Artículos de revistas sobre el tema "Canopy volume detection"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Canopy volume detection".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Wang, Mengmeng, Hanjie Dou, Hongyan Sun, Changyuan Zhai, Yanlong Zhang y Feixiang Yuan. "Calculation Method of Canopy Dynamic Meshing Division Volumes for Precision Pesticide Application in Orchards Based on LiDAR". Agronomy 13, n.º 4 (7 de abril de 2023): 1077. http://dx.doi.org/10.3390/agronomy13041077.
Texto completoGu, Chenchen, Xiu Wang, Xiaole Wang, Fuzeng Yang y Changyuan Zhai. "Research Progress on Variable-Rate Spraying Technology in Orchards". Applied Engineering in Agriculture 36, n.º 6 (2020): 927–42. http://dx.doi.org/10.13031/aea.14201.
Texto completoRoman, Carla, Hongyoung Jeon, Heping Zhu, Javier Campos y Erdal Ozkan. "Stereo Vision Controlled Variable Rate Sprayer for Specialty Crops: Part II. Sprayer Development and Performance Evaluation". Journal of the ASABE 66, n.º 5 (2023): 1005–17. http://dx.doi.org/10.13031/ja.15578.
Texto completoGu, Chenchen, Changyuan Zhai, Xiu Wang y Songlin Wang. "CMPC: An Innovative Lidar-Based Method to Estimate Tree Canopy Meshing-Profile Volumes for Orchard Target-Oriented Spray". Sensors 21, n.º 12 (21 de junio de 2021): 4252. http://dx.doi.org/10.3390/s21124252.
Texto completoZhou, Huitao, Weidong Jia, Yong Li y Mingxiong Ou. "Method for Estimating Canopy Thickness Using Ultrasonic Sensor Technology". Agriculture 11, n.º 10 (16 de octubre de 2021): 1011. http://dx.doi.org/10.3390/agriculture11101011.
Texto completoSaha, Kowshik Kumar, Nikos Tsoulias, Cornelia Weltzien y Manuela Zude-Sasse. "Estimation of Vegetative Growth in Strawberry Plants Using Mobile LiDAR Laser Scanner". Horticulturae 8, n.º 2 (19 de enero de 2022): 90. http://dx.doi.org/10.3390/horticulturae8020090.
Texto completoLim, Kevin, Paul Treitz, Michael Wulder, Benoît St-Onge y Martin Flood. "LiDAR remote sensing of forest structure". Progress in Physical Geography: Earth and Environment 27, n.º 1 (marzo de 2003): 88–106. http://dx.doi.org/10.1191/0309133303pp360ra.
Texto completoColaço, A. F., R. G. Trevisan, J. P. Molin, J. R. Rosell-Polo y A. Escolà. "Orange tree canopy volume estimation by manual and LiDAR-based methods". Advances in Animal Biosciences 8, n.º 2 (1 de junio de 2017): 477–80. http://dx.doi.org/10.1017/s2040470017001133.
Texto completoHermosilla, Txomin, Luis A. Ruiz, Alexandra N. Kazakova, Nicholas C. Coops y L. Monika Moskal. "Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data". International Journal of Wildland Fire 23, n.º 2 (2014): 224. http://dx.doi.org/10.1071/wf13086.
Texto completoLeite, Rodrigo Vieira, Cibele Hummel do Amaral, Raul de Paula Pires, Carlos Alberto Silva, Carlos Pedro Boechat Soares, Renata Paulo Macedo, Antonilmar Araújo Lopes da Silva, Eben North Broadbent, Midhun Mohan y Hélio Garcia Leite. "Estimating Stem Volume in Eucalyptus Plantations Using Airborne LiDAR: A Comparison of Area- and Individual Tree-Based Approaches". Remote Sensing 12, n.º 9 (9 de mayo de 2020): 1513. http://dx.doi.org/10.3390/rs12091513.
Texto completoKumbhar, Avadhut Shankar Salavi y Prof Mrs S. S. Patil. "Orchard Mapping with Deep Learning Semantic Segmentation". International Journal for Research in Applied Science and Engineering Technology 11, n.º 11 (30 de noviembre de 2023): 174–76. http://dx.doi.org/10.22214/ijraset.2023.56465.
Texto completoZhang, Wenli, Xinyu Peng, Tingting Bai, Haozhou Wang, Daisuke Takata y Wei Guo. "A UAV-Based Single-Lens Stereoscopic Photography Method for Phenotyping the Architecture Traits of Orchard Trees". Remote Sensing 16, n.º 9 (28 de abril de 2024): 1570. http://dx.doi.org/10.3390/rs16091570.
