Literatura académica sobre el tema "Cartilage cells – Transplantation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Cartilage cells – Transplantation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Cartilage cells – Transplantation"
Messner, K. "Articular cartilage transplantation using precultivated cells". Der Orthopäde 28, n.º 1 (enero de 1999): 61–67. http://dx.doi.org/10.1007/pl00003551.
Texto completoEnomura, Masahiro, Soichiro Murata, Yuri Terado, Maiko Tanaka, Shinji Kobayashi, Takayoshi Oba, Shintaro Kagimoto et al. "Development of a Method for Scaffold-Free Elastic Cartilage Creation". International Journal of Molecular Sciences 21, n.º 22 (11 de noviembre de 2020): 8496. http://dx.doi.org/10.3390/ijms21228496.
Texto completoLindahl, Anders. "From gristle to chondrocyte transplantation: treatment of cartilage injuries". Philosophical Transactions of the Royal Society B: Biological Sciences 370, n.º 1680 (19 de octubre de 2015): 20140369. http://dx.doi.org/10.1098/rstb.2014.0369.
Texto completoLe, Hanxiang, Weiguo Xu, Xiuli Zhuang, Fei Chang, Yinan Wang y Jianxun Ding. "Mesenchymal stem cells for cartilage regeneration". Journal of Tissue Engineering 11 (enero de 2020): 204173142094383. http://dx.doi.org/10.1177/2041731420943839.
Texto completoPlánka, Ladislav, David Starý, Jana Hlučilová, Jiří Klíma, Josef Jančář, Leoš Křen, Jana Lorenzová et al. "Comparison of Preventive and Therapeutic Transplantations of Allogeneic Mesenchymal Stem Cells in Healing of the Distal Femoral Growth Plate Cartilage Defects in Miniature Pigs". Acta Veterinaria Brno 78, n.º 2 (2009): 293–302. http://dx.doi.org/10.2754/avb200978020293.
Texto completoRim, Yeri Alice, Yoojun Nam y Ji Hyeon Ju. "Application of Cord Blood and Cord Blood-Derived Induced Pluripotent Stem Cells for Cartilage Regeneration". Cell Transplantation 28, n.º 5 (25 de septiembre de 2018): 529–37. http://dx.doi.org/10.1177/0963689718794864.
Texto completoBae, Jung Yoon, Kazuaki Matsumura, Shigeyuki Wakitani, Amu Kawaguchi, Sadami Tsutsumi y Suong-Hyu Hyon. "Beneficial Storage Effects of Epigallocatechin-3-O-Gallate on the Articular Cartilage of Rabbit Osteochondral Allografts". Cell Transplantation 18, n.º 5-6 (mayo de 2009): 505–12. http://dx.doi.org/10.1177/096368970901805-604.
Texto completoMoskalewski, S. y J. Malejczyk. "Bone formation following intrarenal transplantation of isolated murine chondrocytes: chondrocyte-bone cell transdifferentiation?" Development 107, n.º 3 (1 de noviembre de 1989): 473–80. http://dx.doi.org/10.1242/dev.107.3.473.
Texto completoCima, L. G., J. P. Vacanti, C. Vacanti, D. Ingber, D. Mooney y R. Langer. "Tissue Engineering by Cell Transplantation Using Degradable Polymer Substrates". Journal of Biomechanical Engineering 113, n.º 2 (1 de mayo de 1991): 143–51. http://dx.doi.org/10.1115/1.2891228.
Texto completoLongo, Umile Giuseppe, Stefano Petrillo, Edoardo Franceschetti, Alessandra Berton, Nicola Maffulli y Vincenzo Denaro. "Stem Cells and Gene Therapy for Cartilage Repair". Stem Cells International 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/168385.
Texto completoTesis sobre el tema "Cartilage cells – Transplantation"
Jones, Christopher Wynne. "Laser scanning confocal arthroscopy in orthopaedics : examination of chondrial and connective tissues, quantification of chondrocyte morphology, investigation of matirx-induced autologous chondrocyte implantation and characterisation of osteoarthritis". University of Western Australia. School of Mechanical Engineering, 2007. http://theses.library.uwa.edu.au/adt-WU2008.0061.
Texto completoRakic, Rodolphe. "Nouvelles stratégies thérapeutiques des affections articulaires du cheval : évaluation du potentiel thérapeutique des chondrocytes autologues et des cellules souches de cordon ombilical (sang et gelée de Wharton) : vers l'industrialisation de cellules médicaments". Thesis, Normandie, 2017. http://www.theses.fr/2017NORMC406/document.
Texto completoArticular cartilage disorders, such as focal defects and osteoarthritis, are the main causes of decreased performance or early retirement of sport- and racehorses. Thus, cartilage disorders represent a major veterinary issue in the equine industry, due to significant financial losses. Poor intrinsic cartilage repair properties and the absence of long- term therapy for cartilage defects lead to the development and use of new generation therapies such as autologous chondrocytes implantation. In this context, our study aimed to compare different cell types for the in vitro cartilage generation, in order to implant the biological substitute to treat cartilage defects in the horse. A therapeutic strategy initially developed in human medicine, the autologous chondrocytes transplantation, always represents a "gold standard" in cartilage tissue engineering. In the present study, after developing a new generation of cartilaginous substitute of high biological quality, composed of equine articular chondrocytes, technical and biological limits inherent to the cell type persist. Thus, we have used alternative cell types such as neonatal mesenchymal stem/stromal cells (MSCs) from umbilical cord, such as umbilical cord blood MSC (UCB-MSCs) and umbilical cord matrix or Wharton jelly MSCs (UCM- MSCs). These MSCs sources could represent a therapeutic advantage due to their non-invasive isolation, their high cell proliferation and their ability to differentiate into chondrocytes. Nevertheless, it is essential to define the best therapeutic candidate between these two MSCs sources, to obtain an optimal quality for the neocartilaginous substitute. Our data highlighted important differences in the chondrogenesis process of these two neonatal MSCs sources, allowing us to consider UCB-MSCs as the best therapeutic candidate for equine cartilage tissue engineering. This work allows a better understanding of the chondrocyte and MSCs biology. Moreover, this work leads the way to setting-up future clinical trials in the horse, in order to treat articular defects of this large animal model
Aulin, Cecilia. "Extracellular Matrix Based Materials for Tissue Engineering". Doctoral thesis, Uppsala universitet, Institutionen för materialkemi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-110631.
Texto completo"Effect of scaffold-free bioengineered chondrocyte pellet in osteochondral defect in a rabbit model". 2009. http://library.cuhk.edu.hk/record=b5893862.
Texto completoThesis submitted in: Dec 2008.
Thesis (M.Phil.)--Chinese University of Hong Kong, 2009.
Includes bibliographical references (leaves 132-144).
Abstracts in English and Chinese.
ABSTRACT --- p.i
論文摘要 --- p.iii
PUBLICATIONS --- p.v
ACKNOWLEDGEMENT --- p.vi
LIST OF ABBREBIVIATIONS --- p.vii
INDEX FOR FIGURES --- p.x
INDEX FOR TABLES --- p.xiv
TABLE OF CONTENTS --- p.xv
Chapter CHAPTER ONE - --- INTRODUCTION
Chapter 1.1 --- "Joint function, structure and biochemistry"
Chapter 1.1.1 --- Function of joint --- p.1
Chapter 1.1.2 --- Types of cartilage --- p.1
Chapter 1.1.3 --- Composition and structure of articular cartilage --- p.2
Chapter 1.1.4 --- The subchondral bone --- p.3
Chapter 1.1.5 --- Maturation of articular cartilage and subchondral bone --- p.3
Chapter 1.2 --- Osteochondral defect
Chapter 1.2.1 --- Clinical problem --- p.6
Chapter 1.2.2 --- Spontaneous repair --- p.7
Chapter 1.2.3 --- Current treatment strategies --- p.7
Chapter 1.2.4 --- Limitations of current treatment strategies --- p.8
Chapter 1.2.5 --- Treatments under development --- p.11
Chapter 1.2.6 --- Potential and limitations in cell therapies --- p.14
Chapter 1.3 --- The 3-D scaffold-free cartilage
Chapter 1.3.1 --- Fabrication of scaffold-free cartilage --- p.16
Chapter 1.3.2 --- Scaffold-free cartilage for chondral / osteochondral defect repair --- p.18
Chapter 1.3.3 --- Scaffold-free bioengineered chondrocyte pellet from our group --- p.20
Chapter 1.3.4 --- BCP as a possible treatment for OCD --- p.21
Chapter 1.4 --- The objectives of the study --- p.22
Chapter 1.5 --- The study plan
Chapter 1.5.1 --- Design of the study --- p.23
Chapter 1.5.2 --- Choice of animal model --- p.23
Chapter 1.5.3 --- Selection of evaluation time points --- p.24
Chapter 1.5.4 --- Choice and modification of histological scoring system --- p.24
Chapter CHAPTER TWO - --- METHODOLOGY
Chapter 2.1 --- Preparation of reagents and materials for tissue culture and histology --- p.26
Chapter 2.2 --- Creation of osteochondral defect model --- p.28
Chapter 2.3 --- Synthesis of scaffold-free cartilage using 3-D chondrocyte pellet culture
Chapter 2.3.1 --- Isolation of rabbit costal chondrocytes --- p.31
Chapter 2.3.2 --- Three-dimensional chondrocyte pellet culture --- p.31
Chapter 2.3.3 --- BrdU labeling for cell fate tracing --- p.32
Chapter 2.4 --- Further characterization of the 3-D scaffold-free chondrocyte pellet
Chapter 2.4.1 --- Gross appearance --- p.35
Chapter 2.4.2 --- Cell viability
Chapter 2.4.2.1 --- Alamar blue reduction assay --- p.35
Chapter 2.4.3 --- Preparation of samples for histology --- p.36
Chapter 2.4.4 --- General morphology and histomorphology
Chapter 2.4.4.1 --- H&E staining --- p.36
Chapter 2.4.5 --- Cartilage properties
Chapter 2.4.5.1 --- Safranin O /Fast Green staining --- p.37
Chapter 2.4.5.2 --- Immunohistochemistry of type II collagen --- p.37
Chapter 2.4.5.3 --- Immunohistochemistry of type I collagen --- p.38
Chapter 2.4.6 --- Angiogenic properties
Chapter 2.4.6.1 --- Immunohistochemistry of VEGF --- p.40
Chapter 2.4.7 --- Osteogenic properties
Chapter 2.4.7.1 --- ALP staining --- p.40
Chapter 2.5 --- Implantation of scaffold-free cartilage into osteochondral defect model
Chapter 2.5.1 --- Surgical procedures --- p.41
Chapter 2.5.2 --- Experimental groups --- p.42
Chapter 2.6 --- Assessment of osteochondral defect healing
Chapter 2.6.1 --- Macroscopic evaluation --- p.43
Chapter 2.6.2 --- Preparation of samples for histology --- p.43
Chapter 2.6.3 --- Histology for general morphology
Chapter 2.6.3.1 --- H&E staining --- p.45
Chapter 2.6.4 --- Histological scoring
Chapter 2.6.4.1 --- Modification of the scoring system --- p.45
Chapter 2.6.4.2 --- Procedures of scoring and validation --- p.45
Chapter 2.6.5 --- Cell proliferation
Chapter 2.6.5.1 --- Immunohistochemistry of PCNA --- p.49
Chapter 2.6.6 --- Cartilage regeneration
Chapter 2.6.6.1 --- Safranin O /Fast Green staining --- p.49
Chapter 2.6.6.2 --- Immunohistochemistry of type II collagen --- p.49
Chapter 2.6.6.3 --- Immunohistochemistry of type I collagen --- p.50
Chapter 2.6.6.4 --- Polarized light microscopy --- p.50
Chapter 2.6.7 --- Expression of angiogenic factor
Chapter 2.6.7.1 --- Immunohistochemistry of VEGF --- p.50
Chapter 2.6.8 --- Bone regeneration
Chapter 2.6.8.1 --- μCT analysis --- p.50
Chapter 2.6.9 --- Histomorphometric analysis of cartilage and bone regeneration --- p.53
Chapter 2.6.10 --- BrdU detection for cell fate tracing --- p.55
Chapter 2.6.11 --- Statistical analysis --- p.55
Chapter CHAPTER THREE - --- RESULTS
Chapter 3.1 --- Further characterization of the 3-D chondrocyte pellet culture
Chapter 3.1.1 --- Gross examination --- p.57
Chapter 3.1.2 --- Cell viability --- p.57
Chapter 3.1.3 --- Cartilage properties --- p.61
Chapter 3.1.4 --- Angiogenic properties --- p.63
Chapter 3.1.5 --- Osteogenic properties --- p.64
Chapter 3.2 --- Implantation of scaffold-free cartilage and assessment
Chapter 3.2.1 --- Gross examination --- p.65
Chapter 3.2.2 --- General morphology --- p.67
Chapter 3.2.3 --- Histological scores --- p.71
Chapter 3.2.4 --- Cell proliferation --- p.75
Chapter 3.2.5 --- Cartilage regeneration --- p.78
Chapter 3.2.6 --- Expression of angiogenic factor --- p.90
Chapter 3.2.7 --- Bone regeneration --- p.93
Chapter 3.2.8 --- Histomorphometric analysis on cartilage and bone regeneration --- p.96
Chapter 3.2.9 --- Cell fate tracing --- p.100
Chapter CHAPTER FOUR - --- DISCUSSION
Chapter 4.1 --- Summary of key findings
Chapter 4.1.1 --- Further characterization of BCP and determination of implantation time --- p.102
Chapter 4.1.2 --- Implantation of BCP in OCD --- p.102
Chapter 4.2 --- Spontaneous healing in osteochondral defect
Chapter 4.2.1 --- Findings from the current study --- p.104
Chapter 4.2.2 --- Comparison with other studies --- p.104
Chapter 4.2.3 --- Factors affecting spontaneous healing --- p.105
Chapter 4.3 --- Fabrication and further characterization of the 3-D chondrocyte pellet
Chapter 4.3.1 --- Comparison of different methods of producing scaffold-free cartilage construct --- p.106
Chapter 4.3.2 --- Cartilage phenotype of the BCP --- p.107
Chapter 4.3.3 --- Angiogenic and osteogenic potential of the BCP --- p.108
Chapter 4.3.4 --- Role of mechanical stimulation on tissue-engineered cartilage --- p.109
Chapter 4.4 --- Repair of osteochondral defect with allogeneic scaffold-free cartilage
Chapter 4.4.1 --- Advantages of the current scaffold-free chondrocyte pellet --- p.111
Chapter 4.4.2 --- Remodeling of BCP after implantation --- p.111
Chapter 4.4.3 --- Effect of BCP on cartilage repair --- p.112
Chapter 4.4.4 --- Effect of BCP on bone regeneration
Chapter 4.4.4.1 --- Findings in the present study --- p.113
Chapter 4.4.4.2 --- Possible reasons of slow bone repair --- p.114
Chapter 4.4.4.3 --- Effect of BCP on bone region peripheral to defect --- p.115
Chapter 4.4.5 --- Immunorejection-free properties of the BCP --- p.116
Chapter 4.4.6 --- Comparison with other animal studies using scaffold-free cartilage --- p.117
Chapter 4.4.7 --- Possibility of implanting a BCP cultured for shorter or longer period --- p.118
Chapter 4.4.8 --- Scaffold-free cartilage construct and construct with scaffold for OCD repair --- p.119
Chapter 4.4.9 --- Chondrocytes and stem cells for OCD repair --- p.120
Chapter 4.5 --- Limitations of the study
Chapter 4.5.1 --- Animal model --- p.122
Chapter 4.5.2 --- Histomorphometric analysis --- p.122
Chapter 4.5.3 --- Lack of quantitative data analysis --- p.122
Chapter 4.5.4 --- BrdU labeling of cells --- p.123
Chapter 4.5.5 --- Lack of biomechanical test --- p.123
Chapter 4.5.6 --- Small sample size --- p.123
Chapter CHAPTER FIVE - --- CONCLUSION --- p.124
Chapter CHAPTER SIX - --- FUTURE STUDIES
Chapter 6.1 --- Identification of factors affecting bone repair after OCD treatment --- p.125
Chapter 6.2 --- Modifications of BCP treatment --- p.125
Chapter 6.3 --- Alternative cell source --- p.126
Chapter 6.4 --- Alternative cell tracking methods --- p.126
Chapter 6.5 --- Inclusion of biomechanical test --- p.126
APPENDICES
Appendix 1. Conference paper 1 --- p.129
Appendix 2: Conference paper 2 --- p.130
Appendix 3: Animal experimentation ethics approval --- p.131
BIBLIOGRAPHY --- p.132
Lavoie, Jean-Francois. "Mesodermal Differentiation of Skin-derived Precursor cells". Thesis, 2010. http://hdl.handle.net/1807/24807.
Texto completoLibros sobre el tema "Cartilage cells – Transplantation"
Khan, Wasim S. Stem cells and cartilage tissue engineering approaches to orthopaedic surgery. Hauppauge, N.Y: Nova Science Publishers, 2009.
Buscar texto completoJūryūshi Ikagaku Sentā. Shinpojūmu "Saisei Iryō to Bunshi Imējingu". Dai 3-kai Jūryūshi Ikagaku Sentā Shinpojūmu Saisei Iryō to Bunshi Imējingu. Chiba-ken Chiba-shi: Hōshasen Igaku Sōgō Kenkyūjo, 2004.
Buscar texto completo(Foreword), L. Peterson, B. J. Cole (Foreword) y Riley J. Williams (Editor), eds. Cartilage Repair Strategies. Humana Press, 2007.
Buscar texto completoDouglas, Kenneth. Bioprinting. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780190943547.001.0001.
Texto completoCapítulos de libros sobre el tema "Cartilage cells – Transplantation"
Karnatzikos, Georgios, Sotirios Vlachoudis y Alberto Gobbi. "Rehabilitation After Knee Cartilage Transplantation with Autologous Chondrocytes or Stem Cells". En Sports Injuries, 1905–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-36569-0_265.
Texto completoKarnatzikos, Georgios, Sotirios Vlachoudis y Alberto Gobbi. "Rehabilitation After Knee Cartilage Transplantation with Autologous Chondrocytes or Stem Cells". En Sports Injuries, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36801-1_265-1.
Texto completoPeterson, Lars. "Cartilage Cell Transplantation". En Knee Surgery, 440–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-87202-0_33.
Texto completoTomford, William W. y Henry J. Mankin. "Bone and cartilage transplantation". En Yearbook of Cell and Tissue Transplantation 1996–1997, 37–40. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0165-0_4.
Texto completoIbarra, Clemente, Robert Langer y Joseph P. Vacanti. "Tissue engineering: Cartilage, bone and muscle". En Yearbook of Cell and Tissue Transplantation 1996–1997, 235–45. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0165-0_23.
Texto completoSaltzman, W. Mark. "The State-of-the-Art in Tissue Exchange". En Tissue Engineering. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780195141306.003.0005.
Texto completoDouglas, Kenneth. "Introduction". En Bioprinting, 1–2. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780190943547.003.0001.
Texto completoSaltzman, W. Mark. "Delivery of Molecular Agents in Tissue Engineering". En Tissue Engineering. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780195141306.003.0017.
Texto completoMendelson, Avital, Chang Hun Lee y Jeremy J. Mao. "CARTILAGE REGENERATION WITH AND WITHOUT CELL TRANSPLANTATION". En Stem Cell Bioengineering and Tissue Engineering Microenvironment, 339–53. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789812837899_0012.
Texto completoActas de conferencias sobre el tema "Cartilage cells – Transplantation"
Bian, Liming, Robert L. Mauck y Jason A. Burdick. "Dynamic Compressive Loading and Crosslinking Density Influence the Chondrogenic and Hypertrophic Differentiation of Human Mesenchymal Stem Cells Seeded in Hyaluronic Acid Hydrogels". En ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80048.
Texto completo