Artículos de revistas sobre el tema "Cavitando chirale"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Cavitando chirale.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 21 mejores artículos de revistas para su investigación sobre el tema "Cavitando chirale".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Mann, Enrique y Julius Rebek. "Deepened chiral cavitands". Tetrahedron 64, n.º 36 (septiembre de 2008): 8484–87. http://dx.doi.org/10.1016/j.tet.2008.05.136.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Irwin, Jacob L., David J. Sinclair, Alison J. Edwards y Michael S. Sherburn. "Chiral Conjoined Cavitands". Australian Journal of Chemistry 57, n.º 4 (2004): 339. http://dx.doi.org/10.1071/ch03299.

Texto completo
Resumen
Tetrabromocavitand bowls are converted into rim-connected hexabromodimers in one step in 17–22% yields by oxidative coupling of higher order arylcuprates. 1H NMR and single crystal X-ray analyses of the rim-connected dimers reveal a conformationally restricted structure in which the rims of the two cavitand bowls describe planes angled at 78.8° to one another. Each of the two bowl cavities are occupied by a guest, in addition to being partially occluded by a portion of the complementary bowl rim. These new host compounds exhibit a very unusual form of enantioisomerism.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Martín Carmona, María Antonia. "Natural and synthetic cavitands: challenges in chemistry and pharmaceutical technology". Anales de la Real Academia Nacional de Farmacia 87, n.º 87(04) (2021): 381–94. http://dx.doi.org/10.53519/analesranf.2021.87.04.02.

Texto completo
Resumen
Supramolecular chemistry involves non-covalent interactions and specific molecular recognition of molecules/analytes by host molecules or supramolecules. These events are present in synthesis, catalysis, chiral separations, design of sensors, cell signaling processes and drug transport by carriers. The typical behavior of supramolecules is derived from their ability to build well-structured self-assembled and self-organized entities. Cavitands are a particular group of supramolecules possessing a cavity able to include a variety of compounds thanks to host-guest non-covalent interactions developed among cavitands and analytes. Some typical cavitands are crown ethers, calixarenes, cucurbiturils, porphyrins and cyclodextrins. The two latter families are natural product cavitands that are generally considered models for molecular recognition of cations and organic and inorganic guest molecules, being attractive host molecules from the sustainability point of view. The natural cyclodextrins (𝛼-, 𝛽- and 𝛾-CD) are obtained with reasonable cost by enzymatic treatment of starch under adequate temperature conditions. They are profusely used in pharmaceutical, food and cosmetic industries due to their very low toxicity and side effects. This review is focused on the relevance and applications of cyclodextrins in pharmaceutical technology for their ability to increase solubility and stabilize drug molecules, thereby enhancing their bioavailability. The association of cyclodextrins with diverse nanostructured materials, i.e. carbon nanotubes, magnetic nanoparticles, silica and molecularly imprinted polymers, allows to synergize the properties of cyclodextrins and these nanostructured materials to reach highly specific molecular recognition of analytes. The exploitation of these benefits for analytical sample pre-treatment and chiral chromatographic separations are described. The use of cyclodextrins as mobile phases additives in HPLC provides interesting results for green and sustainable chromatographic separations. Polymers incorporating cyclodextrins show exceptional adsorption properties for retaining toxic compounds and persistent organic pollutants from soils and water samples, allowing satisfactory recoveries of these environmental samples according to the Stockholm convection principles.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Stefanelli, Manuela, Donato Monti, Valeria Van Axel Castelli, Gianfranco Ercolani, Mariano Venanzi, Giuseppe Pomarico y Roberto Paolesse. "Chiral supramolecular capsule by ligand promoted self-assembly of resorcinarene-Zn porphyrin conjugate". Journal of Porphyrins and Phthalocyanines 12, n.º 12 (diciembre de 2008): 1279–88. http://dx.doi.org/10.1142/s1088424608000662.