Texto completoRömer, Christoph, Mirwaes Wahabzada, Agim Ballvora, Francisco Pinto, Micol Rossini, Cinzia Panigada, Jan Behmann et al. "Early drought stress detection in cereals: simplex volume maximisation for hyperspectral image analysis". Functional Plant Biology 39, n.º 11 (2012): 878. http://dx.doi.org/10.1071/fp12060.
Texto completoParr, Baden, Mathew Legg, Stuart Bradley y Fakhrul Alam. "Occluded Grape Cluster Detection and Vine Canopy Visualisation Using an Ultrasonic Phased Array". Sensors 21, n.º 6 (20 de marzo de 2021): 2182. http://dx.doi.org/10.3390/s21062182.
Texto completoAPOSTOL, Bogdan, Adrian LORENT, Marius PETRILA, Vladimir GANCZ y Ovidiu BADEA. "Height Extraction and Stand Volume Estimation Based on Fusion Airborne LiDAR Data and Terrestrial Measurements for a Norway Spruce [Picea abies (L.) Karst.] Test Site in Romania". Notulae Botanicae Horti Agrobotanici Cluj-Napoca 44, n.º 1 (14 de junio de 2016): 313–23. http://dx.doi.org/10.15835/nbha44110155.
Texto completoHyyppä, Eric, Xiaowei Yu, Harri Kaartinen, Teemu Hakala, Antero Kukko, Mikko Vastaranta y Juha Hyyppä. "Comparison of Backpack, Handheld, Under-Canopy UAV, and Above-Canopy UAV Laser Scanning for Field Reference Data Collection in Boreal Forests". Remote Sensing 12, n.º 20 (13 de octubre de 2020): 3327. http://dx.doi.org/10.3390/rs12203327.
Texto completoLiu, Chong y Zhen Feng Shao. "Estimation of Forest Carbon Storage Based on Airborne LiDAR Data". Applied Mechanics and Materials 195-196 (agosto de 2012): 1314–20. http://dx.doi.org/10.4028/www.scientific.net/amm.195-196.1314.
Texto completoAlvites, Cesar, Hannah O’Sullivan, Saverio Francini, Marco Marchetti, Giovanni Santopuoli, Gherardo Chirici, Bruno Lasserre, Michela Marignani y Erika Bazzato. "High-Resolution Canopy Height Mapping: Integrating NASA’s Global Ecosystem Dynamics Investigation (GEDI) with Multi-Source Remote Sensing Data". Remote Sensing 16, n.º 7 (5 de abril de 2024): 1281. http://dx.doi.org/10.3390/rs16071281.
Texto completoBlackman, Raoul y Fei Yuan. "Detecting Long-Term Urban Forest Cover Change and Impacts of Natural Disasters Using High-Resolution Aerial Images and LiDAR Data". Remote Sensing 12, n.º 11 (4 de junio de 2020): 1820. http://dx.doi.org/10.3390/rs12111820.
Texto completoLopes Queiroz, Gustavo, Gregory McDermid, Julia Linke, Christopher Hopkinson y Jahan Kariyeva. "Estimating Coarse Woody Debris Volume Using Image Analysis and Multispectral LiDAR". Forests 11, n.º 2 (25 de enero de 2020): 141. http://dx.doi.org/10.3390/f11020141.
Texto completoRaman, Mugilan Govindasamy, Eduardo Fermino Carlos y Sindhuja Sankaran. "Optimization and Evaluation of Sensor Angles for Precise Assessment of Architectural Traits in Peach Trees". Sensors 22, n.º 12 (18 de junio de 2022): 4619. http://dx.doi.org/10.3390/s22124619.
Texto completoPirotti, F., C. Paterno y M. Pividori. "APPLICATION OF TREE DETECTION METHODS OVER LIDAR DATA FOR FOREST VOLUME ESTIMATION". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2020 (21 de agosto de 2020): 1055–60. http://dx.doi.org/10.5194/isprs-archives-xliii-b3-2020-1055-2020.
Texto completoSun, Wang, Ding, Lu y Sun. "Remote Measurement of Apple Orchard Canopy Information Using Unmanned Aerial Vehicle Photogrammetry". Agronomy 9, n.º 11 (19 de noviembre de 2019): 774. http://dx.doi.org/10.3390/agronomy9110774.
Texto completoSangjan, Worasit y Sindhuja Sankaran. "Phenotyping Architecture Traits of Tree Species Using Remote Sensing Techniques". Transactions of the ASABE 64, n.º 5 (2021): 1611–24. http://dx.doi.org/10.13031/trans.14419.
