Artículos de revistas sobre el tema "Catalysis"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Catalysis".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Zhao, Xiaodan y Lihao Liao. "Modern Organoselenium Catalysis: Opportunities and Challenges". Synlett 32, n.º 13 (11 de mayo de 2021): 1262–68. http://dx.doi.org/10.1055/a-1506-5532.
Texto completoZhou, Wen-Jun, Da-Gang Yu, Yi-Han Zhang, Yong-Yuan Gui y Liang Sun. "Merging Transition-Metal Catalysis with Photoredox Catalysis: An Environmentally Friendly Strategy for C–H Functionalization". Synthesis 50, n.º 17 (8 de agosto de 2018): 3359–78. http://dx.doi.org/10.1055/s-0037-1610222.
Texto completoDagorne, Samuel. "Recent Developments on N-Heterocyclic Carbene Supported Zinc Complexes: Synthesis and Use in Catalysis". Synthesis 50, n.º 18 (28 de junio de 2018): 3662–70. http://dx.doi.org/10.1055/s-0037-1610088.
Texto completoFañanás-Mastral, Martín, Eva Rivera-Chao y Laura Fra. "Synergistic Bimetallic Catalysis for Carboboration of Unsaturated Hydrocarbons". Synthesis 50, n.º 19 (9 de julio de 2018): 3825–32. http://dx.doi.org/10.1055/s-0037-1610434.
Texto completoDing, Bo, Qilin Xue, Hong-Gang Cheng, Qianghui Zhou y Shihu Jia. "Recent Advances in Catalytic Nonenzymatic Kinetic Resolution of Tertiary Alcohols". Synthesis 54, n.º 07 (2 de diciembre de 2021): 1721–32. http://dx.doi.org/10.1055/a-1712-0912.
Texto completoKaplunenko, Volodymyr y Mykola Kosinov. "Electric field - induced catalysis. Laws of field catalysis". InterConf, n.º 26(129) (18 de octubre de 2022): 332–51. http://dx.doi.org/10.51582/interconf.19-20.10.2022.037.
Texto completoKhan, Mohammad Niyaz y Ibrahim Isah Fagge. "Kinetics and Mechanism of Cationic Micelle/Flexible Nanoparticle Catalysis: A Review". Progress in Reaction Kinetics and Mechanism 43, n.º 1 (marzo de 2018): 1–20. http://dx.doi.org/10.3184/146867818x15066862094905.
Texto completoWilliams, Ian H. "Catalysis: transition-state molecular recognition?" Beilstein Journal of Organic Chemistry 6 (3 de noviembre de 2010): 1026–34. http://dx.doi.org/10.3762/bjoc.6.117.
Texto completoShubina, Tatyana E. y Timothy Clark. "Catalysis of the Quadricyclane to Norbornadiene Rearrangement by SnCl2 and CuSO4". Zeitschrift für Naturforschung B 65, n.º 3 (1 de marzo de 2010): 347—r369. http://dx.doi.org/10.1515/znb-2010-0319.
Texto completoHidayati, Nur, Rahmah Puspita Sari y Herry Purnama. "Catalysis of glycerol acetylation on solid acid catalyst: a review". Jurnal Kimia Sains dan Aplikasi 23, n.º 12 (14 de enero de 2021): 414–23. http://dx.doi.org/10.14710/jksa.23.12.414-423.
Texto completoBaráth, Eszter. "Selective Reduction of Carbonyl Compounds via (Asymmetric) Transfer Hydrogenation on Heterogeneous Catalysts". Synthesis 52, n.º 04 (2 de enero de 2020): 504–20. http://dx.doi.org/10.1055/s-0039-1691542.
Texto completoLilley, David M. J. "RNA catalysis: More than a messenger". Biochemist 28, n.º 2 (1 de abril de 2006): 7–10. http://dx.doi.org/10.1042/bio02802007.