Texto completo
Resumen
Cavitand- Zn porphyrin conjugates self-assemble to give supramolecular (1 + 1) structures upon coordination of bifunctional ligands such as 4,4'-bipyridine and the like. The formation of the capsule depends on key structural factors, such as the size of the cavity, and the possibility of the onset of hydrogen bonds, π–π and π–cation interactions. The extension of this protocol to chiral bifunctional ligands, such as (+)-cinchonine and (−)-cinchonidine, and cinchona alkaloid derivatives, results in the achievement of supramolecular structures with chiral cavities, whose configuration is dependent on the asymmetry of the bound ditopic ligand. MM calculations, gave further insights into the plausible geometry of the structures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Desai, Arpita S., Thennati Rajamannar y Shailesh R. Shah. "Molecular Container and Metal Ion Sensor Chiral Cavitands". ChemistrySelect 5, n.º 34 (10 de septiembre de 2020): 10588–92. http://dx.doi.org/10.1002/slct.202002273.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Li, Na, Fan Yang, Hillary A. Stock, David V. Dearden, John D. Lamb y Roger G. Harrison. "Resorcinarene-based cavitands with chiral amino acid substituents for chiral amine recognition". Organic & Biomolecular Chemistry 10, n.º 36 (2012): 7392. http://dx.doi.org/10.1039/c2ob25613d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Inoue, Mami, Yoshino Fujii, Yasuhiro Matsumoto, Michael P. Schramm y Tetsuo Iwasawa. "Inherently Chiral Cavitand Curvature: Diastereoselective Oxidation of Tethered Allylsilanes". European Journal of Organic Chemistry 2019, n.º 34 (2 de septiembre de 2019): 5862–74. http://dx.doi.org/10.1002/ejoc.201900891.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

D'Urso, Alessandro, Cristina Tudisco, Francesco P. Ballistreri, Guglielmo G. Condorelli, Rosalba Randazzo, Gaetano A. Tomaselli, Rosa M. Toscano, Giuseppe Trusso Sfrazzetto y Andrea Pappalardo. "Enantioselective extraction mediated by a chiral cavitand–salen covalently assembled on a porous silicon surface". Chem. Commun. 50, n.º 39 (2014): 4993–96. http://dx.doi.org/10.1039/c4cc00034j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Nishimura, Ryo, Ryo Yasutake, Shota Yamada, Koji Sawai, Kazuki Noura, Tsukasa Nakahodo y Hisashi Fujihara. "Chiral metal nanoparticles encapsulated by a chiral phosphine cavitand with the tetrakis-BINAP moiety: their remarkable stability toward ligand exchange and thermal racemization". Dalton Transactions 45, n.º 11 (2016): 4486–90. http://dx.doi.org/10.1039/c5dt04660b.

