Literatura académica sobre el tema "Cadmium effects on SOD1"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Cadmium effects on SOD1".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Cadmium effects on SOD1"
Zoidis, Evangelos, George Papadomichelakis, Athanasios C. Pappas, Georgios Theodorou y Kostas Fegeros. "Effects of Selenium and Cadmium on Breast Muscle Fatty-Acid Composition and Gene Expression of Liver Antioxidant Proteins in Broilers". Antioxidants 8, n.º 5 (27 de mayo de 2019): 147. http://dx.doi.org/10.3390/antiox8050147.
Texto completoBovio, Federica, Barbara Sciandrone, Chiara Urani, Paola Fusi, Matilde Forcella y Maria Elena Regonesi. "Superoxide dismutase 1 (SOD1) and cadmium: A three models approach to the comprehension of its neurotoxic effects". NeuroToxicology 84 (mayo de 2021): 125–35. http://dx.doi.org/10.1016/j.neuro.2021.03.007.
Texto completoMedicherla, Balasubrahmanyam y Alfred L. Goldberg. "Heat shock and oxygen radicals stimulate ubiquitin-dependent degradation mainly of newly synthesized proteins". Journal of Cell Biology 182, n.º 4 (25 de agosto de 2008): 663–73. http://dx.doi.org/10.1083/jcb.200803022.
Texto completoJiang, Shun Yao y Pei Jiang Zhou. "Effects of Cadmium on the Expression of Antioxidant Enzymes, Oxidative Stress and Apoptosis in Primary Hepatocytes of Carassius Auratus". Advanced Materials Research 518-523 (mayo de 2012): 341–46. http://dx.doi.org/10.4028/www.scientific.net/amr.518-523.341.
Texto completoNikolic-Kokic, Aleksandra, Zorana Orescanin-Dusic, Ivan Spasojevic, Dusko Blagojevic, Zorica Stevic, Pavle Andjus y Mihajlo Spasic. "The effects of wild-type and mutant SOD1 on smooth muscle contraction". Archives of Biological Sciences 67, n.º 1 (2015): 187–92. http://dx.doi.org/10.2298/abs141006023n.
Texto completoSorrells, A. D., K. Corcoran-Gomez, K. A. Eckert, A. G. Fahey, B. L. Hoots, L. B. Charleston, J. S. Charleston, C. R. Roberts y H. Markowitz. "Effects of environmental enrichment on the amyotrophic lateral sclerosis mouse model". Laboratory Animals 43, n.º 2 (abril de 2009): 182–90. http://dx.doi.org/10.1258/la.2008.005090.
Texto completoYing, Weihai, Christopher M. Anderson, Yongmei Chen, Becky A. Stein, Christian S. Fahlman, Jean-Christophe Copin, Pak H. Chan y Raymond A. Swanson. "Differing Effects of Copper, Zinc Superoxide Dismutase Overexpression on Neurotoxicity Elicited by Nitric Oxide, Reactive Oxygen Species, and Excitotoxins". Journal of Cerebral Blood Flow & Metabolism 20, n.º 2 (febrero de 2000): 359–68. http://dx.doi.org/10.1097/00004647-200002000-00018.
Texto completoNikolić-Kokić, Aleksandra, Zorana Oreščanin-Dušić, Marija Slavić, Ivan Spasojević, Zorica Stević, Mihajlo Spasić y Duško Blagojević. "The Effects of Human Wild-Type and Fals Mutant L144P SOD1 on Non-Vascular Smooth Muscle Contractions / EFEKTI HUMANE NORMALNE I FALS MUTIRANE L144P SOD1 NA NEVASKULARNE KONTRAKCIJE GLATKIH MIŠIĆA". Journal of Medical Biochemistry 32, n.º 4 (1 de octubre de 2013): 375–79. http://dx.doi.org/10.2478/jomb-2013-0032.
Texto completoCulik, Robert M., Ashok Sekhar, Jayashree Nagesh, Harmeen Deol, Jessica A. O. Rumfeldt, Elizabeth M. Meiering y Lewis E. Kay. "Effects of maturation on the conformational free-energy landscape of SOD1". Proceedings of the National Academy of Sciences 115, n.º 11 (26 de febrero de 2018): E2546—E2555. http://dx.doi.org/10.1073/pnas.1721022115.
Texto completoPytte, Julia, Loren L. Flynn, Ryan S. Anderton, Frank L. Mastaglia, Frances Theunissen, Ian James, Abigail Pfaff et al. "Disease-modifying effects of an SCAF4 structural variant in a predominantly SOD1 ALS cohort". Neurology Genetics 6, n.º 4 (1 de julio de 2020): e470. http://dx.doi.org/10.1212/nxg.0000000000000470.
Texto completoTesis sobre el tema "Cadmium effects on SOD1"
BOVIO, FEDERICA. "The cadmium altered oxidative homeostasis leads to energetic metabolism rearrangement, Nrf2 activation with increased GSH production and reduced SOD1 activity in neural cells". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/309982.
Texto completoThe heavy metal cadmium is a widespread toxic pollutant, released into the environment mainly by anthropogenic activities. Human exposure can occur through different sources: occupationally or environmentally, with its uptake through inhalation of polluted air, cigarette smoking or ingestion of contaminated food and water. It mainly enters the human body through the respiratory and the gastrointestinal tract and it accumulates in liver and kidneys. Brain is also a target of cadmium toxicity, since this toxicant may enter the central nervous system by increasing blood brain barrier permeability or through the olfactory nerves. In fact, cadmium exposure has been related to impaired functions of the nervous system and to neurodegenerative diseases, like amyotrophic lateral sclerosis (ALS). ALS is a fatal motor neuron pathology with the 90-95% of ALS cases being sporadic (sALS), while the remaining 5-10% of familial onset (fALS); among fALS, the 15-20% is attributed to mutations in superoxide dismutase 1 (SOD1). SOD1 is an antioxidant protein responsible for superoxide anions disruption and it is a homodimeric metalloenzyme of 32 kDa mainly located in the cytoplasm, with each monomer binding one catalytic copper ion and one structural zinc ion within a disulfide bonded conformer. Since oxidative stress is one of the major mechanisms of cadmium induced toxicity and an alteration of oxidative homeostasis, through depletion of antioxidant defences, is responsible for a plethora of adverse outcoming mainly leading to cell death; we focused on cadmium effect (1) on the energetic metabolism in human neuroblastoma SH-SY5Y cell line, (2) on the oxidative defences responses in differentiated human LUHMES neural cell line and (3) on the function of human SOD1 in a three models approach (recombinant protein in E. coli, in SH-SY5Y cell line and in the nematode Caenorhabditis elegans). The evaluation of energetic metabolism of SH-SY5Y neural cells treated with sub-lethal CdCl2 doses for 24 hours, showed an increase in glycolysis compared to control. This shift to anaerobic metabolism has been confirmed by both glycolytic parameters and greater ATP production from glycolysis than oxidative phosphorylation, index of less mitochondrial functionality in cadmium treated cells. Regarding the fuel oxidation cadmium caused an increase in glutamine dependency and a specular reduction in the fatty acids one, without altering the glucose dependency. Moreover, we observed an increase in total GSH, in the GSSG/GSH ratio and in lipid peroxidation, all index of an altered oxidative homeostasis better investigated in LUHMES cells. In this model a 24h cadmium administration enhanced the total GSH content at the lower doses, at which also activates Nrf2 through a better protein stabilization via p21 and P-Akt. The metal adverse effects on cell viability can be rescued by GSH addition and by cadmium treatment in astrocytes- or microglia-conditioned medium. In the latter cases the total GSH level remains comparable to untreated cells even at higher CdCl2 concentrations. Finally, SOD1 catalytical activity has been investigated in the presence of cadmium. The first evaluation of this metal combined with fixed copper and/or zinc on the recombinant GST-SOD1, expressed in E. coli BL21, showed a dose-dependent reduction in SOD1 activity only when copper is added to cellular medium, while the expression remains always constant. Similar results were obtained in SH-SY5Y cell line, in which SOD1 enzymatic activity decreased in a dose- and time-dependent way after cadmium treatment for 24 and 48 hours, without altering its expression; as well as in the Caenorhabditis elegans model, where a 16 hours cadmium treatment caused a 25% reduction only in SOD1 activity. In conclusion, cadmium caused a shift to anaerobiosis, a Nrf2 activation, with increased GSH production, and a reduction in SOD1 activity.
