Artículos de revistas sobre el tema "Catalyst carrier"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Catalyst carrier".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Teng, Yingyue, Dingze Liu, Qiang Li, Xue Bai y Yinmin Song. "Research Progress on Application in Energy Conversion of Silicon Carbide-Based Catalyst Carriers". Catalysts 13, n.º 2 (19 de enero de 2023): 236. http://dx.doi.org/10.3390/catal13020236.
Texto completoAlexandrova, Julia V., Nataliya V. Maltseva, Tatiana A. Vishnevskaya y Shamil O. Omarov. "INFLUENCE TECHNOLOGY OF PREPARATION ON PROPERTIES Al-Ce-Zr-CARRIERS". Bulletin of the Saint Petersburg State Institute of Technology (Technical University) 55 (2020): 3–9. http://dx.doi.org/10.36807/1998-9849-2020-55-81-3-9.
Texto completoZhao, Yue Qing, Qian Yi Jia, Ying Hua Liang, Hong Xia Guo, Feng Feng Li y Xin Hua Liu. "CuO-CoO-MnO/SiO2 Nanocomposite Aerogel as Catalysts Carrier and Its Cocatalysis Mechanism in the Synthesis of Diphenyl Carbonate". Advanced Materials Research 284-286 (julio de 2011): 707–10. http://dx.doi.org/10.4028/www.scientific.net/amr.284-286.707.
Texto completoBao, Jianguo, Wenxiu Rao, Yi Zhou, Bin Wen, Bo Wang, Guocheng Lv y Libing Liao. "Effect of the Microstructure of Support Materials on Cracking Catalyst Performance". Crystals 13, n.º 1 (10 de enero de 2023): 123. http://dx.doi.org/10.3390/cryst13010123.
Texto completoYang, Rui Qin, Xi Kun Gai, Chuang Xing, Jian Wei Mao y Cheng Xue Lv. "Performance of Cu-Based Catalysts in Low-Temperature Methanol Synthesis". Advanced Materials Research 1004-1005 (agosto de 2014): 1623–26. http://dx.doi.org/10.4028/www.scientific.net/amr.1004-1005.1623.
Texto completoSmołka, Szymon y Katarzyna Krukiewicz. "Catalyst Design through Grafting of Diazonium Salts—A Critical Review on Catalyst Stability". International Journal of Molecular Sciences 24, n.º 16 (8 de agosto de 2023): 12575. http://dx.doi.org/10.3390/ijms241612575.
Texto completoLiao, Yalong, Yiyang Wang y Yu Zhang. "Preparation and Catalytic Hydrodechlorination Property of Nano Bimetallic Catalyst Pd–Ni/γAl2O3–SiO2". Catalysts 12, n.º 4 (24 de marzo de 2022): 370. http://dx.doi.org/10.3390/catal12040370.
Texto completoFeng, Wenli, Xuebin Lu, Jian Xiong, Zhihao Yu, Yilin Wang, Jianguo Cui, Rui Zhang y Rengui Weng. "Solid–Waste–Derived Geopolymer–Type Zeolite–like High Functional Catalytic Materials Catalyze Efficient Hydrogenation of Levulinic Acid". Catalysts 12, n.º 11 (4 de noviembre de 2022): 1361. http://dx.doi.org/10.3390/catal12111361.
Texto completoKurta, Sergiy, Ihor Mykytyn, Victoria Ribun y Olga Khatsevich. "Features of the structure active centers of industrial catalysts for the oxidative chlorination of ethylene". International Journal of Engineering & Technology 7, n.º 2.23 (20 de abril de 2018): 307. http://dx.doi.org/10.14419/ijet.v7i2.23.12751.
Texto completoTian, Qingbin, Lansen Bi, Shuyan Lin, Jiangshan Gao y Yan He. "A review of cold plasma for catalyst synthesis and modification". Clean Energy Science and Technology 2, n.º 1 (29 de marzo de 2024): 131. http://dx.doi.org/10.18686/cest.v2i1.131.
Texto completoXu, Zhuang, Mengli Li, Guowang Shen, Yuhao Chen, Dashun Lu, Peng Ren, Hao Jiang, Xugen Wang y Bin Dai. "Solvent Effects in the Preparation of Catalysts Using Activated Carbon as a Carrier". Nanomaterials 13, n.º 3 (18 de enero de 2023): 393. http://dx.doi.org/10.3390/nano13030393.
Texto completoShaimardan, E., S. K. Kabdrakhmanova, M. M. Beisebekov, B. S. Selenova, Zh Imangazinova y S. Sydykbayeva. "NICKEL NANOCATALYST FOR HYDRODECHLORINATION OF POLYCHLORINATED BIPHENYLS". NNC RK Bulletin, n.º 2 (6 de julio de 2023): 74–81. http://dx.doi.org/10.52676/1729-7885-2023-2-74-81.