Texto completo
Resumen
A chiral phosphine cavitand1induced the formation of chiral metal (Ru, Rh, Pd, Ag, Pt, and Au) nanoparticles (NPs). The ligand1of the chiral metal NPs prevents both thermal racemization and ligand exchange with a thiol.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Maffei, Francesca, Giovanna Brancatelli, Tahnie Barboza, Enrico Dalcanale, Silvano Geremia y Roberta Pinalli. "Inherently chiral phosphonate cavitands as enantioselective receptors for mono-methylated L-amino acids". Supramolecular Chemistry 30, n.º 7 (22 de diciembre de 2017): 600–609. http://dx.doi.org/10.1080/10610278.2017.1417991.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Sun, Junling, James L. Bennett, Thomas J. Emge y Ralf Warmuth. "Thermodynamically Controlled Synthesis of a Chiral Tetra-cavitand Nanocapsule and Mechanism of Enantiomerization." Journal of the American Chemical Society 133, n.º 10 (16 de marzo de 2011): 3268–71. http://dx.doi.org/10.1021/ja110475w.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Brancatelli, G., C. Nicosia, T. Barboza, L. Guy, J. P. Dutasta, R. De Zorzi, N. Demitri, E. Dalcanale, S. Geremia y R. Pinalli. "Enantiospecific recognition of 2-butanol by an inherently chiral cavitand in the solid state". CrystEngComm 19, n.º 24 (2017): 3355–61. http://dx.doi.org/10.1039/c7ce00557a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Pappalardo, Andrea, Maria E. Amato, Francesco P. Ballistreri, Anna Notti, Gaetano A. Tomaselli, Rosa M. Toscano y Giuseppe Trusso Sfrazzetto. "Synthesis and topology of [2+2] calix[4]resorcarene-based chiral cavitand-salen macrocycles". Tetrahedron Letters 53, n.º 52 (diciembre de 2012): 7150–53. http://dx.doi.org/10.1016/j.tetlet.2012.10.101.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Amato, Maria E., Francesco P. Ballistreri, Salvatore D'Agata, Andrea Pappalardo, Gaetano A. Tomaselli, Rosa M. Toscano y Giuseppe Trusso Sfrazzetto. "Enantioselective Molecular Recognition of Chiral Organic Ammonium Ions and Amino Acids Using Cavitand-Salen-Based Receptors". European Journal of Organic Chemistry 2011, n.º 28 (31 de agosto de 2011): 5674–80. http://dx.doi.org/10.1002/ejoc.201100955.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Tamaki, Kento, Asumi Ishigami, Yasutaka Tanaka, Masamichi Yamanaka y Kenji Kobayashi. "Self-Assembled Boronic Ester Cavitand Capsules with Various Bis(catechol) Linkers: Cavity-Expanded and Chiral Capsules". Chemistry - A European Journal 21, n.º 39 (3 de agosto de 2015): 13714–22. http://dx.doi.org/10.1002/chem.201501717.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Nagymihály, Zoltán, János Wölfling, Gyula Schneider y Kollár. "Synthesis of 2‐Methylresorcinol‐Based Deepened Cavitands with Chiral Inlet Bearing Steroidal Moieties on the Upper Rim". ChemistrySelect 5, n.º 23 (17 de junio de 2020): 6933–38. http://dx.doi.org/10.1002/slct.202001728.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Sundaresan, Arun Kumar, Lakshmi S. Kaanumalle, Corinne L. D. Gibb, Bruce C. Gibb y V. Ramamurthy. "Chiral photochemistry within a confined space: diastereoselective photorearrangements of a tropolone and a cyclohexadienone included in a synthetic cavitand". Dalton Transactions, n.º 20 (2009): 4003. http://dx.doi.org/10.1039/b900017h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Nakamura, Munechika, Yoshimi Tsukamoto, Takuro Ueta, Yoshihisa Sei, Takanori Fukushima, Kenji Yoza y Kenji Kobayashi. "Cavitand‐Based Pd‐Pyridyl Coordination Capsules: Guest‐Induced Homo‐ or Heterocapsule Selection and Applications of Homocapsules to the Protection of a Photosensitive Guest and Chiral Capsule Formation". Chemistry – An Asian Journal 15, n.º 14 (22 de junio de 2020): 2218–30. http://dx.doi.org/10.1002/asia.202000603.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Mann, Enrique y Julius Jr Rebek. "ChemInform Abstract: Deepened Chiral Cavitands." ChemInform 39, n.º 46 (11 de noviembre de 2008). http://dx.doi.org/10.1002/chin.200846217.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Wang, Xiuze, Radoslav Z. Pavlović, Tyler J. Finnegan, Pratik Karmakar, Curtis E. Moore y Jovica D. Badjic. "A Rapid Access to Chiral and Tripodal Cavitands from β‐Pinene". Chemistry – A European Journal, 27 de septiembre de 2022. http://dx.doi.org/10.1002/chem.202202416.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Shi, Tan-Hao, Yuuya Nagata, Shigehisa Akine, Shunsuke Ohtani, Kenichi Kato y Tomoki Ogoshi. "A Twisted Chiral Cavitand with 5-Fold Symmetry and Its Length-Selective Binding Properties". Journal of the American Chemical Society, 18 de diciembre de 2022. http://dx.doi.org/10.1021/jacs.2c11225.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía