Artículos de revistas sobre el tema "CaVβ1"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "CaVβ1".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Cohen, Risa M., Jason D. Foell, Ravi C. Balijepalli, Vaibhavi Shah, Johannes W. Hell y Timothy J. Kamp. "Unique modulation of L-type Ca2+ channels by short auxiliary β1d subunit present in cardiac muscle". American Journal of Physiology-Heart and Circulatory Physiology 288, n.º 5 (mayo de 2005): H2363—H2374. http://dx.doi.org/10.1152/ajpheart.00348.2004.
Texto completoFoell, Jason D., Ravi C. Balijepalli, Brian P. Delisle, Anne Marie R. Yunker, Seth L. Robia, Jeffrey W. Walker, Maureen W. McEnery, Craig T. January y Timothy J. Kamp. "Molecular heterogeneity of calcium channel β-subunits in canine and human heart: evidence for differential subcellular localization". Physiological Genomics 17, n.º 2 (13 de abril de 2004): 183–200. http://dx.doi.org/10.1152/physiolgenomics.00207.2003.
Texto completoDespang, Patrick, Sarah Salamon, Alexandra Breitenkamp, Elza Kuzmenkina y Jan Matthes. "Inhibitory effects on L- and N-type calcium channels by a novel CaVβ1 variant identified in a patient with autism spectrum disorder". Naunyn-Schmiedeberg's Archives of Pharmacology 395, n.º 4 (5 de febrero de 2022): 459–70. http://dx.doi.org/10.1007/s00210-022-02213-7.
Texto completoTraoré, Massiré, Christel Gentil, Chiara Benedetto, Jean-Yves Hogrel, Pierre De la Grange, Bruno Cadot, Sofia Benkhelifa-Ziyyat et al. "An embryonic CaVβ1 isoform promotes muscle mass maintenance via GDF5 signaling in adult mouse". Science Translational Medicine 11, n.º 517 (6 de noviembre de 2019): eaaw1131. http://dx.doi.org/10.1126/scitranslmed.aaw1131.
Texto completoBelkacemi, Anouar, Andreas Beck, Barbara Wardas, Petra Weissgerber y Veit Flockerzi. "IP3-dependent Ca2+ signals are tightly controlled by Cavβ3, but not by Cavβ1, 2 and 4". Cell Calcium 104 (junio de 2022): 102573. http://dx.doi.org/10.1016/j.ceca.2022.102573.
Texto completoHeneghan, John F., Tora Mitra-Ganguli, Lee F. Stanish, Liwang Liu, Rubing Zhao y Ann R. Rittenhouse. "The Ca2+ channel β subunit determines whether stimulation of Gq-coupled receptors enhances or inhibits N current". Journal of General Physiology 134, n.º 5 (26 de octubre de 2009): 369–84. http://dx.doi.org/10.1085/jgp.200910203.
Texto completoBrown, Betty, M. Steven Oberste, Kaija Maher y Mark A. Pallansch. "Complete Genomic Sequencing Shows that Polioviruses and Members of Human Enterovirus Species C Are Closely Related in the Noncapsid Coding Region". Journal of Virology 77, n.º 16 (15 de agosto de 2003): 8973–84. http://dx.doi.org/10.1128/jvi.77.16.8973-8984.2003.
Texto completoTaylor, Jackson, Tan Zhang, Laura Messi, Jiang Qian, Cristina Furdui, Claudia Hereñú y Osvaldo Delbono. "The Cavβ1 Subunit Regulates Gene Expression in Muscle Progenitor Cells". Biophysical Journal 102, n.º 3 (enero de 2012): 365a. http://dx.doi.org/10.1016/j.bpj.2011.11.1993.
Texto completoTraore, M., C. Gentil, C. Benedetto, J. Hogrel, P. De la Grange, S. Benkhelifa-Ziyyat, L. Julien, M. Lemaitre, A. Ferry y S. Falcone. "P.133A novel CaVβ1 isoform connecting voltage sensing with muscle mass homeostasis". Neuromuscular Disorders 29 (octubre de 2019): S87. http://dx.doi.org/10.1016/j.nmd.2019.06.189.
Texto completoBuraei, Zafir y Jian Yang. "The β Subunit of Voltage-Gated Ca2+ Channels". Physiological Reviews 90, n.º 4 (octubre de 2010): 1461–506. http://dx.doi.org/10.1152/physrev.00057.2009.
