Artículos de revistas sobre el tema "Carbonic nanoparticles"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Carbonic nanoparticles".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Demchenko, Alexander. "Excitons in Carbonic Nanostructures". C — Journal of Carbon Research 5, n.º 4 (12 de noviembre de 2019): 71. http://dx.doi.org/10.3390/c5040071.
Texto completoLizoňová, Denisa, Monika Majerská, Vlastimil Král, Michal Pechar, Robert Pola, Marek Kovář y František Štěpánek. "Antibody-pHPMA functionalised fluorescent silica nanoparticles for colorectal carcinoma targeting". RSC Advances 8, n.º 39 (2018): 21679–89. http://dx.doi.org/10.1039/c8ra03487g.
Texto completoClark, Andrew J., Devin T. Wiley, Jonathan E. Zuckerman, Paul Webster, Joseph Chao, James Lin, Yun Yen y Mark E. Davis. "CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing". Proceedings of the National Academy of Sciences 113, n.º 14 (21 de marzo de 2016): 3850–54. http://dx.doi.org/10.1073/pnas.1603018113.
Texto completoMikolajczak, Dorian J. y Beate Koksch. "Peptide–Gold Nanoparticle Conjugates as Artificial Carbonic Anhydrase Mimics". Catalysts 9, n.º 11 (29 de octubre de 2019): 903. http://dx.doi.org/10.3390/catal9110903.
Texto completoGößl, Dorothée, Helena Singer, Hsin-Yi Chiu, Alexandra Schmidt, Martina Lichtnecker, Hanna Engelke y Thomas Bein. "Highly active enzymes immobilized in large pore colloidal mesoporous silica nanoparticles". New Journal of Chemistry 43, n.º 4 (2019): 1671–80. http://dx.doi.org/10.1039/c8nj04585b.
Texto completoAlhumaydhi, Fahad A. "Green Synthesis of Gold Nanoparticles Using Extract of Pistacia chinensis and Their In Vitro and In Vivo Biological Activities". Journal of Nanomaterials 2022 (30 de junio de 2022): 1–11. http://dx.doi.org/10.1155/2022/5544475.
Texto completoVinoba, Mari, Margandan Bhagiyalakshmi, Soon Kwan Jeong, Sung Chan Nam y Yeoil Yoon. "Carbonic Anhydrase Immobilized on Encapsulated Magnetic Nanoparticles for CO2Sequestration". Chemistry - A European Journal 18, n.º 38 (9 de agosto de 2012): 12028–34. http://dx.doi.org/10.1002/chem.201201112.
Texto completoCabaleiro-Lago, Celia y Martin Lundqvist. "The Effect of Nanoparticles on the Structure and Enzymatic Activity of Human Carbonic Anhydrase I and II". Molecules 25, n.º 19 (25 de septiembre de 2020): 4405. http://dx.doi.org/10.3390/molecules25194405.
Texto completoBugárová, Nikola, Zdenko Špitálsky, Matej Mičušík, Michal Bodík, Peter Šiffalovič, Martina Koneracká, Vlasta Závišová et al. "A Multifunctional Graphene Oxide Platform for Targeting Cancer". Cancers 11, n.º 6 (29 de mayo de 2019): 753. http://dx.doi.org/10.3390/cancers11060753.
Texto completoDuart, Marcelo Adriano, Oscar Endrigo Dorneles Rodrigues y Sérgio Roberto Mortari. "Carbonic nanoparticles and C-S-H insertion into cementitious nanocomposite". International Journal of Advanced Engineering Research and Science 5, n.º 5 (2018): 14–19. http://dx.doi.org/10.22161/ijaers.5.5.2.
Texto completoAssarsson, Anna, Isabel Pastoriza-Santos y Celia Cabaleiro-Lago. "Inactivation and Adsorption of Human Carbonic Anhydrase II by Nanoparticles". Langmuir 30, n.º 31 (28 de julio de 2014): 9448–56. http://dx.doi.org/10.1021/la501413r.
Texto completoTouisni, Nadia, Nasreddine Kanfar, Sébastien Ulrich, Pascal Dumy, Claudiu T. Supuran, Ahmad Mehdi y Jean-Yves Winum. "Fluorescent Silica Nanoparticles with Multivalent Inhibitory Effects towards Carbonic Anhydrases". Chemistry - A European Journal 21, n.º 29 (12 de mayo de 2015): 10306–9. http://dx.doi.org/10.1002/chem.201501037.
