Artículos de revistas sobre el tema "Cell Annotation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Cell Annotation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Huang, Xiaoqian, Ruiqi Liu, Shiwei Yang, Xiaozhou Chen y Huamei Li. "scAnnoX: an R package integrating multiple public tools for single-cell annotation". PeerJ 12 (28 de marzo de 2024): e17184. http://dx.doi.org/10.7717/peerj.17184.
Texto completoVădineanu, Serban, Daniël M. Pelt, Oleh Dzyubachyk y Kees Joost Batenburg. "Reducing Manual Annotation Costs for Cell Segmentation by Upgrading Low-Quality Annotations". Journal of Imaging 10, n.º 7 (17 de julio de 2024): 172. http://dx.doi.org/10.3390/jimaging10070172.
Texto completoHia, Nazifa Tasnim y Sumon Ahmed. "Automatic cell type annotation using supervised classification: A systematic literature review". Systematic Literature Review and Meta-Analysis Journal 3, n.º 3 (21 de octubre de 2022): 99–108. http://dx.doi.org/10.54480/slrm.v3i3.45.
Texto completoXu, Yang, Simon J. Baumgart, Christian M. Stegmann y Sikander Hayat. "MACA: marker-based automatic cell-type annotation for single-cell expression data". Bioinformatics 38, n.º 6 (22 de diciembre de 2021): 1756–60. http://dx.doi.org/10.1093/bioinformatics/btab840.
Texto completoGill, Jaidip, Abhijit Dasgupta, Brychan Manry y Natasha Markuzon. "Abstract 4927: Combining single-cell ATAC and RNA sequencing for supervised cell annotation". Cancer Research 84, n.º 6_Supplement (22 de marzo de 2024): 4927. http://dx.doi.org/10.1158/1538-7445.am2024-4927.
Texto completoZhou, Xiao, Miao Gu y Zhen Cheng. "Local Integral Regression Network for Cell Nuclei Detection". Entropy 23, n.º 10 (14 de octubre de 2021): 1336. http://dx.doi.org/10.3390/e23101336.
Texto completoZhou, Xiao, Miao Gu y Zhen Cheng. "Local Integral Regression Network for Cell Nuclei Detection". Entropy 23, n.º 10 (14 de octubre de 2021): 1336. http://dx.doi.org/10.3390/e23101336.
Texto completoCheng, Changde, Wenan Chen, Hongjian Jin y Xiang Chen. "A Review of Single-Cell RNA-Seq Annotation, Integration, and Cell–Cell Communication". Cells 12, n.º 15 (30 de julio de 2023): 1970. http://dx.doi.org/10.3390/cells12151970.
Texto completoLong, Helen, Richard Reeves y Michelle M. Simon. "Mouse genomic and cellular annotations". Mammalian Genome 33, n.º 1 (5 de febrero de 2022): 19–30. http://dx.doi.org/10.1007/s00335-021-09936-7.
Texto completoWei, Ziyang y Shuqin Zhang. "CALLR: a semi-supervised cell-type annotation method for single-cell RNA sequencing data". Bioinformatics 37, Supplement_1 (1 de julio de 2021): i51—i58. http://dx.doi.org/10.1093/bioinformatics/btab286.
Texto completoYuan, Musu, Liang Chen y Minghua Deng. "scMRA: a robust deep learning method to annotate scRNA-seq data with multiple reference datasets". Bioinformatics 38, n.º 3 (8 de octubre de 2021): 738–45. http://dx.doi.org/10.1093/bioinformatics/btab700.
Texto completoZhao, Zipei, Fengqian Pang, Yaou Liu, Zhiwen Liu y Chuyang Ye. "Positive-unlabeled learning for binary and multi-class cell detection in histopathology images with incomplete annotations". Machine Learning for Biomedical Imaging 1, December 2022 (17 de febrero de 2023): 1–30. http://dx.doi.org/10.59275/j.melba.2022-8g31.
Texto completoDoddahonnaiah, Deeksha, Patrick J. Lenehan, Travis K. Hughes, David Zemmour, Enrique Garcia-Rivera, A. J. Venkatakrishnan, Ramakrishna Chilaka et al. "A Literature-Derived Knowledge Graph Augments the Interpretation of Single Cell RNA-seq Datasets". Genes 12, n.º 6 (10 de junio de 2021): 898. http://dx.doi.org/10.3390/genes12060898.