Texto completoPark, Won Sun, Soon Chul Heo, Eun Su Jeon, Da Hye Hong, Youn Kyoung Son, Jae-Hong Ko, Hyoung Kyu Kim, Sun Young Lee, Jae Ho Kim y Jin Han. "Functional expression of smooth muscle-specific ion channels in TGF-β1-treated human adipose-derived mesenchymal stem cells". American Journal of Physiology-Cell Physiology 305, n.º 4 (15 de agosto de 2013): C377—C391. http://dx.doi.org/10.1152/ajpcell.00404.2012.
Texto completoXie, Mian, Xiang Li, Jing Han, Daniel L. Vogt, Silke Wittemann, Melanie D. Mark y Stefan Herlitze. "Facilitation versus depression in cultured hippocampal neurons determined by targeting of Ca2+ channel Cavβ4 versus Cavβ2 subunits to synaptic terminals". Journal of Cell Biology 178, n.º 3 (30 de julio de 2007): 489–502. http://dx.doi.org/10.1083/jcb.200702072.
Texto completoBéguin, Pascal, Kazuaki Nagashima, Ramasubbu N. Mahalakshmi, Réjan Vigot, Atsuko Matsunaga, Takafumi Miki, Mei Yong Ng et al. "BARP suppresses voltage-gated calcium channel activity and Ca2+-evoked exocytosis". Journal of Cell Biology 205, n.º 2 (21 de abril de 2014): 233–49. http://dx.doi.org/10.1083/jcb.201304101.
Texto completoFindeisen, Felix y Daniel L. Minor. "Disruption of the IS6-AID Linker Affects Voltage-gated Calcium Channel Inactivation and Facilitation". Journal of General Physiology 133, n.º 3 (23 de febrero de 2009): 327–43. http://dx.doi.org/10.1085/jgp.200810143.
Texto completoGonzalez-Gutierrez, Giovanni, Erick Miranda-Laferte, David Naranjo, Patricia Hidalgo y Alan Neely. "Mutations of Nonconserved Residues within the Calcium Channel α1-interaction Domain Inhibit β-Subunit Potentiation". Journal of General Physiology 132, n.º 3 (25 de agosto de 2008): 383–95. http://dx.doi.org/10.1085/jgp.200709901.
Texto completoRomano, Antonella, Antonia Feola, Antonio Porcellini, Vincenzo Gigantino, Maurizio Di Bonito, Annabella Di Mauro, Rocco Caggiano, Raffaella Faraonio y Candida Zuchegna. "Estrogen Induces Selective Transcription of Caveolin1 Variants in Human Breast Cancer through Estrogen Responsive Element-Dependent Mechanisms". International Journal of Molecular Sciences 21, n.º 17 (20 de agosto de 2020): 5989. http://dx.doi.org/10.3390/ijms21175989.
Texto completoJha, Mithilesh, Archana Jha, Ashish Singh, Petra Weissgerber, Marc Freichel, Veit Flockerzi y Richard Flavell. "Essential role of Cavβ2 in T Cell development and homeostasis. (LYM7P.715)". Journal of Immunology 192, n.º 1_Supplement (1 de mayo de 2014): 193.3. http://dx.doi.org/10.4049/jimmunol.192.supp.193.3.
Texto completoTaylor, Jackson, Andrea Pereyra, Tan Zhang, Maria Laura Messi, Zhong-Min Wang, Claudia Hereñú, Pei-Fen Kuan y Osvaldo Delbono. "The Cavβ1a subunit regulates gene expression and suppresses myogenin in muscle progenitor cells". Journal of Cell Biology 205, n.º 6 (16 de junio de 2014): 829–46. http://dx.doi.org/10.1083/jcb.201403021.
Texto completoAn, Mingwei, Xueling Chen, Zhuhong Yang, Jianyu Zhou, Shan Ye y Zhong Ding. "Co-Silencing of the Voltage-Gated Calcium Channel β Subunit and High-Voltage Activated α1 Subunit by dsRNA Soaking Resulted in Enhanced Defects in Locomotion, Stylet Thrusting, Chemotaxis, Protein Secretion, and Reproduction in Ditylenchus destructor". International Journal of Molecular Sciences 23, n.º 2 (11 de enero de 2022): 784. http://dx.doi.org/10.3390/ijms23020784.