Texto completoFarmanov, Behzod y Shakhzod Tavashov. "Processing of the catalyst used in reforming natural gas". E3S Web of Conferences 411 (2023): 01034. http://dx.doi.org/10.1051/e3sconf/202341101034.
Texto completoSong, Jialin, Ziliang Wang, Xingxing Cheng y Xiuping Wang. "State-of-Art Review of NO Reduction Technologies by CO, CH4 and H2". Processes 9, n.º 3 (23 de marzo de 2021): 563. http://dx.doi.org/10.3390/pr9030563.
Texto completoFornalczyk, A., M. Kraszewski, J. Willner, J. Kaduková, A. Mrážiková, R. Marcinčáková y O. Velgosová. "Dissolution of Metal Supported Spent Auto Catalysts in Acids". Archives of Metallurgy and Materials 61, n.º 1 (1 de marzo de 2016): 233–36. http://dx.doi.org/10.1515/amm-2016-0043.
Texto completoSamotaev, Nikolay y Alexey Vasiliev. "Mixed Cerium/Zirconium Oxide as a Material for Carbon Monoxide Thermocatalytic Gas Sensor". Proceedings 2, n.º 13 (4 de diciembre de 2018): 841. http://dx.doi.org/10.3390/proceedings2130841.
Texto completoFornalczyk, Agnieszka, Slawomir Golak y Mariola Saternus. "Model of Infiltration of Spent Automotive Catalysts by Molten Metal in Process of Platinum Metals Recovery". Mathematical Problems in Engineering 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/461085.
Texto completoGuo, Jianping y Ping Chen. "Catalyst: NH3 as an Energy Carrier". Chem 3, n.º 5 (noviembre de 2017): 709–12. http://dx.doi.org/10.1016/j.chempr.2017.10.004.
Texto completoLi, Chengyang, Hongyi Li, Libo Zhang, Yubo Ma y Tianfu Wang. "Hydroformylation of Dicyclopentadiene to Monoformyltricyclodecenes over Supported Ultra-Low Content Rh Catalysts". Progress in Reaction Kinetics and Mechanism 43, n.º 2 (junio de 2018): 166–72. http://dx.doi.org/10.3184/146867818x15233705894356.
Texto completoIusovskii, Aleksei, Roman Boldushevskii, Aleksandr Mozhaev, Olga Shmelkova, Elizaveta Pavlycheva, Aleksandr Koklyukhin y Pavel Nikulshin. "Tailoring NiMo-Based Catalysts for Production of Low-Viscosity Sustainable Hydrocarbon Bases for Drilling Muds from Secondary Gas Oils". Energies 16, n.º 16 (8 de agosto de 2023): 5859. http://dx.doi.org/10.3390/en16165859.
Texto completoИванов, О. С., М. С. Василишин, А. Г. Карпов, А. А. Кухленко, Д. Б. Иванова y С. Е. Орлов. "PERFECTION of PREPARATION TECHNOLOGY of the CATALYST CARRIER". Южно-Сибирский научный вестник, n.º 6(40) (20 de diciembre de 2021): 43–49. http://dx.doi.org/10.25699/sssb.2021.40.6.031.
Texto completoYin, Min, Jin Chuan Gu, Zhi Jin Fan y Wei Zhao. "Research on the Preparation of Catalyst in Dealing with AR88 by CWAO". Advanced Materials Research 1092-1093 (marzo de 2015): 1046–50. http://dx.doi.org/10.4028/www.scientific.net/amr.1092-1093.1046.
Texto completoYu, Lei, Min Song, Yuexing Wei y Jun Xiao. "Combining Carbon Fibers with Ni/γ–Al2O3 Used for Syngas Production: Part A: Preparation and Evaluation of Complex Carrier Catalysts". Catalysts 8, n.º 12 (13 de diciembre de 2018): 658. http://dx.doi.org/10.3390/catal8120658.
Texto completoL, Liu. "The Application of Mesoporous ZSM-5 Zeolite in the ULSD Catalysts". Petroleum & Petrochemical Engineering Journal 4, n.º 4 (2020): 1–3. http://dx.doi.org/10.23880/ppej-16000236.
Texto completoLu, Xi Ning y Cun Yi Song. "The Study of the MnOx/TiO2-ZrO2 Used in the Sintering Flue Gas Low-Temperature Selective Catalytic Reaction". Advanced Materials Research 641-642 (enero de 2013): 551–56. http://dx.doi.org/10.4028/www.scientific.net/amr.641-642.551.
