang, Kiyuk, Jie-Young Song y Dae-Seog Lim. "Tolerogenic dendritic cell-based immunotherapy". Oncotarget 8, n.º 53 (17 de octubre de 2017): 90630–31. http://dx.doi.org/10.18632/oncotarget.21867.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Golán, Irene, Laura Rodríguez de la Fuente y Jose Costoya. "NK Cell-Based Glioblastoma Immunotherapy". Cancers 10, n.º 12 (18 de diciembre de 2018): 522. http://dx.doi.org/10.3390/cancers10120522.

Texto completo
Resumen
Glioblastoma (GB) is the most aggressive and most common malignant primary brain tumor diagnosed in adults. GB shows a poor prognosis and, unfortunately, current therapies are unable to improve its clinical outcome, imposing the need for innovative therapeutic approaches. The main reason for the poor prognosis is the great cell heterogeneity of the tumor mass and its high capacity for invading healthy tissues. Moreover, the glioblastoma microenvironment is capable of suppressing the action of the immune system through several mechanisms such as recruitment of cell modulators. Development of new therapies that avoid this immune evasion could improve the response to the current treatments for this pathology. Natural Killer (NK) cells are cellular components of the immune system more difficult to deceive by tumor cells and with greater cytotoxic activity. Their use in immunotherapy gains strength because they are a less toxic alternative to existing therapy, but the current research focuses on mimicking the NK attack strategy. Here, we summarize the most recent studies regarding molecular mechanisms involved in the GB and immune cells interaction and highlight the relevance of NK cells in the new therapeutic challenges.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Wennhold, Kerstin, Alexander Shimabukuro-Vornhagen y Michael von Bergwelt-Baildon. "B Cell-Based Cancer Immunotherapy". Transfusion Medicine and Hemotherapy 46, n.º 1 (2019): 36–46. http://dx.doi.org/10.1159/000496166.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Urbonas, Vincas, Giedre Smailyte, Greta V. Urbonaite, Audrius Dulskas, Neringa Burokiene y Vytautas Kasiulevicius. "Natural killer cell-based immunotherapy". Melanoma Research 29, n.º 2 (abril de 2019): 208–11. http://dx.doi.org/10.1097/cmr.0000000000000552.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Kadowaki, Norimitsu y Toshio Kitawaki. "V. Dendritic Cell-based Immunotherapy". Nihon Naika Gakkai Zasshi 108, n.º 7 (10 de julio de 2019): 1391–96. http://dx.doi.org/10.2169/naika.108.1391.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Stagg, J. y M. J. Smyth. "NK cell-based cancer immunotherapy". Drug News & Perspectives 20, n.º 3 (2007): 155. http://dx.doi.org/10.1358/dnp.2007.20.3.1092096.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Buckler, Lee. "Rise of Cell-Based Immunotherapy". Genetic Engineering & Biotechnology News 33, n.º 5 (marzo de 2013): 12–13. http://dx.doi.org/10.1089/gen.33.5.05.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

ENGLEMAN, E. "Dendritic cell-based cancer immunotherapy". Seminars in Oncology 30 (junio de 2003): 23–29. http://dx.doi.org/10.1016/s0093-7754(03)00229-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Zhang, Hao, Li Yang, Tingting Wang y Zhen Li. "NK cell-based tumor immunotherapy". Bioactive Materials 31 (enero de 2024): 63–86. http://dx.doi.org/10.1016/j.bioactmat.2023.08.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Song, Min-Seon, Ji-Hee Nam, Kyung-Eun Noh y Dae-Seog Lim. "Dendritic Cell-Based Immunotherapy: The Importance of Dendritic Cell Migration". Journal of Immunology Research 2024 (8 de abril de 2024): 1–11. http://dx.doi.org/10.1155/2024/7827246.

Texto completo
Resumen
Dendritic cells (DCs) are specialized antigen-presenting cells that are crucial for maintaining self-tolerance, initiating immune responses against pathogens, and patrolling body compartments. Despite promising aspects, DC-based immunotherapy faces challenges that include limited availability, immune escape in tumors, immunosuppression in the tumor microenvironment, and the need for effective combination therapies. A further limitation in DC-based immunotherapy is the low population of migratory DC (around 5%–10%) that migrate to lymph nodes (LNs) through afferent lymphatics depending on the LN draining site. By increasing the population of migratory DCs, DC-based immunotherapy could enhance immunotherapeutic effects on target diseases. This paper reviews the importance of DC migration and current research progress in the context of DC-based immunotherapy.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Terrén, Iñigo, Ane Orrantia, Idoia Mikelez-Alonso, Joana Vitallé, Olatz Zenarruzabeitia y Francisco Borrego. "NK Cell-Based Immunotherapy in Renal Cell Carcinoma". Cancers 12, n.º 2 (29 de enero de 2020): 316. http://dx.doi.org/10.3390/cancers12020316.

Texto completo
Resumen
Natural killer (NK) cells are cytotoxic lymphocytes that are able to kill tumor cells without prior sensitization. It has been shown that NK cells play a pivotal role in a variety of cancers, highlighting their relevance in tumor immunosurveillance. NK cell infiltration has been reported in renal cell carcinoma (RCC), the most frequent kidney cancer in adults, and their presence has been associated with patients’ survival. However, the role of NK cells in this disease is not yet fully understood. In this review, we summarize the biology of NK cells and the mechanisms through which they are able to recognize and kill tumor cells. Furthermore, we discuss the role that NK cells play in renal cell carcinoma, and review current strategies that are being used to boost and exploit their cytotoxic capabilities.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Ghoneim, Hazem E., Anthony E. Zamora, Paul G. Thomas y Ben A. Youngblood. "Cell-Intrinsic Barriers of T Cell-Based Immunotherapy". Trends in Molecular Medicine 22, n.º 12 (diciembre de 2016): 1000–1011. http://dx.doi.org/10.1016/j.molmed.2016.10.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Gitlitz, Barbara J., Robert A. Figlin, Allan J. Pantuck y Arie S. Belldegrun. "Dendritic cell-based immunotherapy of renal cell carcinoma". Current Urology Reports 2, n.º 1 (febrero de 2001): 46–52. http://dx.doi.org/10.1007/s11934-001-0025-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Janikashvili, Nona, Nicolas Larmonier y Emmanuel Katsanis. "Personalized dendritic cell-based tumor immunotherapy". Immunotherapy 2, n.º 1 (enero de 2010): 57–68. http://dx.doi.org/10.2217/imt.09.78.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Charles, Ronald, Lina Lu, Shiguang Qian y John J. Fung. "Stromal cell-based immunotherapy in transplantation". Immunotherapy 3, n.º 12 (diciembre de 2011): 1471–85. http://dx.doi.org/10.2217/imt.11.132.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Cornelissen, Robin, Lysanne A. Lievense, Marlies E. Heuvers, Alexander P. Maat, Rudi W. Hendriks, Henk C. Hoogsteden, Joost P. Hegmans y Joachim G. Aerts. "Dendritic cell-based immunotherapy in mesothelioma". Immunotherapy 4, n.º 10 (octubre de 2012): 1011–22. http://dx.doi.org/10.2217/imt.12.108.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Zitvogel, Laurence, Eric Angevin y Thomas Tursz. "Dendritic cell-based immunotherapy of cancer". Annals of Oncology 11 (2000): 199–206. http://dx.doi.org/10.1093/annonc/11.suppl_3.199.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Schaar, Bruce, Venkatesh Krishnan, Supreeti Tallapragada y Oliver Dorigo. "Cell-based immunotherapy in gynecologic malignancies". Current Opinion in Obstetrics and Gynecology 30, n.º 1 (febrero de 2018): 23–30. http://dx.doi.org/10.1097/gco.0000000000000433.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Schaar, Bruce, Venkatesh Krishnan, Supreeti Tallapragada, Anita Chanana y Oliver Dorigo. "Cell-based immunotherapy in gynecologic malignancies". Current Opinion in Obstetrics and Gynecology 31, n.º 1 (febrero de 2019): 43–48. http://dx.doi.org/10.1097/gco.0000000000000518.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Fang, Fang, Weihua Xiao y Zhigang Tian. "NK cell-based immunotherapy for cancer". Seminars in Immunology 31 (junio de 2017): 37–54. http://dx.doi.org/10.1016/j.smim.2017.07.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Tran, Tuan Hiep, Thi Thu Phuong Tran, Hanh Thuy Nguyen, Cao Dai Phung, Jee-Heon Jeong, Martina H. Stenzel, Sung Giu Jin, Chul Soon Yong, Duy Hieu Truong y Jong Oh Kim. "Nanoparticles for dendritic cell-based immunotherapy". International Journal of Pharmaceutics 542, n.º 1-2 (mayo de 2018): 253–65. http://dx.doi.org/10.1016/j.ijpharm.2018.03.029.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Kamat, Kalika, Venkatesh Krishnan, Jonathan S. Berek y Oliver Dorigo. "Cell-based immunotherapy in gynecologic malignancies". Current Opinion in Obstetrics & Gynecology 33, n.º 1 (3 de diciembre de 2020): 13–18. http://dx.doi.org/10.1097/gco.0000000000000676.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Lo Presti, Elena, Anna Maria Corsale, Francesco Dieli y Serena Meraviglia. "γδ cell-based immunotherapy for cancer". Expert Opinion on Biological Therapy 19, n.º 9 (23 de junio de 2019): 887–95. http://dx.doi.org/10.1080/14712598.2019.1634050.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Höltl, Lorenz, Claudia Zelle-Rieser, Hubert Gander, Christine Papesh, Reinhold Ramoner, Georg Bartsch y Martin Thurnher. "Dendritic cell-based immunotherapy for metastatic renal cell cancer". European Urology Supplements 1, n.º 1 (enero de 2002): 110. http://dx.doi.org/10.1016/s1569-9056(02)80423-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Fang, Fang, Wei Wang, Minhua Chen, Zhigang Tian y Weihua Xiao. "Technical advances in NK cell-based cellular immunotherapy". Cancer Biology & Medicine 16, n.º 4 (1 de noviembre de 2019): 647–54. http://dx.doi.org/10.20892/j.issn.2095-3941.2019.0187.