Texto completoCatalucci, Daniele, Deng-Hong Zhang, Jaime DeSantiago, Franck Aimond, Guillaume Barbara, Jean Chemin, Désiré Bonci et al. "Akt regulates L-type Ca2+ channel activity by modulating Cavα1 protein stability". Journal of Cell Biology 184, n.º 6 (23 de marzo de 2009): 923–33. http://dx.doi.org/10.1083/jcb.200805063.
Texto completoPuckerin, Akil A., Donald D. Chang, Zunaira Shuja, Papiya Choudhury, Joachim Scholz y Henry M. Colecraft. "Engineering selectivity into RGK GTPase inhibition of voltage-dependent calcium channels". Proceedings of the National Academy of Sciences 115, n.º 47 (5 de noviembre de 2018): 12051–56. http://dx.doi.org/10.1073/pnas.1811024115.
Texto completoMitra-Ganguli, Tora, Iuliia Vitko, Edward Perez-Reyes y Ann R. Rittenhouse. "Orientation of palmitoylated CaVβ2a relative to CaV2.2 is critical for slow pathway modulation of N-type Ca2+ current by tachykinin receptor activation". Journal of General Physiology 134, n.º 5 (26 de octubre de 2009): 385–96. http://dx.doi.org/10.1085/jgp.200910204.
Texto completoMeissner, Marcel, Petra Weissgerber, Juan E. Camacho Londoño, Jean Prenen, Sabine Link, Sandra Ruppenthal, Jeffery D. Molkentin et al. "Moderate Calcium Channel Dysfunction in Adult Mice with Inducible Cardiomyocyte-specific Excision of the cacnb2 Gene". Journal of Biological Chemistry 286, n.º 18 (28 de febrero de 2011): 15875–82. http://dx.doi.org/10.1074/jbc.m111.227819.
Texto completoChen, Xingjuan, Degang Liu, Donghui Zhou, Yubing Si, David Xu, Christopher W. Stamatkin, Mona K. Ghozayel et al. "Small-molecule CaVα1⋅CaVβ antagonist suppresses neuronal voltage-gated calcium-channel trafficking". Proceedings of the National Academy of Sciences 115, n.º 45 (24 de octubre de 2018): E10566—E10575. http://dx.doi.org/10.1073/pnas.1813157115.
Texto completoAl Katat, Aya, Juan Zhao, Angelino Calderone y Lucie Parent. "Sympathetic Stimulation Upregulates the Ca2+ Channel Subunit, CaVα2δ1, via the β1 and ERK 1/2 Pathway in Neonatal Ventricular Cardiomyocytes". Cells 11, n.º 2 (6 de enero de 2022): 188. http://dx.doi.org/10.3390/cells11020188.
Texto completoJangsangthong, Wanchana, Elza Kuzmenkina, Ann Kristin Böhnke y Stefan Herzig. "Single-Channel Monitoring of Reversible L-Type Ca2+ Channel CaVα1-CaVβ Subunit Interaction". Biophysical Journal 101, n.º 11 (diciembre de 2011): 2661–70. http://dx.doi.org/10.1016/j.bpj.2011.09.063.
Texto completoJha, Archana, Ashish K. Singh, Petra Weissgerber, Marc Freichel, Veit Flockerzi, Richard A. Flavell y Mithilesh K. Jha. "Essential roles for Cavβ2 and Cav1 channels in thymocyte development and T cell homeostasis". Science Signaling 8, n.º 399 (20 de octubre de 2015): ra103. http://dx.doi.org/10.1126/scisignal.aac7538.
Texto completoRoberts-Crowley, Mandy L. y Ann R. Rittenhouse. "Arachidonic acid inhibition of L-type calcium (CaV1.3b) channels varies with accessory CaVβ subunits". Journal of General Physiology 133, n.º 4 (30 de marzo de 2009): 387–403. http://dx.doi.org/10.1085/jgp.200810047.
Texto completoBennett, Robert. "Reflecting on Editorial and Publishing Challenges: Government and Policy; The First 25 Years". Environment and Planning C: Government and Policy 26, n.º 1 (enero de 2008): 1–16. http://dx.doi.org/10.1068/cav1.
Texto completoPark, Heonyong, Young-Mi Go, Ritesh Darji, Jong-Whan Choi, Michael P. Lisanti, Matthew C. Maland y Hanjoong Jo. "Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase". American Journal of Physiology-Heart and Circulatory Physiology 278, n.º 4 (1 de abril de 2000): H1285—H1293. http://dx.doi.org/10.1152/ajpheart.2000.278.4.h1285.