Texto completoTouisni, Nadia, Nasreddine Kanfar, Sébastien Ulrich, Pascal Dumy, Claudiu T. Supuran, Ahmad Mehdi y Jean-Yves Winum. "Fluorescent Silica Nanoparticles with Multivalent Inhibitory Effects towards Carbonic Anhydrases". Chemistry - A European Journal 21, n.º 29 (8 de junio de 2015): 10249. http://dx.doi.org/10.1002/chem.201501917.
Texto completoNovikov, Ilya V., Marina A. Pigaleva, Sergei S. Abramchuk, Vyacheslav S. Molchanov, Olga E. Philippova y Marat O. Gallyamov. "Chitosan composites with Ag nanoparticles formed in carbonic acid solutions". Carbohydrate Polymers 190 (junio de 2018): 103–12. http://dx.doi.org/10.1016/j.carbpol.2018.02.076.
Texto completoTatiparti, Katyayani, Mohd Ahmar Rauf, Samaresh Sau y Arun K. Iyer. "Carbonic Anhydrase-IX Guided Albumin Nanoparticles for Hypoxia-mediated Triple-Negative Breast Cancer Cell Killing and Imaging of Patient-derived Tumor". Molecules 25, n.º 10 (19 de mayo de 2020): 2362. http://dx.doi.org/10.3390/molecules25102362.
Texto completoDoğan, Murat, Ümit Muhammet Koçyiğit, Duygu Taşkın, Beyza Nur Yılmaz y Turgut Taşkın. "Preparation and characterization of chitosan nanoparticles with extracts of Rheum ribes, evaluation of biological activities of extracts and extract loaded nanoparticles". International Journal of Secondary Metabolite 11, n.º 4 (9 de septiembre de 2024): 751–64. http://dx.doi.org/10.21448/ijsm.1425978.
Texto completoBillsten, Peter, Uno Carlsson, Bengt Harald Jonsson, Gerd Olofsson, Fredrik Höök y Hans Elwing. "Conformation of Human Carbonic Anhydrase II Variants Adsorbed to Silica Nanoparticles". Langmuir 15, n.º 19 (septiembre de 1999): 6395–99. http://dx.doi.org/10.1021/la980288u.
Texto completoAko-Adounvo, Ann-Marie y Pradeep K. Karla. "Preparation and In Vitro Testing of Brinzolamide-Loaded Poly Lactic-Co-Glycolic Acid (PLGA) Nanoparticles for Sustained Drug Delivery". Journal of Clinical & Translational Ophthalmology 2, n.º 1 (9 de enero de 2024): 1–14. http://dx.doi.org/10.3390/jcto2010001.
Texto completoAntal, Iryna, Martina Koneracka, Martina Kubovcikova, Vlasta Zavisova, Alena Jurikova, Iryna Khmara, Maria Omastova et al. "Targeting of carbonic anhydrase IX-positive cancer cells by glycine-coated superparamagnetic nanoparticles". Colloids and Surfaces B: Biointerfaces 205 (septiembre de 2021): 111893. http://dx.doi.org/10.1016/j.colsurfb.2021.111893.
Texto completoTalebzadeh, Zeinab, Qahtan A. Yousif, Maryam Masjedi-Arani y Masoud Salavati-Niasari. "Sonochemistry fabrication of Er2Sn2O7 nanoparticles with advanced photocatalytic performance of their carbonic nanocomposites". International Journal of Hydrogen Energy 47, n.º 25 (marzo de 2022): 12615–28. http://dx.doi.org/10.1016/j.ijhydene.2022.02.025.
Texto completoShatokhin, A. N., A. V. Egorov, K. I. Maslakov y F. N. Putilin. "Laser synthesis of metal–metaloxide nanoparticles on carbonic materials in an electric field". Bulletin of the Russian Academy of Sciences: Physics 80, n.º 4 (abril de 2016): 387–92. http://dx.doi.org/10.3103/s1062873816040286.
Texto completoAl-Dhrub, Ahmed Hussein Ali, Selmihan Sahin, Ismail Ozmen, Ekrem Tunca y Metin Bulbul. "Immobilization and characterization of human carbonic anhydrase I on amine functionalized magnetic nanoparticles". Process Biochemistry 57 (junio de 2017): 95–104. http://dx.doi.org/10.1016/j.procbio.2017.03.025.