Texto completoBarrett, John y Richard Childs. "Non-myeloablative stem cell transplants. Annotation". British Journal of Haematology 111, n.º 1 (octubre de 2000): 6–17. http://dx.doi.org/10.1046/j.1365-2141.2000.02405.x.
Texto completoLiu, Huaitian, Alexandra Harris, Brittany Jenkins-Lord, Tiffany H. Dorsey, Francis Makokha, Shahin Sayed, Gretchen Gierach y Stefan Ambs. "Abstract LB240: Cell type annotation using singleR with custom reference for single-nucleus multiome data derived from frozen human breast tumors". Cancer Research 84, n.º 7_Supplement (5 de abril de 2024): LB240. http://dx.doi.org/10.1158/1538-7445.am2024-lb240.
Texto completoFeng, Zhanying, Xianwen Ren, Yuan Fang, Yining Yin, Chutian Huang, Yimin Zhao y Yong Wang. "scTIM: seeking cell-type-indicative marker from single cell RNA-seq data by consensus optimization". Bioinformatics 36, n.º 8 (17 de diciembre de 2019): 2474–85. http://dx.doi.org/10.1093/bioinformatics/btz936.
Texto completoSun, Hao, Danqi Guo y Zhao Chen. "Mixed-Supervised Learning for Cell Classification". Sensors 25, n.º 4 (16 de febrero de 2025): 1207. https://doi.org/10.3390/s25041207.
Texto completoTang, Dachao, Cheng Han, Shaofeng Lin, Xiaodan Tan, Weizhi Zhang, Di Peng, Chenwei Wang y Yu Xue. "iPCD: A Comprehensive Data Resource of Regulatory Proteins in Programmed Cell Death". Cells 11, n.º 13 (24 de junio de 2022): 2018. http://dx.doi.org/10.3390/cells11132018.
Texto completoLagier, Michael J., Brittany Bowman, Kelsey Brend, Katherine Hobbs, Michael Foggia y Mark McDaniel. "Improved Functional Prediction of Hypothetical Proteins from Listeria monocytogenes 08-5578". Journal of the Iowa Academy of Science 121, n.º 1-4 (1 de enero de 2014): 16–27. http://dx.doi.org/10.17833/121-03.1.
Texto completoLachmann, Alexander, Kaeli A. Rizzo, Alon Bartal, Minji Jeon, Daniel J. B. Clarke y Avi Ma’ayan. "PrismEXP: gene annotation prediction from stratified gene-gene co-expression matrices". PeerJ 11 (27 de febrero de 2023): e14927. http://dx.doi.org/10.7717/peerj.14927.
Texto completoZhang, Yuexin, Chao Song, Yimeng Zhang, Yuezhu Wang, Chenchen Feng, Jiaxin Chen, Ling Wei et al. "TcoFBase: a comprehensive database for decoding the regulatory transcription co-factors in human and mouse". Nucleic Acids Research 50, n.º D1 (30 de octubre de 2021): D391—D401. http://dx.doi.org/10.1093/nar/gkab950.
Texto completoLi, Jia, Quanhu Sheng, Yu Shyr y Qi Liu. "scMRMA: single cell multiresolution marker-based annotation". Nucleic Acids Research 50, n.º 2 (14 de octubre de 2021): e7-e7. http://dx.doi.org/10.1093/nar/gkab931.
Texto completoXiong, Yi-Xuan, Meng-Guo Wang, Luonan Chen y Xiao-Fei Zhang. "Cell-type annotation with accurate unseen cell-type identification using multiple references". PLOS Computational Biology 19, n.º 6 (28 de junio de 2023): e1011261. http://dx.doi.org/10.1371/journal.pcbi.1011261.
Texto completoZubair, Asif, Rich Chapple, Sivaraman Natarajan, William C. Wright, Min Pan, Hyeong-Min Lee, Heather Tillman, John Easton y Paul Geeleher. "Abstract 456: Jointly leveraging spatial transcriptomics and deep learning models for image annotation achieves better-than-pathologist performance in cell type identification in tumors". Cancer Research 82, n.º 12_Supplement (15 de junio de 2022): 456. http://dx.doi.org/10.1158/1538-7445.am2022-456.
