Literatura académica sobre el tema "Cavitation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Cavitation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Cavitation"
Romanov, Alexey, Sergey Evdokimov y Vladimir Seliverstov. "Cavitation research results of hydroturbine impeller blades and their analysis". MATEC Web of Conferences 196 (2018): 02006. http://dx.doi.org/10.1051/matecconf/201819602006.
Texto completoViitanen, Ville M., Tuomas Sipilä, Antonio Sánchez-Caja y Timo Siikonen. "Compressible Two-Phase Viscous Flow Investigations of Cavitation Dynamics for the ITTC Standard Cavitator". Applied Sciences 10, n.º 19 (7 de octubre de 2020): 6985. http://dx.doi.org/10.3390/app10196985.
Texto completoHu, Xiao y Ye Gao. "Investigation of the Disk Cavitator Cavitating Flow Characteristics under Relatively High Cavitation Number". Applied Mechanics and Materials 29-32 (agosto de 2010): 2555–62. http://dx.doi.org/10.4028/www.scientific.net/amm.29-32.2555.
Texto completoSoyama, Hitoshi. "Cavitating Jet: A Review". Applied Sciences 10, n.º 20 (17 de octubre de 2020): 7280. http://dx.doi.org/10.3390/app10207280.
Texto completoWang, Hao, Jian Feng, Keyang Liu, Xi Shen, Bin Xu, Desheng Zhang y Weibin Zhang. "Experimental Study on Unsteady Cavitating Flow and Its Instability in Liquid Rocket Engine Inducer". Journal of Marine Science and Engineering 10, n.º 6 (12 de junio de 2022): 806. http://dx.doi.org/10.3390/jmse10060806.
Texto completoLiu, Qian Kun y Ye Gao. "Numerical Simulation of Natural Cavitating Flow over Axisymmetric Bodies". Applied Mechanics and Materials 226-228 (noviembre de 2012): 825–30. http://dx.doi.org/10.4028/www.scientific.net/amm.226-228.825.
Texto completoLee, Insu, Sunho Park, Woochan Seok y Shin Hyung Rhee. "A Study on the Cavitation Model for the Cavitating Flow Analysis around the Marine Propeller". Mathematical Problems in Engineering 2021 (17 de junio de 2021): 1–8. http://dx.doi.org/10.1155/2021/2423784.
Texto completoXu, Gaowei, Huimin Fang, Yumin Song y Wensheng Du. "Optimal Design and Analysis of Cavitating Law for Well-Cellar Cavitating Mechanism Based on MBD-DEM Bidirectional Coupling Model". Agriculture 13, n.º 1 (5 de enero de 2023): 142. http://dx.doi.org/10.3390/agriculture13010142.
Texto completoCui, Baoling y Jie Chen. "Visual experiment and numerical simulation of cavitation instability in a high-speed inducer". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 234, n.º 4 (6 de agosto de 2019): 470–80. http://dx.doi.org/10.1177/0957650919867173.
Texto completoZHANG, YAO, XIANWU LUO, SHUHONG LIU y HONGYUAN XU. "A TRANSPORT EQUATION MODEL FOR SIMULATING CAVITATION FLOWS IN MINIATURE MACHINES". Modern Physics Letters B 24, n.º 13 (30 de mayo de 2010): 1467–70. http://dx.doi.org/10.1142/s0217984910023888.
Texto completoTesis sobre el tema "Cavitation"
Momma, Takahiro. "Cavitation loading and erosion produced by a cavitating jet". Thesis, University of Nottingham, 1991. http://eprints.nottingham.ac.uk/14102/.
Texto completoPeterson, Ashley Thomas. "Cavitation prediction". Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612813.
Texto completoJohansen, Kristoffer. "Stable-inertial cavitation". Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/30796/.
Texto completoOdeyemi, Babatunde O. "Hydrodynamic cavitation : effects of cavitation on inactivation of Escherichia coli (E.coli)". Thesis, Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/11009.
Texto completoKrahl, Dominik, Jürgen Weber y Maik Fuchs. "Visualization of cavitation and investigation of cavitation erosion in a valve". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-199616.
Texto completoJin, Yong-Hua. "Optical investigations of cavitation". Thesis, Loughborough University, 1995. https://dspace.lboro.ac.uk/2134/27390.
Texto completoWatson, Peter. "Cavitation in human joints". Thesis, Queen's University Belfast, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304536.
Texto completoHou, Hang-sheng. "Cavitation instability in solids". Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/13697.
Texto completoGerold, Bjoern. "Cavitation in focused ultrasound". Thesis, University of Dundee, 2013. https://discovery.dundee.ac.uk/en/studentTheses/f41bf6b9-ae59-4a41-ba29-d5873821418b.