Texto completoDi Gennaro, Salvatore Filippo, Carla Nati, Riccardo Dainelli, Laura Pastonchi, Andrea Berton, Piero Toscano y Alessandro Matese. "An Automatic UAV Based Segmentation Approach for Pruning Biomass Estimation in Irregularly Spaced Chestnut Orchards". Forests 11, n.º 3 (12 de marzo de 2020): 308. http://dx.doi.org/10.3390/f11030308.
Texto completoMuhojoki, Jesse, Daniella Tavi, Eric Hyyppä, Matti Lehtomäki, Tamás Faitli, Harri Kaartinen, Antero Kukko, Teemu Hakala y Juha Hyyppä. "Benchmarking Under- and Above-Canopy Laser Scanning Solutions for Deriving Stem Curve and Volume in Easy and Difficult Boreal Forest Conditions". Remote Sensing 16, n.º 10 (13 de mayo de 2024): 1721. http://dx.doi.org/10.3390/rs16101721.
Texto completoYan, Tingting, Heping Zhu, Li Sun, Xiaochan Wang y Peter Ling. "Investigation of an Experimental Laser Sensor-Guided Spray Control System for Greenhouse Variable-Rate Applications". Transactions of the ASABE 62, n.º 4 (2019): 899–911. http://dx.doi.org/10.13031/trans.13366.
Texto completoHollaus, M., W. Wagner, K. Schadauer, B. Maier y K. Gabler. "Growing stock estimation for alpine forests in Austria: a robust lidar-based approach". Canadian Journal of Forest Research 39, n.º 7 (julio de 2009): 1387–400. http://dx.doi.org/10.1139/x09-042.
Texto completoGao, Sha, Zhengnan Zhang y Lin Cao. "Individual Tree Structural Parameter Extraction and Volume Table Creation Based on Near-Field LiDAR Data: A Case Study in a Subtropical Planted Forest". Sensors 21, n.º 23 (6 de diciembre de 2021): 8162. http://dx.doi.org/10.3390/s21238162.
Texto completoMikita, Tomáš y Petr Balogh. "Usage of Geoprocessing Services in Precision Forestry for Wood Volume Calculation and Wind Risk Assessment". Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 63, n.º 3 (2015): 793–801. http://dx.doi.org/10.11118/actaun201563030793.
Texto completoKuo, Kuangting, Kenta Itakura y Fumiki Hosoi. "Leaf Segmentation Based on k-Means Algorithm to Obtain Leaf Angle Distribution Using Terrestrial LiDAR". Remote Sensing 11, n.º 21 (29 de octubre de 2019): 2536. http://dx.doi.org/10.3390/rs11212536.
Texto completoDou, Hanjie, Changyuan Zhai, Liping Chen, Xiu Wang y Wei Zou. "Comparison of Orchard Target-Oriented Spraying Systems Using Photoelectric or Ultrasonic Sensors". Agriculture 11, n.º 8 (8 de agosto de 2021): 753. http://dx.doi.org/10.3390/agriculture11080753.
Texto completoTsoulias, Nikos, Dimitrios S. Paraforos, Spyros Fountas y Manuela Zude-Sasse. "Estimating Canopy Parameters Based on the Stem Position in Apple Trees Using a 2D LiDAR". Agronomy 9, n.º 11 (11 de noviembre de 2019): 740. http://dx.doi.org/10.3390/agronomy9110740.
Texto completoRouzbeh Kargar, Ali, Richard MacKenzie, Gregory P. Asner y Jan van Aardt. "A Density-Based Approach for Leaf Area Index Assessment in a Complex Forest Environment Using a Terrestrial Laser Scanner". Remote Sensing 11, n.º 15 (31 de julio de 2019): 1791. http://dx.doi.org/10.3390/rs11151791.
Texto completoParker, Robert C. y David L. Evans. "LiDAR Forest Inventory with Single-Tree, Double-, and Single-Phase Procedures". International Journal of Forestry Research 2009 (2009): 1–6. http://dx.doi.org/10.1155/2009/864108.
Texto completoSzostak, Marta y Marek Pająk. "LiDAR Point Clouds Usage for Mapping the Vegetation Cover of the “Fryderyk” Mine Repository". Remote Sensing 15, n.º 1 (30 de diciembre de 2022): 201. http://dx.doi.org/10.3390/rs15010201.
Texto completoXi, Zhouxin, Christopher Hopkinson, Stewart B. Rood, Celeste Barnes, Fang Xu, David Pearce y Emily Jones. "A Lightweight Leddar Optical Fusion Scanning System (FSS) for Canopy Foliage Monitoring". Sensors 19, n.º 18 (12 de septiembre de 2019): 3943. http://dx.doi.org/10.3390/s19183943.
