Literatura académica sobre el tema "Cayley permutations"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Cayley permutations".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Cayley permutations"
CHITTURI, BHADRACHALAM. "UPPER BOUNDS FOR SORTING PERMUTATIONS WITH A TRANSPOSITION TREE". Discrete Mathematics, Algorithms and Applications 05, n.º 01 (marzo de 2013): 1350003. http://dx.doi.org/10.1142/s1793830913500031.
Texto completoOlshevskyi, M. S. "Metric properties of Cayley graphs of alternating groups". Carpathian Mathematical Publications 13, n.º 2 (19 de noviembre de 2021): 545–81. http://dx.doi.org/10.15330/cmp.13.2.545-581.
Texto completoOlshevskyi, M. "The lower bound of diameter of Alternating groups". Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, n.º 4 (2021): 11–22. http://dx.doi.org/10.17721/1812-5409.2021/4.1.
Texto completoBabai, L. y G. L. Hetyei. "On the Diameter of Random Cayley Graphs of the Symmetric Group". Combinatorics, Probability and Computing 1, n.º 3 (septiembre de 1992): 201–8. http://dx.doi.org/10.1017/s0963548300000237.
Texto completoAbdesselam, B. y A. Chakrabarti. "Multiparameter Statistical Models from Braid Matrices: Explicit Eigenvalues of Transfer Matrices , Spin Chains, Factorizable Scatterings for All". Advances in Mathematical Physics 2012 (2012): 1–21. http://dx.doi.org/10.1155/2012/193190.
Texto completoPăun, Udrea. "$G$ method in action: Fast exact sampling from set of permutations of order $n$ according to Mallows model through Cayley metric". Brazilian Journal of Probability and Statistics 31, n.º 2 (mayo de 2017): 338–52. http://dx.doi.org/10.1214/16-bjps316.
Texto completoSkresanov, Saveliy V. "Subgroups of minimal index in polynomial time". Journal of Algebra and Its Applications 19, n.º 01 (29 de enero de 2019): 2050010. http://dx.doi.org/10.1142/s0219498820500103.
Texto completoAlspach, Brian y Shaofei Du. "Suborbit Structure of Permutation p-Groups and an Application to Cayley Digraph Isomorphism". Canadian Mathematical Bulletin 47, n.º 2 (1 de junio de 2004): 161–67. http://dx.doi.org/10.4153/cmb-2004-017-9.
Texto completoLI, CAI HENG y CHERYL E. PRAEGER. "SELF-COMPLEMENTARY VERTEX-TRANSITIVE GRAPHS NEED NOT BE CAYLEY GRAPHS". Bulletin of the London Mathematical Society 33, n.º 6 (noviembre de 2001): 653–61. http://dx.doi.org/10.1112/s0024609301008505.
Texto completoKuznetsov, А. A. y V. V. Kishkan. "A ROUTING ALGORITHM FOR THE CAYLEY GRAPHS GENERATED BY PERMUTATION GROUPS". Siberian Journal of Science and Technology 21, n.º 2 (2020): 187–94. http://dx.doi.org/10.31772/2587-6066-2020-21-2-187-194.
Texto completoTesis sobre el tema "Cayley permutations"
Muthivhi, Thifhelimbilu Ronald. "Codes Related to and Derived from Hamming Graphs". University of the Western Cape, 2013. http://hdl.handle.net/11394/4091.
Texto completoCodes Related to and Derived from Hamming Graphs T.R Muthivhi M.Sc thesis, Department of Mathematics, University of Western Cape For integers n; k 1; and k n; the graph k n has vertices the 2n vectors of Fn2 and adjacency de ned by two vectors being adjacent if they di er in k coordinate positions. In particular, 1 n is the classical n-cube, usually denoted by H1(n; 2): This study examines the codes (both binary and p-ary for p an odd prime) of the row span of adjacency and incidence matrices of these graphs. We rst examine codes of the adjacency matrices of the n-cube. These have been considered in [14]. We then consider codes generated by both incidence and adjacency matrices of the Hamming graphs H1(n; 3) [12]. We will also consider codes of the line graphs of the n-cube as in [13]. Further, the automorphism groups of the codes, designs and graphs will be examined, highlighting where there is an interplay. Where possible, suitable permutation decoding sets will be given.
Cerbai, Giulio. "Sorting permutations with pattern-avoiding machines". Doctoral thesis, 2021. http://hdl.handle.net/2158/1235854.
Texto completoCapítulos de libros sobre el tema "Cayley permutations"
Grammatikakis, Miltos D. y Jung-Sing Jwo. "Greedy permutation routing on Cayley graphs". En Parallel Processing: CONPAR 92—VAPP V, 839–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-55895-0_515.
Texto completoCooperman, Gene y Larry Finkelstein. "Permutation routing via Cayley graphs with an example for bus interconnection networks". En DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 47–56. Providence, Rhode Island: American Mathematical Society, 1995. http://dx.doi.org/10.1090/dimacs/021/05.
Texto completoHook, Julian. "Groups II". En Exploring Musical Spaces, 209–51. Oxford University PressNew York, 2023. http://dx.doi.org/10.1093/oso/9780190246013.003.0006.
Texto completo"Cayley graph and defining relations". En Fundamental Algorithms for Permutation Groups, 33–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-54955-2_24.
Texto completoActas de conferencias sobre el tema "Cayley permutations"
PRAEGER, CHERYL E. "REGULAR PERMUTATION GROUPS AND CAYLEY GRAPHS". En Proceedings of the 13th General Meeting. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814277686_0003.
Texto completoYang, Siyi, Clayton Schoeny y Lara Dolecek. "Order-optimal permutation codes in the generalized cayley metric". En 2017 IEEE Information Theory Workshop (ITW). IEEE, 2017. http://dx.doi.org/10.1109/itw.2017.8277943.
Texto completode Lima, Thaynara Arielly y Mauricio Ayala-Rincon. "Complexity of Cayley distance and other general metrics on permutation groups". En 2012 7th Colombian Computing Congress (CCC). IEEE, 2012. http://dx.doi.org/10.1109/colombiancc.2012.6398020.
Texto completoChee, Yeow Meng y Van Khu Vu. "Breakpoint analysis and permutation codes in generalized Kendall tau and Cayley metrics". En 2014 IEEE International Symposium on Information Theory (ISIT). IEEE, 2014. http://dx.doi.org/10.1109/isit.2014.6875376.
Texto completoYeh, C. H. y B. Parhami. "Parallel algorithms for index-permutation graphs. An extension of Cayley graphs for multiple chip-multiprocessors (MCMP)". En Proceedings International Conference on Parallel Processing. IEEE, 2001. http://dx.doi.org/10.1109/icpp.2001.952041.
Texto completo