Literatura académica sobre el tema "Carbon pump"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Carbon pump".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Carbon pump"
Pautova, Larisa A. y Vladimir A. Silkin. "Biological carbon pump in the ocean and phytoplankton structure". Hydrosphere Еcology (Экология гидросферы), n.º 1(3) (2019): 1–12. http://dx.doi.org/10.33624/2587-9367-2019-1(3)-1-12.
Texto completoSilkin, Vladimir A., Oleg I. Podymov y Anna V. Lifanchuk. "Biological carbon pump in the Black Sea". Hydrosphere Еcology (Экология гидросферы), n.º 2(8) (diciembre de 2022): 69–92. http://dx.doi.org/10.33624/2587-9367-2022-2(8)-69-92.
Texto completoHamme, Roberta C., David P. Nicholson, William J. Jenkins y Steven R. Emerson. "Using Noble Gases to Assess the Ocean's Carbon Pumps". Annual Review of Marine Science 11, n.º 1 (3 de enero de 2019): 75–103. http://dx.doi.org/10.1146/annurev-marine-121916-063604.
Texto completoBasok, B. I., S. V. Dubovskyi, E. P. Pastushenko, Ye Ye Nikitin y Ye T. Bazeev. "HEAT PUMPS AS A TREND OF LOW-CARBON ENERGY DEVELOPMENT". Energy Technologies & Resource Saving 75, n.º 2 (20 de junio de 2023): 23–44. http://dx.doi.org/10.33070/etars.2.2023.02.
Texto completoBAIK, YOUNG-JIN, MINSUNG KIM y HO-SANG RA. "SIMULATION ON THE PERFORMANCE OF CARBON DIOXIDE AND HYDROCARBON HEAT PUMPS FOR MODERATE TO HIGH TEMPERATURE HEATING". International Journal of Air-Conditioning and Refrigeration 22, n.º 01 (marzo de 2014): 1450001. http://dx.doi.org/10.1142/s2010132514500011.
Texto completoSewastianik, Sara y Andrzej Gajewski. "Carbon Dioxide Emissions from a Ground Heat Pump for a Detached House". Proceedings 16, n.º 1 (20 de junio de 2019): 24. http://dx.doi.org/10.3390/proceedings2019016024.
Texto completoLin, Jr-Lin y Shyh-Fang Kang. "Analysis of carbon emission hot spot and pumping energy efficiency in water supply system". Water Supply 19, n.º 1 (2 de abril de 2018): 200–206. http://dx.doi.org/10.2166/ws.2018.067.
Texto completoGajewski, Gładyszewska-Fiedoruk y Krawczyk. "Carbon Dioxide Emissions during Air, Ground, or Groundwater Heat Pump Performance in Białystok". Sustainability 11, n.º 18 (17 de septiembre de 2019): 5087. http://dx.doi.org/10.3390/su11185087.
Texto completoSit, Mihail y Anatoliy Juravliov. "Hybrid Carbon Dioxide Heat Pump for the Multifamily Residential Buildings in the Heat Supply System Based on CHP". Problems of the Regional Energetics, n.º 3(51) (agosto de 2021): 91–98. http://dx.doi.org/10.52254/1857-0070.2021.3-51.08.
Texto completoCheng, Ling, Zesheng Yu, Shiyao Xia, Shixuan Li, Ye Li, Huan Zhang, Bin Li, Sirui Zhang, Zijian Liu y Wandong Zheng. "Evaluation and Optimization of heat Pump Combined District Heating System: A Case Study of China". Energies 15, n.º 20 (15 de octubre de 2022): 7622. http://dx.doi.org/10.3390/en15207622.
Texto completoTesis sobre el tema "Carbon pump"
Metcalf, Steven John. "Compact, efficient carbon-ammonia adsorption heat pump". Thesis, University of Warwick, 2009. http://wrap.warwick.ac.uk/2777/.
Texto completoBöttcher, Christof. "An automotive carbon dioxide air-conditioning system with heat pump". Thesis, Port Elizabeth Technikon, 2003. http://hdl.handle.net/10948/206.
Texto completoMempouo, B. "Investigations of novel heat pump systems for low carbon homes". Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/12043/.
Texto completoIbrahim, Ayman G. M. "A study of a transcritical multi-stage carbon dioxide heat pump". Thesis, University of Strathclyde, 2004. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=21524.
Texto completoRivero, Pacho Ángeles María. "Thermodynamic and heat transfer analysis of a carbon-ammonia adsorption heat pump". Thesis, University of Warwick, 2014. http://wrap.warwick.ac.uk/66341/.