Texto completo
Resumen
Natural killer (NK) cells represent a promising future for tumor immunotherapy because of their unique biological functions and characteristics. This review focuses on technical advances in NK cell-based cellular immunotherapy and summarizes the developments of recent years in cell sources, genetic modification, manufacturing systems, clinical programs, and outcomes. Future prospects and challenges in NK cell immunotherapy are also discussed, including off-the-shelf NK cell exploitation, automatic and closed manufacturing systems, cryopreservation, and therapies involving regulatory checkpoints.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Ulivieri, Cristina y Cosima T. Baldari. "T-cell-based immunotherapy of autoimmune diseases". Expert Review of Vaccines 12, n.º 3 (marzo de 2013): 297–310. http://dx.doi.org/10.1586/erv.12.146.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

A. Rabinovich, Brian y Caius G. Radu. "Imaging Adoptive Cell Transfer Based Cancer Immunotherapy". Current Pharmaceutical Biotechnology 11, n.º 6 (1 de septiembre de 2010): 672–84. http://dx.doi.org/10.2174/138920110792246528.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Salgaller, M. L., B. A. Tjoa, P. A. Lodge, H. Ragde, G. Kenny, A. Boynton y G. P. Murphy. "Dendritic Cell-Based Immunotherapy of Prostate Cancer". Critical Reviews™ in Immunology 18, n.º 1-2 (1998): 109–19. http://dx.doi.org/10.1615/critrevimmunol.v18.i1-2.120.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Della Chiesa, Mariella, Chiara Setti, Chiara Giordano, Valentina Obino, Marco Greppi, Silvia Pesce, Emanuela Marcenaro et al. "NK Cell-Based Immunotherapy in Colorectal Cancer". Vaccines 10, n.º 7 (28 de junio de 2022): 1033. http://dx.doi.org/10.3390/vaccines10071033.

Texto completo
Resumen
Human Natural Killer (NK) cells are all round players in immunity thanks to their powerful and immediate response against transformed cells and the ability to modulate the subsequent adaptive immune response. The potential of immunotherapies based on NK cell involvement has been initially revealed in the hematological setting but has inspired the design of different immune tools to also be applied against solid tumors, including colorectal cancer (CRC). Indeed, despite cancer prevention screening plans, surgery, and chemotherapy strategies, CRC is one of the most widespread cancers and with the highest mortality rate. Therefore, further efficient and complementary immune-based therapies are in urgent need. In this review, we gathered the most recent advances in NK cell-based immunotherapies aimed at fighting CRC, in particular, the use of monoclonal antibodies targeting tumor-associated antigens (TAAs), immune checkpoint blockade, and adoptive NK cell therapy, including NK cells modified with chimeric antigen receptor (CAR-NK).
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Zhou, Yang, Tiffany Husman, Xinjian Cen, Tasha Tsao, James Brown, Aarushi Bajpai, Miao Li, Kuangyi Zhou y Lili Yang. "Interleukin 15 in Cell-Based Cancer Immunotherapy". International Journal of Molecular Sciences 23, n.º 13 (30 de junio de 2022): 7311. http://dx.doi.org/10.3390/ijms23137311.