Texto completoTaqui Khan, M. M. "Carbonylation Reactions in Aqueous or Mixed Solvent Systems". Platinum Metals Review 35, n.º 2 (1 de abril de 1991): 70–82. http://dx.doi.org/10.1595/003214091x3527082.
Texto completoYe, Rong, Tyler J. Hurlburt, Kairat Sabyrov, Selim Alayoglu y Gabor A. Somorjai. "Molecular catalysis science: Perspective on unifying the fields of catalysis". Proceedings of the National Academy of Sciences 113, n.º 19 (25 de abril de 2016): 5159–66. http://dx.doi.org/10.1073/pnas.1601766113.
Texto completoHabib, Umair, Farooq Ahmad, Muhammad Awais, Namisa Naz, Maira Aslam, Malka Urooj, Anam Moqeem et al. "Sustainable Catalysis: Navigating Challenges and Embracing Opportunities for a Greener Future". Journal of Chemistry and Environment 2, n.º 2 (4 de octubre de 2023): 14–53. http://dx.doi.org/10.56946/jce.v2i2.205.
Texto completoKim, Byungjun, Yongjae Kim y Sarah Yunmi Lee. "Stereoselective Michael Additions of Arylacetic Acid Derivatives by Asymmetric Organocatalysis". Synlett 33, n.º 07 (5 de enero de 2022): 609–16. http://dx.doi.org/10.1055/s-0041-1737323.
Texto completoMotokura, Ken y Kyogo Maeda. "Recent Advances in Heterogeneous Ir Complex Catalysts for Aromatic C–H Borylation". Synthesis 53, n.º 18 (9 de abril de 2021): 3227–34. http://dx.doi.org/10.1055/a-1478-6118.
Texto completoIglesias, Daniel y Michele Melchionna. "Enter the Tubes: Carbon Nanotube Endohedral Catalysis". Catalysts 9, n.º 2 (1 de febrero de 2019): 128. http://dx.doi.org/10.3390/catal9020128.
Texto completoWan, Qiang, Sen Lin y Hua Guo. "Frustrated Lewis Pairs in Heterogeneous Catalysis: Theoretical Insights". Molecules 27, n.º 12 (10 de junio de 2022): 3734. http://dx.doi.org/10.3390/molecules27123734.
Texto completoLomic, Gizela, Erne Kis, Goran Boskovic y Radmila Marinkovic-Neducin. "Application of scanning electron microscopy in catalysis". Acta Periodica Technologica, n.º 35 (2004): 67–77. http://dx.doi.org/10.2298/apt0435067l.
Texto completoCrawford, Jennifer y Matthew Sigman. "Conformational Dynamics in Asymmetric Catalysis: Is Catalyst Flexibility a Design Element?" Synthesis 51, n.º 05 (8 de enero de 2019): 1021–36. http://dx.doi.org/10.1055/s-0037-1611636.
Texto completoPonce, Adrian. "Radionuclide-induced defect sites in iron-bearing minerals may have accelerated the emergence of life". Interface Focus 9, n.º 6 (18 de octubre de 2019): 20190085. http://dx.doi.org/10.1098/rsfs.2019.0085.
Texto completoLi, Shangkun, Rizwan Ahmed, Yanhui Yi y Annemie Bogaerts. "Methane to Methanol through Heterogeneous Catalysis and Plasma Catalysis". Catalysts 11, n.º 5 (1 de mayo de 2021): 590. http://dx.doi.org/10.3390/catal11050590.
Texto completoYap, Daryl Q. J., Raju Cheerlavancha, Renecia Lowe, Siyao Wang y Luke Hunter. "Investigation of cis- and trans-4-Fluoroprolines as Enantioselective Catalysts in a Variety of Organic Transformations". Australian Journal of Chemistry 68, n.º 1 (2015): 44. http://dx.doi.org/10.1071/ch14129.
Texto completoAbu-Reziq, Raed y Howard Alper. "Magnetically Separable Base Catalysts: Heterogeneous Catalysis vs. Quasi-Homogeneous Catalysis". Applied Sciences 2, n.º 2 (26 de marzo de 2012): 260–76. http://dx.doi.org/10.3390/app2020260.
