Índice
Literatura académica sobre el tema "Calculs d'équilibre thermodynamique"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Calculs d'équilibre thermodynamique".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Tesis sobre el tema "Calculs d'équilibre thermodynamique"
Qu, Jingang. "Acceleration of Numerical Simulations with Deep Learning : Application to Thermodynamic Equilibrium Calculations". Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS530.pdf.
Texto completoNumerical simulations are a powerful tool for analyzing dynamic systems, but can be computationally expensive and time-consuming for complex systems with high resolution. Over the past decades, researchers have been striving to accelerate numerical simulations through algorithmic improvements and high-performance computing (HPC). More recently, artificial intelligence (AI) for science is on the rise and involves using AI techniques, specifically machine learning and deep learning, to solve scientific problems and accelerate numerical simulations, having the potential to revolutionize a wide range of fields. The primary goal of this thesis is to speed up thermodynamic equilibrium calculations by means of techniques used to accelerate numerical simulations. Thermodynamic equilibrium calculations are able to identify the phases of mixtures and their compositions at equilibrium and play a pivotal role in many fields, such as chemical engineering and petroleum industry. We achieve this goal from two aspects. One the one hand, we use deep learning frameworks to rewrite and vectorize algorithms involved in thermodynamic equilibrium calculations, facilitating the use of diverse hardware for HPC. On the other hand, we use neural networks to replace time-consuming and repetitive subroutines of thermodynamic equilibrium calculations, which is a widely adopted technique of AI for science. Another focus of this thesis is to address the challenge of domain generalization (DG) in image classification. DG involves training models on known domains that can effectively generalize to unseen domains, which is crucial for deploying models in safety-critical real-world applications. DG is an active area of research in deep learning. Although various DG methods have been proposed, they typically require domain labels and lack interpretability. Therefore, we aim to develop a novel DG algorithm that does not require domain labels and is more interpretable
Néron, Alex. "Développement d'une plateforme de calcul d'équilibres chimiques complexes et adaptation aux problèmes électrochimiques et d'équilibres contraints". Mémoire, Université de Sherbrooke, 2012. http://hdl.handle.net/11143/5502.
Texto completoAmmar, Mohamed Naceur. "Modélisation d'opérations unitaires et méthodes numériques de calcul d'équilibre liquide-vapeur". ENMP, 1986. http://www.theses.fr/1986ENMP0002.
Texto completoAzzaoui, Mouhsine. "Modélisation des liquides métalliques ternaires pour le calcul des diagrammes d'équilibre à partir des mesures thermodynamiques ciblées : systèmes tests : (Pb, Sn, Sb), (Pb, Sn, Bi), (Pb, Sn, Ca)". Nancy 1, 1995. http://www.theses.fr/1995NAN10032.
Texto completoKhalil, Waël. "Développement d'un appareil automatisé de mesure simultanée d'équilibres de phases et de propriétés volumétriques. Exploitation des données volumétriques pour le calcul prédictif de grandeurs thermodynamiques dérivées". Phd thesis, École Nationale Supérieure des Mines de Paris, 2006. http://pastel.archives-ouvertes.fr/pastel-00002584.
Texto completoMartin, Petitfrere. "EOS based simulations of thermal and compositional flows in porous media". Thesis, Pau, 2014. http://www.theses.fr/2014PAUU3036/document.
Texto completoThree to four phase equilibrium calculations are in the heart of tertiary recovery simulations. In gas/steam injection processes, additional phases emerging from the oil-gas system are added to the set and have a significant impact on the oil recovery. The most important computational effort in many chemical process simulators and in petroleum compositional reservoir simulations is required by phase equilibrium and thermodynamic property calculations. In field scale reservoir simulations, a huge number of phase equilibrium calculations is required. For all these reasons, the algorithms must be robust and time-saving. In the literature, few simulators based on equations of state (EoS) are applicable to thermal recovery processes such as steam injection. To the best of our knowledge, no fully compositional thermal simulation of the steam injection process has been proposed with extra-heavy oils; these simulations are essential and will offer improved tools for predictive studies of the heavy oil fields. Thus, in this thesis different algorithms of improved efficiency and robustness for multiphase equilibrium calculations are proposed, able to handle conditions encountered during the simulation of steam injection for heavy oil mixtures. Most of the phase equilibrium calculations are based on the Newton method and use conventional independent variables. These algorithms are first investigated and different improvements are proposed. Michelsen’s (Fluid Phase Equil. 9 (1982) 21-40) method for multiphase-split problems is modified to take full advantage of symmetry (in the construction of the Jacobian matrix and the resolution of the linear system). The reduction methods enable to reduce the space of study from nc (number of components) for conventional variables to M (M<