Texto completoCooper, Rachel. "OCEAN ACIDIFICATION: UNDERSTANDING THE COASTAL CARBON PUMP IN A HIGH CO2 WORLD". VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/420.
Texto completoSmith, Helen E. K. "The contribution of mineralising phytoplankton to the biological carbon pump in high latitudes". Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/376448/.
Texto completoGiering, Sarah L. C. "The role of mesozooplankton in the biological carbon pump of the North Atlantic". Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/359058/.
Texto completoWalker, Stevie. "Climate change impacts on the ocean’s biological carbon pump in a CMIP6 Earth System Model:". Thesis, Boston College, 2021. http://hdl.handle.net/2345/bc-ir:109224.
Texto completoThe ocean plays a key role in global carbon cycling, taking up CO2 from the atmosphere. A fraction of this CO2 is converted into organic carbon through primary production in the surface ocean and sequestered in the deep ocean through a process known as the biological pump. The ability of the biological pump to sequester carbon away from the atmosphere is influenced by the interaction between the annual cycle of ocean mixed layer depth (MLD), primary production, and ecosystem processes that influence export efficiency. Gravitational sinking of particulate organic carbon (POC) is the largest component of the biological pump and the aspect that is best represented in Earth System Models (ESMs). I use ESM data from CESM2, an ESM participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6), to investigate how a high-emissions climate change scenario will impact POC flux globally and regionally over the 21st century. The model simulates a 4.4% decrease in global POC flux at the 100 m depth horizon, from 7.12 Pg C/yr in the short-term (2014-2034) to 6.81 Pg C/yr in the long-term (2079-2099), indicating that the biological pump will become less efficient overall at sequestering carbon. However, the extent of change varies across the globe, including the largest POC flux declines in the North Atlantic, where the maximum annual MLD is projected to shoal immensely. In the future, a multi-model comparison across ESMs will allow for further analysis on the variability of these changes to the biological pump
Thesis (BS) — Boston College, 2021
Submitted to: Boston College. College of Arts and Sciences
Discipline: Departmental Honors
Discipline: Earth and Environmental Science
Duret, Manon. "Microbial communities in sinking and suspended particles and their influence on the oceanic biological carbon pump". Thesis, University of Southampton, 2018. https://eprints.soton.ac.uk/427041/.
Texto completoLibros sobre el tema "Carbon pump"
Park, Simon S. On-line measurement of the PVT properties of polymer/carbon dioxide solutions using a gear pump. Ottawa: National Library of Canada, 1999.
Buscar texto completoWetz, Jennifer Jarrell. Pump station data report for the May 2001, August 2001 and January 2003 COAST cruises: Nutrients, extracted chlorophyll, and dissolved and particulate organic carbon and nitrogen. Corvallis, Or: College of Oceanic and Atmospheric Sciences, Oregon State University, 2005.
Buscar texto completoByerlee, Hugh Waldron. Modification of the design of screen boxes for carbon-in-pulp and resin-in-pulp plants. Randburg, South Africa: Mintek (Hydrometallurgy Division), printed and published by the Council for Mineral technology, 1985.
Buscar texto completoLaxen, Peter Andrew. The carbon-in-pulp plant at Rand Mines Milling & Mining Company: Problems encountered and developments introduced. Randburg, South Africa: Council for Mineral Technology, 1986.
Buscar texto completoHolton, A. E. The development and evaluation of a prototype instrument for the measurement of carbon concentration in pulp. Randburg, South Africa: Council for Mineral Technology, 1987.
Buscar texto completoUpton, Bradley H. Technologies for reducing carbon dioxide emissions: A resource manual for pulp, paper, and wood products manufacturers. Research Triangle Park, N.C: NCASI, 2001.
Buscar texto completoOffice, General Accounting. Air pollution: Oxygenated fuels help reduce carbon monoxide : report to the chairman, Subcommittee on Health and the Environment, Committee on Energy and Commerce, House of Representatives. Washington, D.C: GAO, 1991.
Buscar texto completoOffice, General Accounting. Air pollution: Efforts to control ozone in areas of Illinois, Indiana, and Wisconsin : briefing report to congressional requesters. Washington, D.C: The Office, 1988.
Buscar texto completoOffice, General Accounting. Air pollution: Improvements needed in detecting and preventing violations : report to the chairman, Subcommittee on Oversight and Investigations, Committee on Energy and Commerce, House of Representatives. Washington, D.C: GAO, 1990.
Buscar texto completoCapítulos de libros sobre el tema "Carbon pump"
v. Bertele, O. "Retrofitting Silicon Carbon Bearings to a Process Pump". En Pump Technology, 99–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-38296-7_7.