Texto completoWilms, Jeffrey. "Flow visualization of cavitation". Thesis, Kansas State University, 2013. http://hdl.handle.net/2097/32158.
Texto completoDepartment of Mechanical and Nuclear Engineering
Mohammad Hosni
A typical refrigeration loop is composed of an evaporator, compressor, condenser, and an expansion valve. There are many possible refrigerants that can be used, but the physical properties of water make it ineffective in the traditional refrigeration loop. But if water could be used it would have many advantages as it is abundant, cheap, and is safe for the environment. This research focuses on a different kind of refrigeration loop using water. This new refrigeration loop utilizes water flowing through a nozzle, initiating cavitation. Cavitation is generally defined as creating vapor from liquid, not through adding heat, but by decreasing the pressure. In a converging/ diverging nozzle, as the cross sectional area is constricted, the velocity of the flow will increase, decreasing the pressure. Therefore, by flowing water through the nozzle it will cavitate. Transforming liquid into gas requires a certain amount of energy, defined as the latent heat. When a liquid is turned to vapor by an increase in the temperature, the latent heat is provided by the heat transfer to the system. As no energy is being added to the nozzle to cause the cavitation, the energy transfer to create the vapor comes from the remaining liquid, effectively causing a temperature drop. This research focused on the flow visualization of water cavitating as it travelled through a converging/ diverging nozzle. Under different flow conditions and different nozzle geometries, the cavitation manifested itself in different formations. When gasses were entrained in the water they formed bubbles, which acted as nucleation sites as they moved through the nozzle. This was called travelling bubble cavitation. In venturi nozzles the cavitation nucleated off of the wall, forming attached wall cavitation. When water flowed out of an orifice, a turbulent mixture of liquid and vapor, orifice jet, was formed which caused vapor to form around it. This was known as shear cavitation. When the water was rotated prior to the throat of an orifice, the orifice jet expanded radially and formed swirl cavitation. In addition to studying how the cavitation was formed, the void fraction and velocity were measured for attached wall cavitation.
Libros sobre el tema "Cavitation"
Lecoffre, Yves, M. M. Oberai y V. H. Arakeri. Cavitation. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916.
Texto completod’Agostino, Luca y Maria Vittoria Salvetti, eds. Fluid Dynamics of Cavitation and Cavitating Turbopumps. Vienna: Springer Vienna, 2007. http://dx.doi.org/10.1007/978-3-211-76669-9.
Texto completoLuca, D'Agostino y Guillén Salvetti María, eds. Fluid dynamics of cavitation and cavitating turbopumps. Wien: Springer, 2007.
Buscar texto completoWan, Mingxi, Yi Feng y Gail ter Haar, eds. Cavitation in Biomedicine. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7255-6.
Texto completoShah, Y. T., A. B. Pandit y V. S. Moholkar. Cavitation Reaction Engineering. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4787-7.
Texto completoMargulis, M. A. Sonochemistry and cavitation. Australia: Gordon and Breach Publishers, 1995.
Buscar texto completoLecoffre, Yves. Cavitation: Bubble trackers. Rotterdam, Netherlands: Balkema, 1999.
Buscar texto completoShah, Yatish T. Cavitation reaction engineering. New York: Kluwer Academic/Plenum Publishers, 1999.
Buscar texto completoCabrera, E., V. Espert y F. Martínez, eds. Hydraulic Machinery and Cavitation. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-010-9385-9.
Texto completoC, Li S., ed. Cavitation of hydraulic machinery. London: Imperial College Press, 2000.
Buscar texto completoCapítulos de libros sobre el tema "Cavitation"
Lecoffre, Yves, M. M. Oberai y V. H. Arakeri. "Phenomenon of Cavitation". En Cavitation, 1–11. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-1.
Texto completoLecoffre, Yves, M. M. Oberai y V. H. Arakeri. "Thermodynamic Attenuation of Cavitation". En Cavitation, 211–43. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-10.
Texto completoLecoffre, Yves, M. M. Oberai y V. H. Arakeri. "Single Bubble Life". En Cavitation, 44–64. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-4.
Texto completoLecoffre, Yves, M. M. Oberai y V. H. Arakeri. "Cavitation Erosion". En Cavitation, 244–90. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-11.
Texto completoLecoffre, Yves, M. M. Oberai y V. H. Arakeri. "Instrumentation". En Cavitation, 335–62. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-14.
Texto completoLecoffre, Yves, M. M. Oberai y V. H. Arakeri. "Parameter σ of Cavitation". En Cavitation, 12–32. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-2.
Texto completoLecoffre, Yves, M. M. Oberai y V. H. Arakeri. "Applications of Cavitation". En Cavitation, 363–70. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-15.
Texto completoLecoffre, Yves, M. M. Oberai y V. H. Arakeri. "Fixed or Attached Cavitation". En Cavitation, 115–39. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-7.
