Literatura académica sobre el tema "Calcium transient duration"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Calcium transient duration".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Calcium transient duration"
Ratan, R. R., F. R. Maxfield y M. L. Shelanski. "Long-lasting and rapid calcium changes during mitosis." Journal of Cell Biology 107, n.º 3 (1 de septiembre de 1988): 993–99. http://dx.doi.org/10.1083/jcb.107.3.993.
Texto completoLiu, Y., S. L. Carroll, M. G. Klein y M. F. Schneider. "Calcium transients and calcium homeostasis in adult mouse fast-twitch skeletal muscle fibers in culture". American Journal of Physiology-Cell Physiology 272, n.º 6 (1 de junio de 1997): C1919—C1927. http://dx.doi.org/10.1152/ajpcell.1997.272.6.c1919.
Texto completoVyshedskiy, Andrey y Jen-Wei Lin. "Presynaptic Ca2+ Influx at the Inhibitor of the Crayfish Neuromuscular Junction: A Photometric Study at a High Time Resolution". Journal of Neurophysiology 83, n.º 1 (1 de enero de 2000): 552–62. http://dx.doi.org/10.1152/jn.2000.83.1.552.
Texto completoGidö, Gunilla, Kenichiro Katsura, Tibor Kristian y Bo K. Siesjö. "Influence of Plasma Glucose Concentration on Rat Brain Extracellular Calcium Transients during Spreading Depression". Journal of Cerebral Blood Flow & Metabolism 13, n.º 1 (enero de 1993): 179–82. http://dx.doi.org/10.1038/jcbfm.1993.21.
Texto completoWang, C. y Z. Machaty. "189 CHARACTERIZATION OF THE FIRST SPERM-INDUCED CALCIUM TRANSIENT IN PIG OOCYTES". Reproduction, Fertility and Development 28, n.º 2 (2016): 225. http://dx.doi.org/10.1071/rdv28n2ab189.
Texto completoHartmann, T., M. Kondo, H. Mochizuki, A. S. Verkman y J. H. Widdicombe. "Calcium-dependent regulation of Cl secretion in tracheal epithelium". American Journal of Physiology-Lung Cellular and Molecular Physiology 262, n.º 2 (1 de febrero de 1992): L163—L168. http://dx.doi.org/10.1152/ajplung.1992.262.2.l163.
Texto completoChaigne, Sebastien, Guillaume Cardouat, Julien Louradour, Fanny Vaillant, Sabine Charron, Frederic Sacher, Thomas Ducret, Romain Guinamard, Edward Vigmond y Thomas Hof. "Transient receptor potential vanilloid 4 channel participates in mouse ventricular electrical activity". American Journal of Physiology-Heart and Circulatory Physiology 320, n.º 3 (1 de marzo de 2021): H1156—H1169. http://dx.doi.org/10.1152/ajpheart.00497.2020.
Texto completoSchneider, Eve R., Eugene F. Civillico y Samuel S. H. Wang. "Calcium-based dendritic excitability and its regulation in the deep cerebellar nuclei". Journal of Neurophysiology 109, n.º 9 (1 de mayo de 2013): 2282–92. http://dx.doi.org/10.1152/jn.00925.2012.
Texto completoRoome, Chris J., Emmet M. Power y Ruth M. Empson. "Transient reversal of the sodium/calcium exchanger boosts presynaptic calcium and synaptic transmission at a cerebellar synapse". Journal of Neurophysiology 109, n.º 6 (15 de marzo de 2013): 1669–80. http://dx.doi.org/10.1152/jn.00854.2012.
Texto completoKatra, Rodolphe P., Etienne Pruvot y Kenneth R. Laurita. "Intracellular calcium handling heterogeneities in intact guinea pig hearts". American Journal of Physiology-Heart and Circulatory Physiology 286, n.º 2 (febrero de 2004): H648—H656. http://dx.doi.org/10.1152/ajpheart.00374.2003.
Texto completoTesis sobre el tema "Calcium transient duration"
Podugu, Sireesha P. Ferrari Michael B. "Long duration calcium transients inhibit sarcomere assembly". Diss., UMK access, 2006.
Buscar texto completo"A thesis in cellular and molecular biology." Typescript. Advisor: Michael B. Ferrari. Title from "catalog record" of the print edition Description based on contents viewed Nov. 1, 2007. Includes bibliographical references (leaves 48-52). Online version of the print edition.
Gandhi, Kushal Yogeshchandra. "Investigate the regional heterogeneity of electrophysiological properties and intracellular calcium in the heart". Doctoral thesis, 2016. http://hdl.handle.net/11562/937766.
Texto completoCardiovascular diseases, and the progression to heart failure, are one of the leading causes of death. Cardiac tissue slices are becoming increasingly popular as a model system for cardiac electrophysiology and pharmacology research and development. The regional heterogeneity of intracellular calcium and trans-membrane potential, in particular transmural difference in the ventricle and its effect on the electrophysiological substrate is largely unexplored despite the well-established importance of the electrophysiological heterogeneity of the heart. Such information however, can not currently be obtained from either isolated single cell or Langendorff perfused whole heart preparations that are widely used in cardiac research. Here, we described in detail preparation, handling and optical mapping recording using voltage and calcium fluorescent dyes in ventricular tissue slices from mice. We also tried to look at alternans and arrhythmia in different regions of heart by applying field stimulation at different frequencies. We investigated the possible role of Pak1 in autonomic modulation of sino-atrial node pace making activity. The ventricle was cut into transverse and longitudinal direction for optical mapping recording. APD and CaTD were longer in mid-myocardium region compare to epicardium and endocardium region of transverse section of the ventricle. The mid-myocardium region contains M-cells which had a prominent spike and dome action potential configuration. We also observed longer CaTD and APD in apical region compare to mid and basal region of left ventricle (longitudinal slices). The rapid increase in voltage and calcium responses in ventricular slices was mainly caused by applying cumulative pacing frequencies (from 2 Hz to 16 Hz). At higher frequency, alternans and arrhythmia were seen in different regions of ventricle. Pak1 played significant role in the response of murine SAN to autonomic signaling, acting to oppose adrenergic and augment cholinergic responses in the intact system. Pak1 acted as an anti-hypertrophic and anti-arrhythmic in β-adrenergic stress condition. In conclusion, the methodology describe here, thus provides a novel model system for the study of regional heterogeneity of several electrophysiological properties in the heart. Our study indicates that there are transmural and regional differences in calcium transient and transmembrane potential in ventricular slices (transverse and longitudinal section). Pak1 displays cardio-protective effects by de-phosphorylation of several cardiac proteins (cTnI, cTnC and MyBP-C) and activation of protein phosphatase 2A (PP2A).
Actas de conferencias sobre el tema "Calcium transient duration"
McIntyre, Stephen D., Yoichiro Mori y Elena G. Tolkacheva. "Local Onset of Voltage and Calcium Alternans in the Heart". En ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. ASMEDC, 2011. http://dx.doi.org/10.1115/dscc2011-6148.
Texto completo