Texto completoRixen, Tim, Niko Lahajnar, Tarron Lamont, Rolf Koppelmann, Bettina Martin, Luisa Meiritz, Claire Siddiqui y Anja K. Van der Plas. "The Marine Carbon Footprint: Challenges in the Quantification of the CO2 Uptake by the Biological Carbon Pump in the Benguela Upwelling System". En Sustainability of Southern African Ecosystems under Global Change, 729–57. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-10948-5_25.
Texto completoVasiliev, L. L., D. A. Mishkinis, A. A. Antukh, A. G. Kulakov y L. L. Vasiliev. "Multisalt-Carbon Portable Resorption Heat Pump". En Low Temperature and Cryogenic Refrigeration, 387–400. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0099-4_22.
Texto completoCiais, Philippe, Alberto V. Borges, Gwenael Abril, Michel Meybeck, Gerd Folberth, Didier Hauglustaine y Ivan A. Janssens. "The Lateral Carbon Pump, and the European Carbon Balance". En Ecological Studies, 341–60. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-76570-9_16.
Texto completoThingstad, T. Frede. "Microbial Processes and the Biological Carbon Pump". En Towards a Model of Ocean Biogeochemical Processes, 193–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84602-1_9.
Texto completoAhmad, Syed Nasir, Tanveer Ahmad Mir, Talib Shareef, Sasmita Pattnaik y Showkat Ahmad Lone. "Carbon Sequestration in Aquatic System Using Microbial Pump". En Microbiomes and the Global Climate Change, 17–29. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4508-9_2.
Texto completoAnderson, T. R. y I. J. Totterdell. "Modelling the Response of the Biological Pump to Climate Change". En The Ocean Carbon Cycle and Climate, 65–96. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2087-2_3.
Texto completoYu. Shanin, I. "Simulation of Operation Heat or Cold-Making Unit with Hydride Heat Pump". En Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, 233–42. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2669-2_25.
Texto completoAGUSTI, S., J. I. GONZÁLEZ-GORDILLO, D. VAQUÉ, M. ESTRADA, M. I. CEREZO, G. SALAZAR, J. M. GASOL y C. M. DUARTE. "chapter 6 Ubiquitous Healthy Diatoms in the Deep Sea Confirm Deep Carbon Injection by the Biological Pump". En Climate Change and the Oceanic Carbon Cycle, 123–48. 3333 Mistwell Crescent, Oakville, ON L6L 0A2, Canada: Apple Academic Press, 2017. http://dx.doi.org/10.1201/9781315207490-7.
Texto completoSolheim, Asbjørn y Kati Tschöpe. "Model for Excessive Cathode Wear by a “Carbon Pump” at the Cell Bottom". En Light Metals 2013, 1257–62. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118663189.ch212.
Texto completoActas de conferencias sobre el tema "Carbon pump"
Tripathi, S. Vijai, S. Kasthurirengan, S. S. Udgata, R. Gangradey, V. Krishnamoorthy y Bhati Surendra. "Carbonaceous adsorbents in cryosorption pump applications; Future trends". En CARBON MATERIALS 2012 (CCM12): Carbon Materials for Energy Harvesting, Environment, Nanoscience and Technology. AIP, 2013. http://dx.doi.org/10.1063/1.4810023.
Texto completoBadache, Messaoud, Parham Eslami, Nejad Arash Bastani, Zine Aidoun y Mohamed Ouzzane. "Carbon dioxide evaporation process in direct expansion geothermal boreholes". En International Ground Source Heat Pump Association. International Ground Source Heat Pump Association, 2018. http://dx.doi.org/10.22488/okstate.18.000006.
Texto completoBauer, Kohen, Sean Crowe, Cinzia Bottini, Elisabetta Erba y Ryan McKenzie. "Carbon pump dynamics and limited organic carbon burial during OAE1a". En Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.18184.
Texto completoChen, Xiaogang. "Porewater exchange and the saltmarsh carbon pump: Implications for blue carbon budgets". En Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.4039.
Texto completoBaughman, Ray H., Hetao Chu, Zhong Wang, Jiuke Mu, Na Li, Xiaoshuang Zhou, Shaoli Fang et al. "Unipolar-stroke, electroosmotic-pump carbon nanotube yarn muscles". En Electroactive Polymer Actuators and Devices (EAPAD) XXIV, editado por John D. Madden, Iain A. Anderson y Herbert R. Shea. SPIE, 2022. http://dx.doi.org/10.1117/12.2612716.
Texto completoLaPrade, Bennie, Balaji Panchapakesan y Stuart J. Williams. "Opto-Mechanical Actuation of Carbon Nanotube/Polymer Composite Membranes for Microfluidic Pumping Applications". En ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86138.