Texto completo
Resumen
Cell-based cancer immunotherapy, such as chimeric antigen receptor (CAR) engineered T and natural killer (NK) cell therapies, has become a revolutionary new pillar in cancer treatment. Interleukin 15 (IL-15), a potent immunostimulatory cytokine that potentiates T and NK cell immune responses, has demonstrated the reliability and potency to potentially improve the therapeutic efficacy of current cell therapy. Structurally similar to interleukin 2 (IL-2), IL-15 supports the persistence of CD8+ memory T cells while inhibiting IL-2-induced T cell death that better maintains long-term anti-tumor immunity. In this review, we describe the biology of IL-15, studies on administrating IL-15 and/or its derivatives as immunotherapeutic agents, and IL-15-armored immune cells in adoptive cell therapy. We also discuss the advantages and challenges of incorporating IL-15 in cell-based immunotherapy and provide directions for future investigation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Tjoa, B. A., P. A. Lodge, M. L. Salgaller, A. L. Boynton y G. P. Murphy. "Dendritic cell-based immunotherapy for prostate cancer". CA: A Cancer Journal for Clinicians 49, n.º 2 (1 de marzo de 1999): 117–28. http://dx.doi.org/10.3322/canjclin.49.2.117.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Li, Yingrui, Kang Dong, Xueke Fan, Jun Xie, Miao Wang, Songtao Fu y Qin Li. "DNT Cell-based Immunotherapy: Progress and Applications". Journal of Cancer 11, n.º 13 (2020): 3717–24. http://dx.doi.org/10.7150/jca.39717.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Sivori, Simona, Raffaella Meazza, Concetta Quintarelli, Simona Carlomagno, Mariella Della Chiesa, Michela Falco, Lorenzo Moretta, Franco Locatelli y Daniela Pende. "NK Cell-Based Immunotherapy for Hematological Malignancies". Journal of Clinical Medicine 8, n.º 10 (16 de octubre de 2019): 1702. http://dx.doi.org/10.3390/jcm8101702.

Texto completo
Resumen
Natural killer (NK) lymphocytes are an integral component of the innate immune system and represent important effector cells in cancer immunotherapy, particularly in the control of hematological malignancies. Refined knowledge of NK cellular and molecular biology has fueled the interest in NK cell-based antitumor therapies, and recent efforts have been made to exploit the high potential of these cells in clinical practice. Infusion of high numbers of mature NK cells through the novel graft manipulation based on the selective depletion of T cells and CD19+ B cells has resulted into an improved outcome in children with acute leukemia given human leucocyte antigen (HLA)-haploidentical hematopoietic transplantation. Likewise, adoptive transfer of purified third-party NK cells showed promising results in patients with myeloid malignancies. Strategies based on the use of cytokines or monoclonal antibodies able to induce and optimize NK cell activation, persistence, and expansion also represent a novel field of investigation with remarkable perspectives of favorably impacting on outcome of patients with hematological neoplasia. In addition, preliminary results suggest that engineering of mature NK cells through chimeric antigen receptor (CAR) constructs deserve further investigation, with the goal of obtaining an “off-the-shelf” NK cell bank that may serve many different recipients for granting an efficient antileukemia activity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Coosemans, An, Ignace Vergote y Stefaan W. Van Gool. "Dendritic cell-based immunotherapy in ovarian cancer". OncoImmunology 2, n.º 12 (diciembre de 2013): e27059. http://dx.doi.org/10.4161/onci.27059.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Akasaki, Yasuharu, Keith L. Black y John S. Yu. "Dendritic cell-based immunotherapy for malignant gliomas". Expert Review of Neurotherapeutics 5, n.º 4 (julio de 2005): 497–508. http://dx.doi.org/10.1586/14737175.5.4.497.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Zhong, Hua, Michael R. Shurin y Baohui Han. "Optimizing dendritic cell-based immunotherapy for cancer". Expert Review of Vaccines 6, n.º 3 (junio de 2007): 333–45. http://dx.doi.org/10.1586/14760584.6.3.333.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Schott, Matthias, Werner A. Scherbaum y Jochen Seissler. "Dendritic Cell-Based Immunotherapy in Thyroid Malignancies". Current Drug Targets - Immune, Endocrine & Metabolic Disorders 4, n.º 3 (1 de septiembre de 2004): 245–51. http://dx.doi.org/10.2174/1568008043339820.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Lorenzo-Herrero, Seila, Alejandro López-Soto, Christian Sordo-Bahamonde, Ana Gonzalez-Rodriguez, Massimo Vitale y Segundo Gonzalez. "NK Cell-Based Immunotherapy in Cancer Metastasis". Cancers 11, n.º 1 (28 de diciembre de 2018): 29. http://dx.doi.org/10.3390/cancers11010029.