Texto completoVIZIREANU, Ioana, Andreea CALCAN, Georgiana GRIGORAS y Dan RADUCANU. "Detection of trees features from a forestry area using airborne LiDAR data". INCAS BULLETIN 13, n.º 1 (5 de marzo de 2020): 225–36. http://dx.doi.org/10.13111/2066-8201.2021.13.1.23.
Texto completoSurfleet, Christopher G., Brian Dietterick y Arne Skaugset. "Change detection of storm runoff and sediment yield using hydrologic models following wildfire in a coastal redwood forest, California". Canadian Journal of Forest Research 44, n.º 6 (junio de 2014): 572–81. http://dx.doi.org/10.1139/cjfr-2013-0328.
Texto completoMeyer, Victoria, Sassan Saatchi, David B. Clark, Michael Keller, Grégoire Vincent, António Ferraz, Fernando Espírito-Santo, Marcus V. N. d'Oliveira, Dahlia Kaki y Jérôme Chave. "Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes". Biogeosciences 15, n.º 11 (8 de junio de 2018): 3377–90. http://dx.doi.org/10.5194/bg-15-3377-2018.
Texto completoGoldbergs, Grigorijs. "Comparison of Canopy Height Metrics from Airborne Laser Scanner and Aerial/Satellite Stereo Imagery to Assess the Growing Stock of Hemiboreal Forests". Remote Sensing 15, n.º 6 (21 de marzo de 2023): 1688. http://dx.doi.org/10.3390/rs15061688.
Texto completoPark, Taejin. "Potential Lidar Height, Intensity, and Ratio Parameters for Plot Dominant Species Discrimination and Volume Estimation". Remote Sensing 12, n.º 19 (8 de octubre de 2020): 3266. http://dx.doi.org/10.3390/rs12193266.
Texto completoGoerndt, Michael E., Vincente J. Monleon y Hailemariam Temesgen. "Relating Forest Attributes with Area- and Tree-Based Light Detection and Ranging Metrics for Western Oregon". Western Journal of Applied Forestry 25, n.º 3 (1 de julio de 2010): 105–11. http://dx.doi.org/10.1093/wjaf/25.3.105.
Texto completoMatinnia, Benyamin, Aidin Parsakhoo, Jahangir Mohamadi y Shaban Shataee Jouibary. "Study of the LiDAR accuracy in mapping forest road alignments and estimating the earthwork volume". Journal of Forest Science 64, No. 11 (3 de diciembre de 2018): 469–77. http://dx.doi.org/10.17221/87/2018-jfs.
Texto completoAli-Sisto, D. y P. Packalen. "COMPARISON OF 3D POINT CLOUDS FROM AERIAL STEREO IMAGES AND LIDAR FOR FOREST CHANGE DETECTION". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-3/W3 (19 de octubre de 2017): 1–5. http://dx.doi.org/10.5194/isprs-archives-xlii-3-w3-1-2017.
Texto completoGarcia Millan, Virginia E., Cassidy Rankine y G. Arturo Sanchez-Azofeifa. "Crop Loss Evaluation Using Digital Surface Models from Unmanned Aerial Vehicles Data". Remote Sensing 12, n.º 6 (18 de marzo de 2020): 981. http://dx.doi.org/10.3390/rs12060981.
Texto completoMachimura, Takashi, Ayana Fujimoto, Kiichiro Hayashi, Hiroaki Takagi y Satoru Sugita. "A Novel Tree Biomass Estimation Model Applying the Pipe Model Theory and Adaptable to UAV-Derived Canopy Height Models". Forests 12, n.º 2 (23 de febrero de 2021): 258. http://dx.doi.org/10.3390/f12020258.
Texto completoWang, Jinghua, Xiang Li, Guijun Yang, Fan Wang, Sen Men, Bo Xu, Ze Xu, Haibin Yang y Lei Yan. "Research on Tea Trees Germination Density Detection Based on Improved YOLOv5". Forests 13, n.º 12 (8 de diciembre de 2022): 2091. http://dx.doi.org/10.3390/f13122091.
Texto completoParker, Robert C. y Patrick A. Glass. "High- Versus Low-Density LiDAR in a Double-Sample Forest Inventory". Southern Journal of Applied Forestry 28, n.º 4 (1 de noviembre de 2004): 205–10. http://dx.doi.org/10.1093/sjaf/28.4.205.
Texto completoParker, Robert C. y A. Lee Mitchel. "Smoothed Versus Unsmoothed LiDAR in a Double-Sample Forest Inventory". Southern Journal of Applied Forestry 29, n.º 1 (1 de febrero de 2005): 40–47. http://dx.doi.org/10.1093/sjaf/29.1.40.
Texto completo