Texto completoTickotsky, Nili y Moti Moskovitz. "Protein Activation in Periapical Reaction to Iodoform Containing Root Canal Sealer". Journal of Clinical Pediatric Dentistry 41, n.º 6 (1 de enero de 2017): 450–55. http://dx.doi.org/10.17796/1053-4628-41.6.6.
Texto completoEnglbrecht, Fabian, Iris E. Ruider y Andreas R. Bausch. "Automatic image annotation for fluorescent cell nuclei segmentation". PLOS ONE 16, n.º 4 (16 de abril de 2021): e0250093. http://dx.doi.org/10.1371/journal.pone.0250093.
Texto completoXu, Congmin, Huyun Lu y Peng Qiu. "Comparison of cell type annotation algorithms for revealing immune response of COVID-19". Frontiers in Systems Biology 2 (24 de octubre de 2022). http://dx.doi.org/10.3389/fsysb.2022.1026686.
Texto completoHou, Wenpin y Zhicheng Ji. "Assessing GPT-4 for cell type annotation in single-cell RNA-seq analysis". Nature Methods, 25 de marzo de 2024. http://dx.doi.org/10.1038/s41592-024-02235-4.
Texto completoGuo, Qirui, Musu Yuan, Lei Zhang y Minghua Deng. "scPLAN: a hierarchical computational framework for single transcriptomics data annotation, integration and cell-type label refinement". Briefings in Bioinformatics 25, n.º 4 (23 de mayo de 2024). http://dx.doi.org/10.1093/bib/bbae305.
Texto completoDong, Sherry, Kaiwen Deng y Xiuzhen Huang. "Single-Cell Type Annotation With Deep Learning in 265 Cell Types For Humans". Bioinformatics Advances, 8 de abril de 2024. http://dx.doi.org/10.1093/bioadv/vbae054.
Texto completoAltay, Aybuge y Martin Vingron. "scATAcat: cell-type annotation for scATAC-seq data". NAR Genomics and Bioinformatics 6, n.º 4 (2 de julio de 2024). http://dx.doi.org/10.1093/nargab/lqae135.
Texto completoVu, Ha y Jason Ernst. "Universal annotation of the human genome through integration of over a thousand epigenomic datasets". Genome Biology 23, n.º 1 (6 de enero de 2022). http://dx.doi.org/10.1186/s13059-021-02572-z.
Texto completoLawson, Nathan D., Rui Li, Masahiro Shin, Ann Grosse, Onur Yukselen, Oliver A. Stone, Alper Kucukural y Lihua Zhu. "An improved zebrafish transcriptome annotation for sensitive and comprehensive detection of cell type-specific genes". eLife 9 (24 de agosto de 2020). http://dx.doi.org/10.7554/elife.55792.
Texto completoKimmel, Jacob C. y David R. Kelley. "Semisupervised adversarial neural networks for single-cell classification". Genome Research, 24 de febrero de 2021. http://dx.doi.org/10.1101/gr.268581.120.
Texto completoMichielsen, Lieke, Mohammad Lotfollahi, Daniel Strobl, Lisa Sikkema, Marcel J. T. Reinders, Fabian J. Theis y Ahmed Mahfouz. "Single-cell reference mapping to construct and extend cell-type hierarchies". NAR Genomics and Bioinformatics 5, n.º 3 (5 de julio de 2023). http://dx.doi.org/10.1093/nargab/lqad070.
Texto completoLiu, Yan, Guo Wei, Chen Li, Long-Chen Shen, Robin B. Gasser, Jiangning Song, Dijun Chen y Dong-Jun Yu. "TripletCell: a deep metric learning framework for accurate annotation of cell types at the single-cell level". Briefings in Bioinformatics, 20 de abril de 2023. http://dx.doi.org/10.1093/bib/bbad132.
Texto completoLi, Ziyi y Hao Feng. "A neural network-based method for exhaustive cell label assignment using single cell RNA-seq data". Scientific Reports 12, n.º 1 (18 de enero de 2022). http://dx.doi.org/10.1038/s41598-021-04473-4.