Texto completoYadav, Renu, Meenal Joshi, Snehal Wanjari, Chandan Prabhu, Swati Kotwal, T. Satyanarayanan y Sadhana Rayalu. "Immobilization of Carbonic Anhydrase on Chitosan Stabilized Iron Nanoparticles for the Carbonation Reaction". Water, Air, & Soil Pollution 223, n.º 8 (2 de septiembre de 2012): 5345–56. http://dx.doi.org/10.1007/s11270-012-1284-4.
Texto completoNovikov, Ilya V., Marina A. Pigaleva, Eduard E. Levin, Sergei S. Abramchuk, Alexander V. Naumkin, Helin Li, Andrij Pich y Marat O. Gallyamov. "The mechanism of stabilization of silver nanoparticles by chitosan in carbonic acid solutions". Colloid and Polymer Science 298, n.º 9 (16 de junio de 2020): 1135–48. http://dx.doi.org/10.1007/s00396-020-04683-8.
Texto completoNie, Guo Chao, Di Si, Gwang Seong Kim, Zhong You Shi, Tanvi Siraj Ratani, Yong Eun Koo Lee y Raoul Kopelman. "A Novel Nonionic, Multi-Surfactant System and Separation Method for the Synthesis of Active Carbonic Anhydrase Nanoparticles". Advanced Materials Research 399-401 (noviembre de 2011): 509–13. http://dx.doi.org/10.4028/www.scientific.net/amr.399-401.509.
Texto completoBodor, Marius, Rafael M. Santos, Yi Wai Chiang, Maria Vlad y Tom Van Gerven. "Impacts of Nickel Nanoparticles on Mineral Carbonation". Scientific World Journal 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/921974.
Texto completoAntipov, S. A., T. A. Feduschak, O. V. Kokorev, Ye A. Gereng, G. Ts Dambayev, A. Ye Yermakov, M. A. Uymin y I. A. Khlusov. "Antitumor in vitro and in vivo effects of lipid composites of cisplatin and ferromagnetic nanoparticles capsulated by carbonic coating". Bulletin of Siberian Medicine 9, n.º 1 (28 de febrero de 2010): 9–16. http://dx.doi.org/10.20538/1682-0363-2010-1-9-16.
Texto completoPerfetto, Rosa, Sonia Del Prete, Daniela Vullo, Giovanni Sansone, Carmela M. A. Barone, Mosè Rossi, Claudiu T. Supuran y Clemente Capasso. "Production and covalent immobilisation of the recombinant bacterial carbonic anhydrase (SspCA) onto magnetic nanoparticles". Journal of Enzyme Inhibition and Medicinal Chemistry 32, n.º 1 (1 de enero de 2017): 759–66. http://dx.doi.org/10.1080/14756366.2017.1316719.
Texto completoPeirce, S., M. E. Russo, R. Perfetto, C. Capasso, M. Rossi, R. Fernandez-Lafuente, P. Salatino y A. Marzocchella. "Kinetic characterization of carbonic anhydrase immobilized on magnetic nanoparticles as biocatalyst for CO2 capture". Biochemical Engineering Journal 138 (octubre de 2018): 1–11. http://dx.doi.org/10.1016/j.bej.2018.06.017.
Texto completoKhatibi, Ali, Leila Ma’mani, Reza Khodarahmi, Abbas Shafiee, Parvaneh Maghami, Faizan Ahmad, Nader Sheibani y Ali Akbar Moosavi-Movahedi. "Enhancement of thermal reversibility and stability of human carbonic anhydrase II by mesoporous nanoparticles". International Journal of Biological Macromolecules 75 (abril de 2015): 67–72. http://dx.doi.org/10.1016/j.ijbiomac.2015.01.019.
Texto completoNogalska, Adrianna, Mario Ammendola, Carla A. M. Portugal, Bartosz Tylkowski, Joao G. Crespo y Ricard Garcia – Valls. "Polysulfone biomimetic membrane for CO2 capture". Functional Materials Letters 11, n.º 05 (octubre de 2018): 1850046. http://dx.doi.org/10.1142/s1793604718500467.