Texto completoSwearer, Dayne F., Hangqi Zhao, Linan Zhou, Chao Zhang, Hossein Robatjazi, John Mark P. Martirez, Caroline M. Krauter et al. "Heterometallic antenna−reactor complexes for photocatalysis". Proceedings of the National Academy of Sciences 113, n.º 32 (21 de julio de 2016): 8916–20. http://dx.doi.org/10.1073/pnas.1609769113.
Texto completoXu, Jun Qiang, Fang Guo, Jun Li y Xue Jun Quan. "Preparation of the Modified Mesoporous Beta Materials and its Application in Wet Catalytic Degradation of Methyl Orange". Advanced Materials Research 393-395 (noviembre de 2011): 1381–84. http://dx.doi.org/10.4028/www.scientific.net/amr.393-395.1381.
Texto completoTungatarova, Svetlana, Galina Xanthopoulou, George Vekinis, Konstantinos Karanasios, Tolkyn Baizhumanova, Manapkhan Zhumabek y Marzhan Sadenova. "Ni-Al Self-Propagating High-Temperature Synthesis Catalysts in Dry Reforming of Methane to Hydrogen-Enriched Fuel Mixtures". Catalysts 12, n.º 10 (18 de octubre de 2022): 1270. http://dx.doi.org/10.3390/catal12101270.
Texto completoLi, Chengyang, Libo Zhang, Yubo Ma y Tianfu Wang. "Nanopowder-Supported Ultra-Low Content Co–Rh Bimetallic Catalysts for Hydroformylation of Monoformyltricyclodecenes to Value-Added Fine Chemicals". Progress in Reaction Kinetics and Mechanism 43, n.º 3-4 (octubre de 2018): 254–61. http://dx.doi.org/10.3184/146867818x15319903829173.
Texto completoGlikin, M. A., I. M. Glikina y E. Kauffeldt. "Investigations and Applications of Aerosol Nano-Catalysis in a Vibrofluidized (Vibrating) Bed". Adsorption Science & Technology 23, n.º 2 (marzo de 2005): 135–43. http://dx.doi.org/10.1260/0263617054037781.
Texto completoZhang, Jinxu, Fusheng Yang, Bin Wang, Dong Li, Min Wei, Tao Fang y Zaoxiao Zhang. "Heterogeneous Catalysts in N-Heterocycles and Aromatics as Liquid Organic Hydrogen Carriers (LOHCs): History, Present Status and Future". Materials 16, n.º 10 (15 de mayo de 2023): 3735. http://dx.doi.org/10.3390/ma16103735.
Texto completoZhou, Jie, Xin Zhao, Haoming Xu, Zhichao Wang, Xiaoyuan Zhang y Zhiqiang Su. "Integration of Carbon Dots on Nanoflower Structured ZnCdS as a Cocatalyst for Photocatalytic Degradation". Materials 16, n.º 1 (30 de diciembre de 2022): 366. http://dx.doi.org/10.3390/ma16010366.
Texto completoLi, Luming, Song Wu, Hongmei Li, Jie Deng y Junshan Li. "Preparation of Novel Mesoporous LaFeO3-SBA-15-CTA Support for Syngas Formation of Dry Reforming". Nanomaterials 12, n.º 9 (24 de abril de 2022): 1451. http://dx.doi.org/10.3390/nano12091451.
Texto completoLi, Luming, Song Wu, Hongmei Li, Jie Deng y Junshan Li. "Preparation of Novel Mesoporous LaFeO3-SBA-15-CTA Support for Syngas Formation of Dry Reforming". Nanomaterials 12, n.º 9 (24 de abril de 2022): 1451. http://dx.doi.org/10.3390/nano12091451.
Texto completoGuo, Xiuling, Jihai Duan, Chaojie Li, Zisheng Zhang y Weiwen Wang. "Modified bamboo-based activated carbon as the catalyst carrier for the gas phase synthesis of vinyl acetate from acetylene and acetic acid". International Journal of Chemical Reactor Engineering 19, n.º 4 (18 de febrero de 2021): 331–40. http://dx.doi.org/10.1515/ijcre-2020-0196.
Texto completoPavliuk, N. S., V. V. Ivasiv, O. M. Orobchuk, D. S. Shevchenko y R. V. Nebesnyi. "Kinetics of aldol condensation of acetic acid with formaldehyde on B–P–V–W–OX/SiO2 catalyst". Chemistry, Technology and Application of Substances 3, n.º 2 (1 de noviembre de 2020): 39–45. http://dx.doi.org/10.23939/ctas2020.02.039.
Texto completoLi, Guobo, Weiwei Feng, Yiwei Luo, Jie Yan, Yining Cai, Yiling Wang, Shule Zhang, Wenming Liu y Honggen Peng. "Unraveling FeOx Nanoparticles Confined on Fibrous Mesoporous Silica Catalyst Construction and CO Catalytic Oxidation Performance". Catalysts 14, n.º 1 (14 de enero de 2024): 63. http://dx.doi.org/10.3390/catal14010063.