Texto completoRoss, Julian. "API Abstracts - Catalysts and Catalysis". Applied Catalysis 30, n.º 1 (marzo de 1987): 192. http://dx.doi.org/10.1016/s0166-9834(00)81032-5.
Texto completoCatlow, Richard. "Modelling of catalysts and catalysis". Journal of Computer-Aided Materials Design 3, n.º 1-3 (agosto de 1996): 56–60. http://dx.doi.org/10.1007/bf01185636.
Texto completoDegnan, Tom. "Green catalysts and green catalysis". Focus on Catalysts 2024, n.º 9 (septiembre de 2024): 1. http://dx.doi.org/10.1016/j.focat.2024.09.001.
Texto completoWu, Zhiyi, Jiahui Shen, Chaoran Li, Chengcheng Zhang, Chunpeng Wu, Zimu Li, Xingda An y Le He. "Niche Applications of MXene Materials in Photothermal Catalysis". Chemistry 5, n.º 1 (6 de marzo de 2023): 492–510. http://dx.doi.org/10.3390/chemistry5010036.
Texto completoSaha, Debasree y Chhanda Mukhopadhyay. "Metal Nanoparticles: An Efficient Tool for Heterocycles Synthesis and Their Functionalization via C-H Activation". Current Organocatalysis 6, n.º 2 (24 de junio de 2019): 79–91. http://dx.doi.org/10.2174/2213337206666181226152743.
Texto completoKobayashi, Shū y Kei Manabe. "Green Lewis acid catalysis in organic synthesis". Pure and Applied Chemistry 72, n.º 7 (1 de enero de 2000): 1373–80. http://dx.doi.org/10.1351/pac200072071373.
Texto completoNori, Valeria, Fabio Pesciaioli, Arianna Sinibaldi, Giuliana Giorgianni y Armando Carlone. "Boron-Based Lewis Acid Catalysis: Challenges and Perspectives". Catalysts 12, n.º 1 (22 de diciembre de 2021): 5. http://dx.doi.org/10.3390/catal12010005.
Texto completoTrunschke, Annette, Giulia Bellini, Maxime Boniface, Spencer J. Carey, Jinhu Dong, Ezgi Erdem, Lucas Foppa et al. "Towards Experimental Handbooks in Catalysis". Topics in Catalysis 63, n.º 19-20 (6 de octubre de 2020): 1683–99. http://dx.doi.org/10.1007/s11244-020-01380-2.
Texto completoLilley, David M. J. "Mechanisms of RNA catalysis". Philosophical Transactions of the Royal Society B: Biological Sciences 366, n.º 1580 (27 de octubre de 2011): 2910–17. http://dx.doi.org/10.1098/rstb.2011.0132.
Texto completoLi, Feng y Hao Li. "Spatial compartmentalisation effects for multifunctionality catalysis: From dual sites to cascade reactions". Innovation & Technology Advances 2, n.º 1 (12 de marzo de 2024): 1–13. http://dx.doi.org/10.61187/ita.v2i1.54.
Texto completoGarcía-Álvarez, Joaquín. "Special Issue: “Advances in Homogeneous Catalysis”". Molecules 25, n.º 7 (25 de marzo de 2020): 1493. http://dx.doi.org/10.3390/molecules25071493.
Texto completoSingh, Keisham. "Recent Advances in C–H Bond Functionalization with Ruthenium-Based Catalysts". Catalysts 9, n.º 2 (12 de febrero de 2019): 173. http://dx.doi.org/10.3390/catal9020173.
Texto completoClerici, Mario G. "Zeolites for Fine Chemical Production State of Art and Perspectives". Eurasian Chemico-Technological Journal 3, n.º 4 (10 de julio de 2017): 231. http://dx.doi.org/10.18321/ectj573.