Texto completoBurunkova, J. A., I. Y. Denisyuk, Vera Bulgakova y Sandor Kokenyesi. "TiO2-Acrylate Nanocomposites Elaborated by UV-Curing with Tunable Properties". Solid State Phenomena 200 (abril de 2013): 173–77. http://dx.doi.org/10.4028/www.scientific.net/ssp.200.173.
Texto completoStamer, Katerina S., Marina A. Pigaleva, Anastasiya A. Pestrikova, Alexander Y. Nikolaev, Alexander V. Naumkin, Sergei S. Abramchuk, Vera S. Sadykova, Anastasia E. Kuvarina, Valeriya N. Talanova y Marat O. Gallyamov. "Water Saturated with Pressurized CO2 as a Tool to Create Various 3D Morphologies of Composites Based on Chitosan and Copper Nanoparticles". Molecules 27, n.º 21 (26 de octubre de 2022): 7261. http://dx.doi.org/10.3390/molecules27217261.
Texto completoStamer, K. S., M. A. Pigaleva, S. S. Abramchuk y M. O. Gallyamov. "Principles of Gold Nanoparticles Stabilization with Chitosan in Carbonic Acid Solutions Under High CO2 Pressure". Doklady Physical Chemistry 495, n.º 1 (noviembre de 2020): 166–70. http://dx.doi.org/10.1134/s0012501620110020.
Texto completoLundqvist, Martin, Cecilia Andresen, Sara Christensson, Sara Johansson, Martin Karlsson, Klas Broo y Bengt-Harald Jonsson. "Proteolytic Cleavage Reveals Interaction Patterns between Silica Nanoparticles and Two Variants of Human Carbonic Anhydrase". Langmuir 21, n.º 25 (diciembre de 2005): 11903–6. http://dx.doi.org/10.1021/la050477u.
Texto completoAhmadi, Mohammad Taghi, Neda Mousavi, Truong Khang Nguyen, Seyed Saeid Rahimian Koloor y Michal Petrů. "Carbon Nanoparticle-Based Electro-Thermal Building Block". Applied Sciences 10, n.º 15 (25 de julio de 2020): 5117. http://dx.doi.org/10.3390/app10155117.
Texto completoYong, Joel K. J., Jiwei Cui, Kwun Lun Cho, Geoff W. Stevens, Frank Caruso y Sandra E. Kentish. "Surface Engineering of Polypropylene Membranes with Carbonic Anhydrase-Loaded Mesoporous Silica Nanoparticles for Improved Carbon Dioxide Hydration". Langmuir 31, n.º 22 (28 de mayo de 2015): 6211–19. http://dx.doi.org/10.1021/acs.langmuir.5b01020.
Texto completoTouisni, Nadia, Nasreddine Kanfar, Sébastien Ulrich, Pascal Dumy, Claudiu T. Supuran, Ahmad Mehdi y Jean-Yves Winum. "Cover Picture: Fluorescent Silica Nanoparticles with Multivalent Inhibitory Effects towards Carbonic Anhydrases (Chem. Eur. J. 29/2015)". Chemistry - A European Journal 21, n.º 29 (2 de julio de 2015): 10245. http://dx.doi.org/10.1002/chem.201590127.
Texto completoAkiyoshi, Kazunari, Yoshihiro Sasaki y Junzo Sunamoto. "Molecular Chaperone-Like Activity of Hydrogel Nanoparticles of Hydrophobized Pullulan: Thermal Stabilization with Refolding of Carbonic Anhydrase B". Bioconjugate Chemistry 10, n.º 3 (mayo de 1999): 321–24. http://dx.doi.org/10.1021/bc9801272.
Texto completoBillsten, Peter, Per-Ola Freskgård, Uno Carlsson, Bengt-Harald Jonsson y Hans Elwing. "Adsorption to silica nanoparticles of human carbonic anhydrase II and truncated forms induce a molten-globule-like structure". FEBS Letters 402, n.º 1 (3 de febrero de 1997): 67–72. http://dx.doi.org/10.1016/s0014-5793(96)01431-7.
Texto completoAssarsson, A., I. Nasir, M. Lundqvist y C. Cabaleiro-Lago. "Kinetic and thermodynamic study of the interactions between human carbonic anhydrase variants and polystyrene nanoparticles of different size". RSC Advances 6, n.º 42 (2016): 35868–74. http://dx.doi.org/10.1039/c6ra06175c.