Texto completoGou, Xiang, Kai Zhang, Lian Sheng Liu, Wen Yong Liu, Zi Fang Wang, Guang Yang, Jin Xiang Wu y En Yu Wang. "Study on Noble Metal Catalyst for Selective Catalytic Reduction of NOx at Low Temperature". Applied Mechanics and Materials 448-453 (octubre de 2013): 885–89. http://dx.doi.org/10.4028/www.scientific.net/amm.448-453.885.
Texto completoDönmez, Fahriye, Burcu Kiren y Nezihe Ayas. "Investigation of Hydrogen Production from Sodium Borohydride in the Presence of Ni/Al2O3". IOP Conference Series: Earth and Environmental Science 1050, n.º 1 (1 de julio de 2022): 012012. http://dx.doi.org/10.1088/1755-1315/1050/1/012012.
Texto completoShao, Jiaming, Yunchu Zhai, Luyang Zhang, Li Xiang y Fawei Lin. "Low-Temperature Catalytic Ozonation of Multitype VOCs over Zeolite-Supported Catalysts". International Journal of Environmental Research and Public Health 19, n.º 21 (4 de noviembre de 2022): 14515. http://dx.doi.org/10.3390/ijerph192114515.
Texto completoAzizi, Nor, Young Kwang Kim, Jin Miyawaki, Isao Mochida y Seong Ho Yoon. "Low Temperature Catalytic Steam Gasification of Waste Palm Trunk by Pottasium Carbonate Supported on Perovskite Oxide". Advanced Materials Research 626 (diciembre de 2012): 551–58. http://dx.doi.org/10.4028/www.scientific.net/amr.626.551.
Texto completoLiu, Lin, Yucheng Fang, Rongyi Gao y Jianfen Li. "Optimization of Ni/ZnZr catalyst for enhanced syngas yield in catalytic pyrolysis of rice straw". BioResources 18, n.º 4 (18 de septiembre de 2023): 7524–38. http://dx.doi.org/10.15376/biores.18.4.7524-7538.
Texto completoWang, Anping, Wenxuan Quan y Heng Zhang. "Efficient Synthesis of Biodiesel Catalyzed by Chitosan-Based Catalysts". International Journal of Chemical Engineering 2021 (29 de diciembre de 2021): 1–11. http://dx.doi.org/10.1155/2021/8971613.
Texto completoZhang, Xue Mei y Feng Xing Niu. "Liquid-Phase Hydrogenation to 2, 4-Tolylenediamine over Supported HY Catalysts". Advanced Materials Research 512-515 (mayo de 2012): 2381–85. http://dx.doi.org/10.4028/www.scientific.net/amr.512-515.2381.
Texto completoWang, Xiao, Fei Zhao, Nan Zhang, Wenli Wu y Yuhua Wang. "Hollow Spherical Pd/CdS/NiS with Carrier Spatial Separation for Photocatalytic Hydrogen Generation". Nanomaterials 13, n.º 8 (10 de abril de 2023): 1326. http://dx.doi.org/10.3390/nano13081326.
Texto completoXin, XU, DONG Xufeng, HUANG Hao y QI Min. "3D Nitrogen-Doped Porous Carbon Supported Pt Catalyst for Electrocatalytic Oxidation of Glucose". Progress in Chinese Materials Sciences 2, n.º 3 (28 de septiembre de 2023): 41–49. http://dx.doi.org/10.48014/pcms.20230403001.
Texto completoKang, Jianli, Jiajun Li, Naiqin Zhao, Philip Nash, Chunsheng Shi y Ronglu Sun. "Study of Mg Powder as Catalyst Carrier for the Carbon Nanotube Growth by CVD". Journal of Nanomaterials 2011 (2011): 1–6. http://dx.doi.org/10.1155/2011/938493.
Texto completoKurunina, G. M., O. M. Ivankina y G. M. Butov. "Hydrogenation of Nitro Compounds over Catalytic Systems Containing Rare-Earth Oxides". Solid State Phenomena 316 (abril de 2021): 684–88. http://dx.doi.org/10.4028/www.scientific.net/ssp.316.684.
Texto completoTrambouze, Pierre. "Structuring Information and Entropy: Catalyst as Information Carrier". Entropy 8, n.º 3 (16 de junio de 2006): 113–30. http://dx.doi.org/10.3390/e8030113.
Texto completo崔, 晗. "Orthogonal Design of the Hydrophobic Catalyst Carrier SDB". Nuclear Science and Technology 07, n.º 03 (2019): 114–22. http://dx.doi.org/10.12677/nst.2019.73016.
Texto completo