Texto completoLiu, Dong, Yudi Zhou, Yongying Yang, Peituo Xu, Zhongtao Cheng, Jing Luo, Yupeng Zhang et al. "High-spectral-resolution lidar for ocean biological carbon pump studies". En OCEANS 2016 - Shanghai. IEEE, 2016. http://dx.doi.org/10.1109/oceansap.2016.7485738.
Texto completoAdloff, Markus, Ashley Dinauer, Charlotte Laufkötter, Frerk Pöppelmeier, Aurich Jeltsch-Thömmes y Fortunat Joos. "Carbon cycle implications of a dynamic, climate-sensitive biological pump". En Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.19528.
Texto completoGabrielli, Paolo, Siddhant Singh, Giovanni Sansavini, Luis Sanz Garcia, Emmanuel Jacquemoud y Philipp Jenny. "Off-Design Modelling and Operational Optimization of Trans-Critical Carbon Dioxide Heat Pumps". En ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-83205.
Texto completoDiezinger, Stefan, Christian Huettl, Jochen Schaefer, Christian Paul y Arne Lienau. "Low-Carbon and High-Efficient Heat Provision by High-Temperature Heat Pumps with Subsequent Steam Compression". En ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/210799-ms.
Texto completoInformes sobre el tema "Carbon pump"
Cunningham y Wilcox. PR-015-12205-R01 Technology Challenges for Liquid CO2 Pump Stations. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), diciembre de 2013. http://dx.doi.org/10.55274/r0010023.
Texto completoTsikos, Hariloas, Sipesihle Rafuza, Zolane R. Mhlanga, Paul B. H. Oonk, Vlassis Papadopoulos, Adrian C. Boyce, Paul R. D. Mason, Christopher Harris, Darren R. Gröcke y Timothy W. Lyons. Carbon isotope evidence for water-column carbon and iron cycling in the Paleoproterozoic ocean and implications for the early biological pump: supplementary data file. Rhodes University, Department of Geology, 2020. http://dx.doi.org/10.21504/10962/138395.
Texto completoBuesseler, Ken O., Di Jin, Melina Kourantidou, David S. Levin, Kilaparti Ramakrishna y Philip Renaud. The ocean twilight zone’s role in climate change. Woods Hole Oceanographic Institution, febrero de 2022. http://dx.doi.org/10.1575/1912/28074.
Texto completoPaulauskas, F. L., A. K. Naskar, S. Ozcan, J. R. Keiser y J. P. Gorog. MATERIALS DEVELOPMENT FOR PULP AND PAPER MILLS, TASK 9 PROOF OF COMMERCIAL CONCEPT: COMMODITY CARBON FIBERS FROM WEYERHAEUSER LIGNIN BASED FIBERS. Office of Scientific and Technical Information (OSTI), agosto de 2010. http://dx.doi.org/10.2172/988340.
Texto completoPaulauskas, Felix L., Amit K. Naskar, Soydan Ozcan, James R. Keiser y John Peter Gorog. CRADA Final Report: Materials Development For Pulp and Paper Mills, Task 9 Proof of Commercial Concept: Commodity Carbon Fibers From Weyerhaeuser Lignin Based Fibers. Office of Scientific and Technical Information (OSTI), septiembre de 2010. http://dx.doi.org/10.2172/988228.
Texto completoDelwiche, Michael, Boaz Zion, Robert BonDurant, Judith Rishpon, Ephraim Maltz y Miriam Rosenberg. Biosensors for On-Line Measurement of Reproductive Hormones and Milk Proteins to Improve Dairy Herd Management. United States Department of Agriculture, febrero de 2001. http://dx.doi.org/10.32747/2001.7573998.bard.
Texto completoArtificial upwelling: More power for the ocean’s biological carbon pump. CDRmare, 2023. http://dx.doi.org/10.3289/cdrmare.31.
Texto completoKnowledge summary, Artificial upwelling: More power for the ocean’s biological carbon pump. CDRmare, 2023. http://dx.doi.org/10.3289/cdrmare.30.
Texto completoSouthwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico. Office of Scientific and Technical Information (OSTI), enero de 2010. http://dx.doi.org/10.2172/1002142.
Texto completoTotal organic carbon and rock-eval pyrolysis evaluation of 21 hand-picked coal samples from the following wells: Exxon #1 Yellow Pup, ARCO #1 Birch, and ARCO #1 Cost wells. Alaska Division of Geological & Geophysical Surveys, 1995. http://dx.doi.org/10.14509/19086.
Texto completo