Texto completoZhang, Weihang, Yang Cui, Bowen Liu, Martin Loza, Sung-Joon Park y Kenta Nakai. "HyGAnno: hybrid graph neural network–based cell type annotation for single-cell ATAC sequencing data". Briefings in Bioinformatics 25, n.º 3 (27 de marzo de 2024). http://dx.doi.org/10.1093/bib/bbae152.
Texto completoVu, Ha y Jason Ernst. "Universal chromatin state annotation of the mouse genome". Genome Biology 24, n.º 1 (27 de junio de 2023). http://dx.doi.org/10.1186/s13059-023-02994-x.
Texto completoFord, Michael K. B., Ananth Hari, Qinghui Zhou, Ibrahim Numanagić y S. Cenk Sahinalp. "Biologically-informed Killer cell immunoglobulin-like receptor (KIR) gene annotation tool". Bioinformatics, 21 de octubre de 2024. http://dx.doi.org/10.1093/bioinformatics/btae622.
Texto completoShrestha, Prem, Nicholas Kuang y Ji Yu. "Efficient end-to-end learning for cell segmentation with machine generated weak annotations". Communications Biology 6, n.º 1 (2 de marzo de 2023). http://dx.doi.org/10.1038/s42003-023-04608-5.
Texto completoGeuenich, Michael J., Dae-won Gong y Kieran R. Campbell. "The impacts of active and self-supervised learning on efficient annotation of single-cell expression data". Nature Communications 15, n.º 1 (3 de febrero de 2024). http://dx.doi.org/10.1038/s41467-024-45198-y.
Texto completoShi, Yongle, Yibing Ma, Xiang Chen y Jie Gao. "scADCA: An Anomaly Detection-Based scRNA-seq Dataset Cell Type Annotation Method for Identifying Novel Cells". Current Bioinformatics 20 (10 de octubre de 2024). http://dx.doi.org/10.2174/0115748936334071240903064630.
Texto completoXiong, Yi-Xuan y Xiao-Fei Zhang. "scDOT: enhancing single-cell RNA-Seq data annotation and uncovering novel cell types through multi-reference integration". Briefings in Bioinformatics 25, n.º 2 (22 de enero de 2024). http://dx.doi.org/10.1093/bib/bbae072.
Texto completoMichielsen, Lieke, Marcel J. T. Reinders y Ahmed Mahfouz. "Hierarchical progressive learning of cell identities in single-cell data". Nature Communications 12, n.º 1 (14 de mayo de 2021). http://dx.doi.org/10.1038/s41467-021-23196-8.
Texto completoZhang, Ying, Huaicheng Sun, Wei Zhang, Tingting Fu, Shijie Huang, Minjie Mou, Jinsong Zhang et al. "CellSTAR: a comprehensive resource for single-cell transcriptomic annotation". Nucleic Acids Research, 19 de octubre de 2023. http://dx.doi.org/10.1093/nar/gkad874.
Texto completoShao, Xin, Haihong Yang, Xiang Zhuang, Jie Liao, Penghui Yang, Junyun Cheng, Xiaoyan Lu, Huajun Chen y Xiaohui Fan. "scDeepSort: a pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network". Nucleic Acids Research, 9 de septiembre de 2021. http://dx.doi.org/10.1093/nar/gkab775.
Texto completoLee, Sarada M. W., Andrew Shaw, Jodie L. Simpson, David Uminsky y Luke W. Garratt. "Differential cell counts using center-point networks achieves human-level accuracy and efficiency over segmentation". Scientific Reports 11, n.º 1 (19 de agosto de 2021). http://dx.doi.org/10.1038/s41598-021-96067-3.
Texto completoWang, Yuge, Xingzhi Sun y Hongyu Zhao. "Benchmarking automated cell type annotation tools for single-cell ATAC-seq data". Frontiers in Genetics 13 (13 de diciembre de 2022). http://dx.doi.org/10.3389/fgene.2022.1063233.
Texto completoQuan, Fei, Xin Liang, Mingjiang Cheng, Huan Yang, Kun Liu, Shengyuan He, Shangqin Sun et al. "Annotation of cell types (ACT): a convenient web server for cell type annotation". Genome Medicine 15, n.º 1 (3 de noviembre de 2023). http://dx.doi.org/10.1186/s13073-023-01249-5.
Texto completo