Texto completoGai, P. L., K. Kourtakis, H. Dindi y S. Ziemecki. "Novel Xerogel Catalyst Materials for Hydrogenation Reactions and the Role of Atomic Scale Interfaces". Microscopy and Microanalysis 5, S2 (agosto de 1999): 704–5. http://dx.doi.org/10.1017/s1431927600016846.
Texto completoJianchen, Wang, Kang Yong y Fangkuan Sun. "Mass production of thermally stable Pt single-atom catalysts for the catalytic oxidation of sulfur dioxide". Catalysis Science & Technology 12, n.º 1 (2022): 124–34. http://dx.doi.org/10.1039/d1cy01578h.
Texto completoShetty, Apoorva, Vandana Molahalli, Aman Sharma y Gurumurthy Hegde. "Biomass-Derived Carbon Materials in Heterogeneous Catalysis: A Step towards Sustainable Future". Catalysts 13, n.º 1 (23 de diciembre de 2022): 20. http://dx.doi.org/10.3390/catal13010020.
Texto completoChang Chien, Tzu-Chin y Murielle F. Delley. "Interfacial Chemistry and Catalysis of Inorganic Materials". CHIMIA 78, n.º 1/2 (28 de febrero de 2024): 7–12. http://dx.doi.org/10.2533/chimia.2024.7.
Texto completoMaksimchuk, Nataliya V., Olga V. Zalomaeva, Igor Y. Skobelev, Konstantin A. Kovalenko, Vladimir P. Fedin y Oxana A. Kholdeeva. "Metal–organic frameworks of the MIL-101 family as heterogeneous single-site catalysts". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, n.º 2143 (14 de marzo de 2012): 2017–34. http://dx.doi.org/10.1098/rspa.2012.0072.
Texto completoPanchishnyi, V. I. y I. Yu Vorobiev. "Role of oxidation catalysis in after-treatment of exhaust gases of diesel engines". Trudy NAMI, n.º 2 (12 de julio de 2023): 18–30. http://dx.doi.org/10.51187/0135-3152-2023-2-18-30.
Texto completoLeenders, Stefan H. A. M., Rafael Gramage-Doria, Bas de Bruin y Joost N. H. Reek. "Transition metal catalysis in confined spaces". Chemical Society Reviews 44, n.º 2 (2015): 433–48. http://dx.doi.org/10.1039/c4cs00192c.
Texto completoShen, Siqi, Yuanyuan Sun, Hao Sun, Yuepeng Pang, Shuixin Xia, Taiqiang Chen, Shiyou Zheng y Tao Yuan. "Research Progress in ZIF-8 Derived Single Atomic Catalysts for Oxygen Reduction Reaction". Catalysts 12, n.º 5 (7 de mayo de 2022): 525. http://dx.doi.org/10.3390/catal12050525.
Texto completoBOUSBA, DALILA, CHAFIA SOBHI, AMNA ZOUAOUI y SOUAD BOUASLA. "Synthesis of activated carbon sand their application in the synthesis of monometallic and bimetallic supported catalysts". Algerian Journal of Signals and Systems 5, n.º 4 (15 de diciembre de 2020): 190–96. http://dx.doi.org/10.51485/ajss.v5i4.116.
Texto completoSieber, Joshua D. y Toolika Agrawal. "Recent Developments in C–C Bond Formation Using Catalytic Reductive Coupling Strategies". Synthesis 52, n.º 18 (25 de mayo de 2020): 2623–38. http://dx.doi.org/10.1055/s-0040-1707128.
Texto completoOllevier, Thierry. "Iron bis(oxazoline) complexes in asymmetric catalysis". Catalysis Science & Technology 6, n.º 1 (2016): 41–48. http://dx.doi.org/10.1039/c5cy01357g.
Texto completoHenderson, Alexander S., John F. Bower y M. Carmen Galan. "Carbohydrates as enantioinduction components in stereoselective catalysis". Organic & Biomolecular Chemistry 14, n.º 17 (2016): 4008–17. http://dx.doi.org/10.1039/c6ob00368k.
Texto completo