Texto completoLecoffre, Yves, M. M. Oberai y V. H. Arakeri. "Other Types of Cavitation". En Cavitation, 140–76. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-8.
Texto completoLecoffre, Yves, M. M. Oberai y V. H. Arakeri. "Types of Cavitation". En Cavitation, 33–43. London: Routledge, 2021. http://dx.doi.org/10.1201/9781315138916-3.
Texto completoActas de conferencias sobre el tema "Cavitation"
Kim, Dong-Hyun, Cong-Tu Ha, Warn-Gyu Park y Chul-Min Jung. "Numerical Analysis of Ventilated Cavitation Using Non-Condensable Gas Injection on Underwater Vehicle". En ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-04031.
Texto completoPark, Sunho y Shin Hyung Rhee. "Numerical Analysis of Super-Cavitating Flow Around a Two-Dimensional Cavitator Geometry". En ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-33010.
Texto completoKim, K. H. y P. N. Nguyen. "Propeller Cavitation and Cavitation-Induced Pressure Fluctuation: Correlation Between Theory and Experiments". En SNAME Propellers '88 Symposium. SNAME, 1988. http://dx.doi.org/10.5957/pss-1988-10.
Texto completoPeng, Guoyi, Hideto Ito y Seiji Shimizu. "Numerical Simulation of High-Speed Cavitating Water-Jet Issuing From a Submerged Nozzle". En ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72438.
Texto completoDular, Matevzˇ y Olivier Coutier-Delgosha. "Numerical Modelling of Cavitation Erosion". En ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/fedsm2008-55034.
Texto completoSoyama, Hitoshi. "Luminescent Spots Induced by a Cavitating Jet". En ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-33018.
Texto completoIga, Yuka y Yoshiki Yoshida. "A Study of Propagating Speed of Rotating Cavitation Based on Numerical Analysis". En ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78411.
Texto completoPeng, Guoyi, Hideto Ito, Seiji Shimizu y Shigeo Fujikawa. "Numerical Investigation on the Structure of High-Speed Cavitating Water Jet Issuing From an Orifice Nozzle". En ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-33023.
Texto completoDe Giorgi, Maria Grazia, Fabio Chiara y Antonio Ficarella. "Experimental Study of Thermal Cavitation in an Orifice". En ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95406.
Texto completoKarimi Noughabi, Amir, Morteza Bayati y Mehran Tadjfar. "Investigation of Cavitation Phenomena on Noise of Underwater Propeller". En ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69536.
Texto completoInformes sobre el tema "Cavitation"
Aguiar, Brandon, Paul Bianco y Arvind Agarwal. Using High-Speed Imaging and Machine Learning to Capture Ultrasonic Treatment Cavitation Area at Different Amplitudes. Florida International University, octubre de 2021. http://dx.doi.org/10.25148/mmeurs.009773.
Texto completoWest, C. D. "Cavitation in a Mercury Target". Office of Scientific and Technical Information (OSTI), septiembre de 2000. http://dx.doi.org/10.2172/885870.
Texto completoTullis, J. P. Cavitation guide for control valves. Office of Scientific and Technical Information (OSTI), abril de 1993. http://dx.doi.org/10.2172/10155405.
Texto completoButtler, William Tillman. FICH: Feature instability cavitation history. Office of Scientific and Technical Information (OSTI), marzo de 2020. http://dx.doi.org/10.2172/1603958.
Texto completoWest, C. D. Cavitation in a Mercury Target. Office of Scientific and Technical Information (OSTI), septiembre de 2000. http://dx.doi.org/10.2172/763224.
Texto completoSokolow, Adam y Chad Hovey. A Phenomenological Model for Cavitation. Office of Scientific and Technical Information (OSTI), diciembre de 2020. http://dx.doi.org/10.2172/1810237.
Texto completoPease, Leonard F. Drag Reducing and Cavitation Resistant Coatings. Office of Scientific and Technical Information (OSTI), diciembre de 2016. http://dx.doi.org/10.2172/1419158.
Texto completoCeccio, Steven L. Dynamics of Cavitation on Rotating Propulsors. Fort Belvoir, VA: Defense Technical Information Center, enero de 2003. http://dx.doi.org/10.21236/ada416939.
Texto completoWest, C. D. Cavitation Bubble Nucleation by Energetic Particles. Office of Scientific and Technical Information (OSTI), diciembre de 1998. http://dx.doi.org/10.2172/2687.
Texto completoSollars, Ryan y Alfred D. Beitelman. Cavitation-Resistant Coatings for Hydropower Turbines. Fort Belvoir, VA: Defense Technical Information Center, junio de 2011. http://dx.doi.org/10.21236/ada545717.
Texto completo