Texto completoVan Petegem, Filip, Karl E. Duderstadt, Kimberly A. Clark, Michelle Wang y Daniel L. Minor. "Alanine-Scanning Mutagenesis Defines a Conserved Energetic Hotspot in the CaVα1 AID-CaVβ Interaction Site that Is Critical for Channel Modulation". Structure 16, n.º 2 (febrero de 2008): 280–94. http://dx.doi.org/10.1016/j.str.2007.11.010.
Texto completoColvin, Robert B. "CADI, Canti, Cavi1". Transplantation 83, n.º 6 (marzo de 2007): 677–78. http://dx.doi.org/10.1097/01.tp.0000262011.05196.a1.
Texto completoCroager, Emma. "CAV1 connection". Nature Reviews Cancer 4, n.º 2 (febrero de 2004): 90–91. http://dx.doi.org/10.1038/nrc1283.
Texto completoBernardo, José F., Clara E. Magyar, W. Bruce Sneddon y Peter A. Friedman. "Impaired renal calcium absorption in mice lacking calcium channel β3 subunits". Canadian Journal of Physiology and Pharmacology 87, n.º 7 (julio de 2009): 522–30. http://dx.doi.org/10.1139/y09-035.
Texto completoCopeland, Courtney A., Bing Han, Ajit Tiwari, Eric D. Austin, James E. Loyd, James D. West y Anne K. Kenworthy. "A disease-associated frameshift mutation in caveolin-1 disrupts caveolae formation and function through introduction of a de novo ER retention signal". Molecular Biology of the Cell 28, n.º 22 (noviembre de 2017): 3095–111. http://dx.doi.org/10.1091/mbc.e17-06-0421.
Texto completoEl-Yazbi, Ahmed F., Woo Jung Cho, Richard Schulz y Edwin E. Daniel. "Caveolin-1 knockout alters β-adrenoceptors function in mouse small intestine". American Journal of Physiology-Gastrointestinal and Liver Physiology 291, n.º 6 (diciembre de 2006): G1020—G1030. http://dx.doi.org/10.1152/ajpgi.00159.2006.
Texto completoRathor, Navneeta, Ran Zhuang, Jian-Ying Wang, James M. Donahue, Douglas J. Turner y Jaladanki N. Rao. "Src-mediated caveolin-1 phosphorylation regulates intestinal epithelial restitution by altering Ca2+ influx after wounding". American Journal of Physiology-Gastrointestinal and Liver Physiology 306, n.º 8 (15 de abril de 2014): G650—G658. http://dx.doi.org/10.1152/ajpgi.00003.2014.
Texto completoGeletu, Mulu, Zaid Taha, Rozanne Arulanandam, Reva Mohan, Hikmat H. Assi, Maria G. Castro, Ivan Robert Nabi, Patrick T. Gunning y Leda Raptis. "Effect of caveolin-1 on Stat3-ptyr705 levels in breast and lung carcinoma cells". Biochemistry and Cell Biology 97, n.º 5 (octubre de 2019): 638–46. http://dx.doi.org/10.1139/bcb-2018-0367.
Texto completoGodina, Christopher, Somayeh Khazaei, Mattias Belting, Johan Vallon-Christersson, Björn Nodin, Karin Jirström, Karolin Isaksson, Ana Bosch y Helena Jernström. "Abstract A006: Spatial localization of Caveolin-1 protein in triple negative breast cancer is related to different molecular features". Cancer Research 84, n.º 3_Supplement_1 (1 de febrero de 2024): A006. http://dx.doi.org/10.1158/1538-7445.advbc23-a006.
Texto completoJoshi, Bharat, Michele Bastiani, Scott S. Strugnell, Cecile Boscher, Robert G. Parton y Ivan R. Nabi. "Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation". Journal of Cell Biology 199, n.º 3 (22 de octubre de 2012): 425–35. http://dx.doi.org/10.1083/jcb.201207089.
Texto completoTang, Wenqing, Xuemei Feng, Si Zhang, Zhenggang Ren, Yinkun Liu, Biwei Yang, Bei lv, Yu Cai, Jinglin Xia y Ningling Ge. "Caveolin-1 Confers Resistance of Hepatoma Cells to Anoikis by Activating IGF-1 Pathway". Cellular Physiology and Biochemistry 36, n.º 3 (2015): 1223–36. http://dx.doi.org/10.1159/000430292.