Texto completo
Resumen
Metastasis represents the leading cause of cancer-related death mainly owing to the limited efficacy of current anticancer therapies on advanced malignancies. Although immunotherapy is rendering promising results in the treatment of cancer, many adverse events and factors hampering therapeutic efficacy, especially in solid tumors and metastases, still need to be solved. Moreover, immunotherapeutic strategies have mainly focused on modulating the activity of T cells, while Natural Killer (NK) cells have only recently been taken into consideration. NK cells represent an attractive target for cancer immunotherapy owing to their innate capacity to eliminate malignant tumors in a non-Major Histocompatibility Complex (MHC) and non-tumor antigen-restricted manner. In this review, we analyze the mechanisms and efficacy of NK cells in the control of metastasis and we detail the immunosubversive strategies developed by metastatic cells to evade NK cell-mediated immunosurveillance. We also share current and cutting-edge clinical approaches aimed at unleashing the full anti-metastatic potential of NK cells, including the adoptive transfer of NK cells, boosting of NK cell activity, redirecting NK cell activity against metastatic cells and the release of evasion mechanisms dampening NK cell immunosurveillance.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Liu, Gang, Magdalena Swierczewska, Gang Niu, Xiaoming Zhang y Xiaoyuan Chen. "Molecular imaging of cell-based cancer immunotherapy". Molecular BioSystems 7, n.º 4 (2011): 993. http://dx.doi.org/10.1039/c0mb00198h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Kriegsmann, Katharina, Mark Kriegsmann, Martin Cremer, Michael Schmitt, Peter Dreger, Hartmut Goldschmidt, Carsten Müller-Tidow y Michael Hundemer. "Cell-based immunotherapy approaches for multiple myeloma". British Journal of Cancer 120, n.º 1 (6 de diciembre de 2018): 38–44. http://dx.doi.org/10.1038/s41416-018-0346-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Cheng, Min, Yongyan Chen, Weihua Xiao, Rui Sun y Zhigang Tian. "NK cell-based immunotherapy for malignant diseases". Cellular & Molecular Immunology 10, n.º 3 (22 de abril de 2013): 230–52. http://dx.doi.org/10.1038/cmi.2013.10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Motohashi, Shinichiro y Toshinori Nakayama. "Translational research of NKT cell-based immunotherapy". Folia Pharmacologica Japonica 136, n.º 6 (2010): 344–47. http://dx.doi.org/10.1254/fpj.136.344.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Jung, Nam-Chul, Jun-Ho Lee, Kwang-Hoe Chung, Yi Sub Kwak y Dae-Seog Lim. "Dendritic Cell-Based Immunotherapy for Solid Tumors". Translational Oncology 11, n.º 3 (junio de 2018): 686–90. http://dx.doi.org/10.1016/j.tranon.2018.03.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Felzmann, Thomas. "Dendritic cell based immunotherapy in solid tumours". European Journal of Molecular & Clinical Medicine 1 (7 de septiembre de 2017): 1. http://dx.doi.org/10.1016/j.nhccr.2017.06.135.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Ray, Moumita, Yi-Wei Lee, Joseph Hardie, Rubul Mout, Gulen Yeşilbag Tonga, Michelle E. Farkas y Vincent M. Rotello. "CRISPRed Macrophages for Cell-Based Cancer Immunotherapy". Bioconjugate Chemistry 29, n.º 2 (22 de enero de 2018): 445–50. http://dx.doi.org/10.1021/acs.bioconjchem.7b00768.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Jenne, Lars, Gerold Schuler y Alexander Steinkasserer. "Viral vectors for dendritic cell-based immunotherapy". Trends in Immunology 22, n.º 2 (febrero de 2001): 102–7. http://dx.doi.org/10.1016/s1471-4906(00)01813-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Chakravarti, Deboki y Wilson W. Wong. "Synthetic biology in cell-based cancer immunotherapy". Trends in Biotechnology 33, n.º 8 (agosto de 2015): 449–61. http://dx.doi.org/10.1016/j.tibtech.2015.05.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía