Artículos de revistas sobre el tema "Cardiosphere-derived cell"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Cardiosphere-derived cell".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Emani, Sitaram M. y Pedro J. del Nido. "Cell-Based Therapy With Cardiosphere-Derived Cardiocytes". Circulation Research 122, n.º 7 (30 de marzo de 2018): 916–17. http://dx.doi.org/10.1161/circresaha.118.312809.
Texto completoDergilev, K. V., Z. I. Tsokolaeva, Yu D. Vasilets, I. B. Beloglazova y E. V. Parfenova. "Cardiac progenitor cell sheets secrete proangiogenic growth factors and locally activate capillarogenesis after infarction". Complex Issues of Cardiovascular Diseases 10, n.º 3 (25 de septiembre de 2021): 34–43. http://dx.doi.org/10.17802/2306-1278-2021-10-3-34-43.
Texto completoPakzad, Khadijeh Kathy, Jun Jie Tan, Stephanie Anderson, Mary Board, Kieran Clarke y Carolyn A. Carr. "Metabolic maturation of differentiating cardiosphere-derived cells". Stem Cell Research 54 (julio de 2021): 102422. http://dx.doi.org/10.1016/j.scr.2021.102422.
Texto completoChen, Lijuan, Muhammad Ashraf, Yingjie Wang, Mi Zhou, John Zhang, Gangjian Qin, Jack Rubinstein, Neal L. Weintraub y Yaoliang Tang. "The Role ofNotch 1Activation in Cardiosphere Derived Cell Differentiation". Stem Cells and Development 21, n.º 12 (10 de agosto de 2012): 2122–29. http://dx.doi.org/10.1089/scd.2011.0463.
Texto completoXie, Yucai, Ahmed Ibrahim, Ke Cheng, Zhijun Wu, Wenbin Liang, Konstantinos Malliaras, Baiming Sun et al. "Importance of Cell-Cell Contact in the Therapeutic Benefits of Cardiosphere-Derived Cells". STEM CELLS 32, n.º 9 (18 de agosto de 2014): 2397–406. http://dx.doi.org/10.1002/stem.1736.
Texto completoMartens, Andreas, Ina Gruh, Dimitrios Dimitroulis, Sebastian V. Rojas, Ingrid Schmidt-Richter, Christian Rathert, Nawid Khaladj et al. "Rhesus monkey cardiosphere-derived cells for myocardial restoration". Cytotherapy 13, n.º 7 (agosto de 2011): 864–72. http://dx.doi.org/10.3109/14653249.2011.571247.
Texto completoMarbán, Eduardo. "Breakthroughs in Cell Therapy for Heart Disease: Focus on Cardiosphere-Derived Cells". Mayo Clinic Proceedings 89, n.º 6 (junio de 2014): 850–58. http://dx.doi.org/10.1016/j.mayocp.2014.02.014.
Texto completoFujita, Akira, Koji Ueno, Toshiro Saito, Masashi Yanagihara, Hiroshi Kurazumi, Ryo Suzuki, Akihito Mikamo y Kimikazu Hamano. "Hypoxic-conditioned cardiosphere-derived cell sheet transplantation for chronic myocardial infarction". European Journal of Cardio-Thoracic Surgery 56, n.º 6 (24 de abril de 2019): 1062–74. http://dx.doi.org/10.1093/ejcts/ezz122.
Texto completoBruyneel, Arne, Rabia Nazir, Qi Chen, Colleen Lopez, Jan Czernuszka y Carolyn Carr. "164 Cardiosphere-Derived Cell-Seeded Porous Collagen Scaffolds for Cardiac Repair". Heart 102, Suppl 6 (junio de 2016): A116.1—A116. http://dx.doi.org/10.1136/heartjnl-2016-309890.164.
Texto completoGrigorian-Shamagian, Lilian, Weixin Liu, Soraya Fereydooni, Ryan C. Middleton, Jackelyn Valle, Jae Hyung Cho y Eduardo Marbán. "Cardiac and systemic rejuvenation after cardiosphere-derived cell therapy in senescent rats". European Heart Journal 38, n.º 39 (14 de agosto de 2017): 2957–67. http://dx.doi.org/10.1093/eurheartj/ehx454.
Texto completoPuluca, N., S. Doppler, H. Lahm, Z. Zhang, M. Dreßen, M. A. Deutsch, R. Lange y M. Krane. "Cardiosphere-Derived Cells: A Possible Source for Regenerative Cell Therapy in Congenital Heart Diseases". Thoracic and Cardiovascular Surgeon 65, S 01 (3 de febrero de 2017): S1—S110. http://dx.doi.org/10.1055/s-0037-1598857.
Texto completoHensley, Michael Taylor, James Andrade, Bruce Keene, Kathryn Meurs, Junnan Tang, Zegen Wang, Thomas G. Caranasos, Jorge Piedrahita, Tao‐Sheng Li y Ke Cheng. "Cardiac regenerative potential of cardiosphere‐derived cells from adult dog hearts". Journal of Cellular and Molecular Medicine 19, n.º 8 (9 de abril de 2015): 1805–13. http://dx.doi.org/10.1111/jcmm.12585.
Texto completoTomita, Yuichi, Keisuke Matsumura, Yoshio Wakamatsu, Yumi Matsuzaki, Isao Shibuya, Haruko Kawaguchi, Masaki Ieda et al. "Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart". Journal of Cell Biology 170, n.º 7 (26 de septiembre de 2005): 1135–46. http://dx.doi.org/10.1083/jcb.200504061.
Texto completoMentkowski, Kyle I., Asma Mursleen, Jonathan D. Snitzer, Lindsey M. Euscher y Jennifer K. Lang. "CDC-derived extracellular vesicles reprogram inflammatory macrophages to an arginase 1-dependent proangiogenic phenotype". American Journal of Physiology-Heart and Circulatory Physiology 318, n.º 6 (1 de junio de 2020): H1447—H1460. http://dx.doi.org/10.1152/ajpheart.00155.2020.
Texto completoRedgrave, R. E., B. Davison, M. Amirrasouli, B. Keavney, A. Blamire y H. M. Arthur. "CARDIOSPHERE-DERIVED CELL TRANSPLANTATION RESCUES CARDIAC FUNCTION POST-MI INDEPENDENTLY OF ENDOGLIN EXPRESSION". Heart 98, Suppl 5 (noviembre de 2012): A1.2—A1. http://dx.doi.org/10.1136/heartjnl-2012-303148a.2.
Texto completoMiddleton, Ryan C., Mario Fournier, Xuan Xu, Eduardo Marbán y Michael I. Lewis. "Therapeutic benefits of intravenous cardiosphere-derived cell therapy in rats with pulmonary hypertension". PLOS ONE 12, n.º 8 (24 de agosto de 2017): e0183557. http://dx.doi.org/10.1371/journal.pone.0183557.
Texto completoPagano, Francesca, Francesco Angelini, Clotilde Castaldo, Vittorio Picchio, Elisa Messina, Sebastiano Sciarretta, Ciro Maiello et al. "Normal versus Pathological Cardiac Fibroblast-Derived Extracellular Matrix Differentially Modulates Cardiosphere-Derived Cell Paracrine Properties and Commitment". Stem Cells International 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/7396462.
Texto completoMalliaras, Konstantinos, Tao-Sheng Li, Daniel Luthringer, John Terrovitis, Ke Cheng, Tarun Chakravarty, Giselle Galang et al. "Safety and Efficacy of Allogeneic Cell Therapy in Infarcted Rats Transplanted With Mismatched Cardiosphere-Derived Cells". Circulation 125, n.º 1 (enero de 2012): 100–112. http://dx.doi.org/10.1161/circulationaha.111.042598.
Texto completoGago-Lopez, Nuria, Obinna Awaji, Yiqiang Zhang, Christopher Ko, Ali Nsair, David Liem, April Stempien-Otero y W. Robb MacLellan. "THY-1 Receptor Expression Differentiates Cardiosphere-Derived Cells with Divergent Cardiogenic Differentiation Potential". Stem Cell Reports 2, n.º 5 (mayo de 2014): 576–91. http://dx.doi.org/10.1016/j.stemcr.2014.03.003.
Texto completoNazari, Hojjatollah, Mousa Kehtari, Iman Rad, Behnaz Ashtari y Mohammad Taghi Joghataei. "Electrical stimulation induces differentiation of human cardiosphere-derived cells (hCDCs) to committed cardiomyocyte". Molecular and Cellular Biochemistry 470, n.º 1-2 (9 de mayo de 2020): 29–39. http://dx.doi.org/10.1007/s11010-020-03742-6.
Texto completoWang, Siyuan, Weidan Chen, Li Ma, Minghui Zou, Wenyan Dong, Haili Yang, Lei Sun, Xinxin Chen y Jinzhu Duan. "Infant cardiosphere-derived cells exhibit non-durable heart protection in dilated cardiomyopathy rats". Cytotechnology 71, n.º 6 (3 de octubre de 2019): 1043–52. http://dx.doi.org/10.1007/s10616-019-00328-z.
Texto completoGómez-Cid, Lidia, Marina Moro-López, Ana de la Nava, Ismael Hernández-Romero, Ana Fernández, Susana Suárez-Sancho, Felipe Atienza, Lilian Grigorian-Shamagian y Francisco Fernández-Avilés. "Electrophysiological Effects of Extracellular Vesicles Secreted by Cardiosphere-Derived Cells: Unraveling the Antiarrhythmic Properties of Cell Therapies". Processes 8, n.º 8 (2 de agosto de 2020): 924. http://dx.doi.org/10.3390/pr8080924.
Texto completoBonios, Michael, Connie Y. Chang, Aurelio Pinheiro, Veronica Lea Dimaano, Takahiro Higuchi, Christina Melexopoulou, Frank Bengel, John Terrovitis, Theodore P. Abraham y M. Roselle Abraham. "Cardiac Resynchronization by Cardiosphere-Derived Stem Cell Transplantation in an Experimental Model of Myocardial Infarction". Journal of the American Society of Echocardiography 24, n.º 7 (julio de 2011): 808–14. http://dx.doi.org/10.1016/j.echo.2011.03.003.
Texto completoHsiao, Lien-Cheng, Filippo Perbellini, Renata S. M. Gomes, Jun Jie Tan, Silvia Vieira, Giuseppe Faggian, Kieran Clarke y Carolyn A. Carr. "Murine Cardiosphere-Derived Cells Are Impaired by Age but Not by Cardiac Dystrophic Dysfunction". Stem Cells and Development 23, n.º 9 (mayo de 2014): 1027–36. http://dx.doi.org/10.1089/scd.2013.0388.
Texto completoKawaguchi, Nanako, Mitsuyo Machida, Kota Hatta, Toshio Nakanishi y Yohtaroh Takagaki. "Cell Shape and Cardiosphere Differentiation: A Revelation by Proteomic Profiling". Biochemistry Research International 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/730874.
Texto completoFarrugia, Georgiana y Rena Balzan. "Stem Cell Repair for Cardiac Muscle Regeneration: A Review of the Literature". International Journal of Medical Students 4, n.º 1 (30 de abril de 2016): 19–25. http://dx.doi.org/10.5195/ijms.2016.145.
Texto completoMarunouchi, Tetsuro, Emi Yano y Kouichi Tanonaka. "Effects of cardiosphere-derived cell transplantation on cardiac mitochondrial oxygen consumption after myocardial infarction in rats". Biomedicine & Pharmacotherapy 108 (diciembre de 2018): 883–92. http://dx.doi.org/10.1016/j.biopha.2018.09.117.
Texto completoNamazi, Helia, Elham Mohit, Iman Namazi, Sarah Rajabi, Azam Samadian, Ensiyeh Hajizadeh-Saffar, Nasser Aghdami y Hossein Baharvand. "Exosomes secreted by hypoxic cardiosphere-derived cells enhance tube formation and increase pro-angiogenic miRNA". Journal of Cellular Biochemistry 119, n.º 5 (22 de enero de 2018): 4150–60. http://dx.doi.org/10.1002/jcb.26621.
Texto completoSun, Yong, Di Chi, Miaoxin Tan, Kai Kang, Maomao Zhang, Xiangyuan Jin, Xiaoping Leng et al. "Cadaveric cardiosphere-derived cells can maintain regenerative capacity and improve the heart function of cardiomyopathy". Cell Cycle 15, n.º 9 (8 de abril de 2016): 1248–56. http://dx.doi.org/10.1080/15384101.2016.1160973.
Texto completoNana-Leventaki, E., M. Nana, N. Poulianitis, D. Sampaziotis, D. Perrea, D. Sanoudou, D. Rontogianni y K. Malliaras. "Cardiosphere-Derived Cells Attenuate Inflammation, Preserve Systolic Function, and Prevent Adverse Remodeling in Rat Hearts With Experimental Autoimmune Myocarditis". Journal of Cardiovascular Pharmacology and Therapeutics 24, n.º 1 (30 de julio de 2018): 70–77. http://dx.doi.org/10.1177/1074248418784287.
Texto completoLapchak, Paul A., Paul D. Boitano, Geoffrey de Couto y Eduardo Marbán. "Intravenous xenogeneic human cardiosphere-derived cell extracellular vesicles (exosomes) improves behavioral function in small-clot embolized rabbits". Experimental Neurology 307 (septiembre de 2018): 109–17. http://dx.doi.org/10.1016/j.expneurol.2018.06.007.
Texto completoSuzuki, Gen, Rebeccah F. Young, Merced M. Leiker y Takayuki Suzuki. "Heart-Derived Stem Cells in Miniature Swine with Coronary Microembolization: Novel Ischemic Cardiomyopathy Model to Assess the Efficacy of Cell-Based Therapy". Stem Cells International 2016 (2016): 1–14. http://dx.doi.org/10.1155/2016/6940195.
Texto completoLin, Yen-Nien, Thassio Mesquita, Lizbeth Sanchez, Yin-Huei Chen, Weixin Liu, Chang Li, Russell Rogers et al. "Extracellular vesicles from immortalized cardiosphere-derived cells attenuate arrhythmogenic cardiomyopathy in desmoglein-2 mutant mice". European Heart Journal 42, n.º 35 (29 de julio de 2021): 3558–71. http://dx.doi.org/10.1093/eurheartj/ehab419.
Texto completoThej, Charan y Raj Kishore. "Unfathomed Nanomessages to the Heart: Translational Implications of Stem Cell-Derived, Progenitor Cell Exosomes in Cardiac Repair and Regeneration". Cells 10, n.º 7 (17 de julio de 2021): 1811. http://dx.doi.org/10.3390/cells10071811.
Texto completoSaha, Progyaparamita, Sudhish Sharma, Laxminarayana Korutla, Srinivasa Raju Datla, Farnaz Shoja-Taheri, Rachana Mishra, Grace E. Bigham et al. "Circulating exosomes derived from transplanted progenitor cells aid the functional recovery of ischemic myocardium". Science Translational Medicine 11, n.º 493 (22 de mayo de 2019): eaau1168. http://dx.doi.org/10.1126/scitranslmed.aau1168.
Texto completode Couto, Geoffrey, Ervin Jaghatspanyan, Matthew DeBerge, Weixin Liu, Kristin Luther, Yizhou Wang, Jie Tang, Edward B. Thorp y Eduardo Marbán. "Mechanism of Enhanced MerTK-Dependent Macrophage Efferocytosis by Extracellular Vesicles". Arteriosclerosis, Thrombosis, and Vascular Biology 39, n.º 10 (octubre de 2019): 2082–96. http://dx.doi.org/10.1161/atvbaha.119.313115.
Texto completoOstovaneh, Mohammad R., Raj R. Makkar, Bharath Ambale-Venkatesh, Deborah Ascheim, Tarun Chakravarty, Timothy D. Henry, Glen Kowalchuk et al. "Effect of cardiosphere-derived cells on segmental myocardial function after myocardial infarction: ALLSTAR randomised clinical trial". Open Heart 8, n.º 2 (julio de 2021): e001614. http://dx.doi.org/10.1136/openhrt-2021-001614.
Texto completoLi, Tao-Sheng, Ke Cheng, Konstantinos Malliaras, Rachel Ruckdeschel Smith, Yiqiang Zhang, Baiming Sun, Noriko Matsushita et al. "Direct Comparison of Different Stem Cell Types and Subpopulations Reveals Superior Paracrine Potency and Myocardial Repair Efficacy With Cardiosphere-Derived Cells". Journal of the American College of Cardiology 59, n.º 10 (marzo de 2012): 942–53. http://dx.doi.org/10.1016/j.jacc.2011.11.029.
Texto completoAghila Rani, Koippallil GopalakrishnanNair y Chandrasekharan Cheranellore Kartha. "Effects of epidermal growth factor on proliferation and migration of cardiosphere-derived cells expanded from adult human heart". Growth Factors 28, n.º 3 (19 de febrero de 2010): 157–65. http://dx.doi.org/10.3109/08977190903512628.
Texto completoEkhteraei-Tousi, Samaneh, Bahram Mohammad-Soltani, Majid Sadeghizadeh, Seyed Javad Mowla, Sepideh Parsi y Masoud Soleimani. "Inhibitory Effect of Hsa-miR-590-5p on Cardiosphere-derived Stem Cells Differentiation Through Downregulation of TGFB Signaling". Journal of Cellular Biochemistry 116, n.º 1 (11 de noviembre de 2014): 179–91. http://dx.doi.org/10.1002/jcb.24957.
Texto completoFu, Wenbin y Chunyu Zeng. "GW28-e0089 Metformin Promotes the Survival of Transplanted Cardiosphere-Derived Cell thereby Enhancing Its Therapeutic Effect against Myocardial Infarction". Journal of the American College of Cardiology 70, n.º 16 (octubre de 2017): C2. http://dx.doi.org/10.1016/j.jacc.2017.07.007.
Texto completoLo, Chi Y., Brian R. Weil, Beth A. Palka, Arezoo Momeni, John M. Canty y Sriram Neelamegham. "Cell surface glycoengineering improves selectin-mediated adhesion of mesenchymal stem cells (MSCs) and cardiosphere-derived cells (CDCs): Pilot validation in porcine ischemia-reperfusion model". Biomaterials 74 (enero de 2016): 19–30. http://dx.doi.org/10.1016/j.biomaterials.2015.09.026.
Texto completoIshigami, Shuta, Toshikazu Sano, Sunaya Krishnapura, Tatsuo Ito y Shunji Sano. "An overview of stem cell therapy for paediatric heart failure". European Journal of Cardio-Thoracic Surgery 58, n.º 5 (26 de junio de 2020): 881–87. http://dx.doi.org/10.1093/ejcts/ezaa155.
Texto completoYap, Jonathan, Hector A. Cabrera-Fuentes, Jason Irei, Derek J. Hausenloy y William A. Boisvert. "Role of Macrophages in Cardioprotection". International Journal of Molecular Sciences 20, n.º 10 (19 de mayo de 2019): 2474. http://dx.doi.org/10.3390/ijms20102474.
Texto completoSuzuki, Gen, Brian R. Weil, Rebeccah F. Young, James A. Fallavollita y John M. Canty. "Nonocclusive multivessel intracoronary infusion of allogeneic cardiosphere-derived cells early after reperfusion prevents remote zone myocyte loss and improves global left ventricular function in swine with myocardial infarction". American Journal of Physiology-Heart and Circulatory Physiology 317, n.º 2 (1 de agosto de 2019): H345—H356. http://dx.doi.org/10.1152/ajpheart.00124.2019.
Texto completoTakehara, Naofumi, Yoshiaki Tsutsumi, Kento Tateishi, Takehiro Ogata, Hideo Tanaka, Tomomi Ueyama, Tomosaburo Takahashi et al. "Controlled Delivery of Basic Fibroblast Growth Factor Promotes Human Cardiosphere-Derived Cell Engraftment to Enhance Cardiac Repair for Chronic Myocardial Infarction". Journal of the American College of Cardiology 52, n.º 23 (diciembre de 2008): 1858–65. http://dx.doi.org/10.1016/j.jacc.2008.06.052.
Texto completoBonios, Michael, Connie Yachan Chang, John Terrovitis, Aurelio Pinheiro, Andreas Barth, Peihong Dong, Miguel Santaularia et al. "Constitutive HIF-1α Expression Blunts the Beneficial Effects of Cardiosphere-Derived Cell Therapy in the Heart by Altering Paracrine Factor Balance". Journal of Cardiovascular Translational Research 4, n.º 3 (3 de mayo de 2011): 363–72. http://dx.doi.org/10.1007/s12265-011-9265-3.
Texto completoStraface, Elisabetta, Lucrezia Gambardella, Francesca Pagano, Francesco Angelini, Barbara Ascione, Rosa Vona, Elena De Falco et al. "Sex Differences of Human Cardiac Progenitor Cells in the Biological Response to TNF-α Treatment". Stem Cells International 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/4790563.
Texto completoSousonis, Vasileios, Titika Sfakianaki, Argirios Ntalianis, Ioannis Nanas, Christos Kontogiannis, Dionysios Aravantinos, Chris Kapelios et al. "Intracoronary Administration of Allogeneic Cardiosphere-Derived Cells Immediately Prior to Reperfusion in Pigs With Acute Myocardial Infarction Reduces Infarct Size and Attenuates Adverse Cardiac Remodeling". Journal of Cardiovascular Pharmacology and Therapeutics 26, n.º 1 (17 de julio de 2020): 88–99. http://dx.doi.org/10.1177/1074248420941672.
Texto completoZeng, Wendy R. y Pauline M. Doran. "Interactivity of biochemical and physical stimuli during epigenetic conditioning and cardiomyocytic differentiation of stem and progenitor cells derived from adult hearts". Integrative Biology 13, n.º 3 (marzo de 2021): 73–85. http://dx.doi.org/10.1093/intbio/zyab003.
Texto completo