Texto completoFeldman, Rebecca, Zoran Gatalica, Sandeep K. Reddy, Michael Castro y Jasgit C. Sachdev. "Caveolin-1: Oncogenic role in breast cancer? Clues from molecular profiling." Journal of Clinical Oncology 33, n.º 28_suppl (1 de octubre de 2015): 134. http://dx.doi.org/10.1200/jco.2015.33.28_suppl.134.
Texto completoCai, Ting, Haojie Wang, Yiliang Chen, Lijun Liu, William T. Gunning, Luis Eduardo M. Quintas y Zi-Jian Xie. "Regulation of caveolin-1 membrane trafficking by the Na/K-ATPase". Journal of Cell Biology 182, n.º 6 (15 de septiembre de 2008): 1153–69. http://dx.doi.org/10.1083/jcb.200712022.
Texto completoAvchalumov, Yosef, Alison D. Kreisler, Wulfran Trenet, Mahasweta Nayak, Brian P. Head, Juan C. Piña-Crespo y Chitra D. Mandyam. "Caveolin-1 Expression in the Dorsal Striatum Drives Methamphetamine Addiction-Like Behavior". International Journal of Molecular Sciences 22, n.º 15 (30 de julio de 2021): 8219. http://dx.doi.org/10.3390/ijms22158219.
Texto completoGodina, Christopher, Somayeh Khazaei, Mattias Belting, Johan Vallon-Christersson, Björn Nodin, Karin Jirström, Karolin Isaksson, Ana Bosch y Helena Jernström. "High Caveolin-1 mRNA expression in triple-negative breast cancer is associated with an aggressive tumor microenvironment, chemoresistance, and poor clinical outcome". PLOS ONE 19, n.º 7 (3 de julio de 2024): e0305222. http://dx.doi.org/10.1371/journal.pone.0305222.
Texto completoZimnicka, Adriana M., Yawer S. Husain, Ayesha N. Shajahan, Maria Sverdlov, Oleg Chaga, Zhenlong Chen, Peter T. Toth et al. "Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae". Molecular Biology of the Cell 27, n.º 13 (julio de 2016): 2090–106. http://dx.doi.org/10.1091/mbc.e15-11-0756.
Texto completoAl Madhoun, Ashraf, Shihab Kochumon, Dania Haddad, Reeby Thomas, Rasheeba Nizam, Lavina Miranda, Sardar Sindhu, Milad S. Bitar, Rasheed Ahmad y Fahd Al-Mulla. "Adipose Tissue Caveolin-1 Upregulation in Obesity Involves TNF-α/NF-κB Mediated Signaling". Cells 12, n.º 7 (27 de marzo de 2023): 1019. http://dx.doi.org/10.3390/cells12071019.
Texto completoLobos-González, Lorena, Lorena Oróstica, Natalia Díaz-Valdivia, Victoria Rojas-Celis, America Campos, Eduardo Duran-Jara, Nicole Farfán, Lisette Leyton y Andrew F. G. Quest. "Prostaglandin E2 Exposure Disrupts E-Cadherin/Caveolin-1-Mediated Tumor Suppression to Favor Caveolin-1-Enhanced Migration, Invasion, and Metastasis in Melanoma Models". International Journal of Molecular Sciences 24, n.º 23 (29 de noviembre de 2023): 16947. http://dx.doi.org/10.3390/ijms242316947.
Texto completoGairhe, Salina, Keytam S. Awad, Edward J. Dougherty, Gabriela A. Ferreyra, Shuibang Wang, Zu-Xi Yu, Kazuyo Takeda et al. "Type I interferon activation and endothelial dysfunction in caveolin-1 insufficiency-associated pulmonary arterial hypertension". Proceedings of the National Academy of Sciences 118, n.º 11 (8 de marzo de 2021): e2010206118. http://dx.doi.org/10.1073/pnas.2010206118.
Texto completoZhang, Chengbiao, Xiaotong Su, Lars Bellner y Dao-Hong Lin. "Caveolin-1 regulates corneal wound healing by modulating Kir4.1 activity". American Journal of Physiology-Cell Physiology 310, n.º 11 (1 de junio de 2016): C993—C1000. http://dx.doi.org/10.1152/ajpcell.00023.2016.
Texto completo