Texto completoFarah M. Ghazal, Muna H. Jankeer y Hafidh I. Al-Sadi. "Effect of Multi-Walled Carbon Nanotubes on lung tissue and concentration of enzyme Carbonic anhydrase in the New Zealand white rabbit". Tikrit Journal of Pure Science 22, n.º 3 (27 de enero de 2023): 49–57. http://dx.doi.org/10.25130/tjps.v22i3.711.
Texto completoGómez-Ballesteros, Miguel, Vanessa Andrés-Guerrero, Francisco Parra, Jorge Marinich, Beatriz de-las-Heras, Irene Molina-Martínez, Blanca Vázquez-Lasa, Julio San Román y Rocío Herrero-Vanrell. "Amphiphilic Acrylic Nanoparticles Containing the Poloxamer Star Bayfit® 10WF15 as Ophthalmic Drug Carriers". Polymers 11, n.º 7 (19 de julio de 2019): 1213. http://dx.doi.org/10.3390/polym11071213.
Texto completoYadav, Raman P., Sveeta V. Mhatre y Amita A. Bhagit. "Biofabrication of Bifunctional Cerium Oxide Nanoparticles using Phaseolus vulgaris with Enhanced Antioxidant and Carbonic Anhydrase Class 1 Inhibitory Activity". MGM Journal of Medical Sciences 3, n.º 4 (2016): 161–66. http://dx.doi.org/10.5005/jp-journals-10036-1117.
Texto completoNasir, Irem, Martin Lundqvist y Celia Cabaleiro-Lago. "Size and surface chemistry of nanoparticles lead to a variant behavior in the unfolding dynamics of human carbonic anhydrase". Nanoscale 7, n.º 41 (2015): 17504–15. http://dx.doi.org/10.1039/c5nr05360a.
Texto completoZhang, Shihan, Yongqi Lu y Xinhuai Ye. "Catalytic behavior of carbonic anhydrase enzyme immobilized onto nonporous silica nanoparticles for enhancing CO2 absorption into a carbonate solution". International Journal of Greenhouse Gas Control 13 (marzo de 2013): 17–25. http://dx.doi.org/10.1016/j.ijggc.2012.12.010.
Texto completoSarah Abbas Hussein Al-saeed, Muhammed Mizher Radhi y Zuhair Numan Hamed. "A Study into the Electrochemical Behavior of Nano Antibiotics as A Promising Treatment for Helicobacter Pylori Infection by Cyclic Voltammetry". Journal of Techniques 4, n.º 33 (15 de noviembre de 2022): 12–20. http://dx.doi.org/10.51173/jt.v4i33.548.
Texto completoTatiparti, Katyayani, Samaresh Sau, Kaustubh Gawde y Arun Iyer. "Copper-Free ‘Click’ Chemistry-Based Synthesis and Characterization of Carbonic Anhydrase-IX Anchored Albumin-Paclitaxel Nanoparticles for Targeting Tumor Hypoxia". International Journal of Molecular Sciences 19, n.º 3 (13 de marzo de 2018): 838. http://dx.doi.org/10.3390/ijms19030838.
Texto completoStiti, Maamar, Alessandro Cecchi, Marouan Rami, Mohamed Abdaoui, Véronique Barragan-Montero, Andrea Scozzafava, Yannick Guari, Jean-Yves Winum y Claudiu T. Supuran. "Carbonic Anhydrase Inhibitor Coated Gold Nanoparticles Selectively Inhibit the Tumor-Associated Isoform IX over the Cytosolic Isozymes I and II". Journal of the American Chemical Society 130, n.º 48 (3 de diciembre de 2008): 16130–31. http://dx.doi.org/10.1021/ja805558k.
Texto completoSaada, Mohamed-Chiheb, Jean-Louis Montero, Daniela Vullo, Andrea Scozzafava, Jean-Yves Winum y Claudiu T. Supuran. "Carbonic Anhydrase Activators: Gold Nanoparticles Coated with Derivatized Histamine, Histidine, and Carnosine Show Enhanced Activatory Effects on Several Mammalian Isoforms". Journal of Medicinal Chemistry 54, n.º 5 (10 de marzo de 2011): 1170–77. http://dx.doi.org/10.1021/jm101284a.
Texto completo