Jinadasa, K. B. P. Neelantha. "Cadmium effects on vegetables : production, physiology and biochemistry /". View thesis View thesis, 1998. http://library.uws.edu.au/adt-NUWS/public/adt-NUWS20030520.085431/index.html.
Texto completoSantos, José António da Costa. "Cadmium effects in Nitzschia Palea frustule proteins". Master's thesis, Universidade de Aveiro, 2010. http://hdl.handle.net/10773/8816.
Texto completoAs diatomáceas são organismos eucarióticos fotossintéticos, cuja relevância como espécies bioindicadoras foi há muito estabelecida, por via de índices ecológicos, ou por via de testes de toxicidade baseados em características ecológicas. A parede celular silicificada (frustula) é a característica mais distintiva destes organismos, permitindo uma identificação da espécie, e fornecendo a indicação de stresses ambientais, devido à indução de formações anormais da frústula. Estas teratologias são a consequência de perturbações no processo de biosilicificação, e podem ocorrer em culturas laboratoriais, ou devido a contaminação por metais, ou pesticidas. De entre os indutores de teratologias, os metais, como o cádmio, são a classe mais relevante devido à sua ocorrência natural ou antropogénica na natureza, e pela sua alta toxicidade relativa às pequenas quantidades presentes. Embora o processo de formação da frustula não esteja ainda completamente esclarecido, nos últimos anos tem sido publicada informação que revela a existência de proteínas na frústula, algumas delas contribuindo para a biosilicificação. O estudo das alterações induzidas pelo cádmio na quantidade, variedade, e relação das proteínas presentes na frústula, foram os objectivos deste trabalho, juntamente com a quantificação de cádmio nas fracções da frústula. Os resultados deste trabalho mostraram que a exposição ao cádmio aumentou o conteúdo proteico da frústula. Cerca de 80% dos peptideos aumentou a expressão na presença de Cd. Este foi sobretudo retido extracelularmente, encontrando-se 85% do Cd ligado a frustulinas. O presente trabalho demonstrou que as frustulinas são extremamente importantes para a defesa da célula dos efeitos do cádmio, contribuindo com dois novos supostos mecanismos de tolerância ao cádmio: o de reforço da frústula, e a protecção celular contra a entrada de Cd, através da quelação extracelular dos iões metálicos. Estes resultados mostram que as frustulinas podem ter um papel importante na tolerância das diatomáceas a metais.
Diatoms are unicellular eukaryotic photosynthetic organisms whose relevance as biomonitor species have long been established, either by ecological indexes, or by tolerance and other toxicity tests, based on ecological properties. The silicified cell wall of diatoms (frustule), is the most visible and distinguished characteristic of these organisms, providing species identification, and indication of environmental stressors, due to the induction of abnormal frustule formation. These teratologies are the consequence of perturbation in the biosilicification process, and can occur either by artificial growth, heavy metal contamination, or pesticides. Amongst the frustule abnormality inductors, metals such as cadmium are the most relevant class due to both anthropogenic and natural occurrence in nature and by the high toxicity relative to the small amounts present in the habitat. Although the process of frustule formation is not completely understood, in the last years it has been published data that show the existence of proteins in the frustules, some of them contributing to the biosilicification. The study of alterations induced by cadmium to the quantity, variety, and ratio of proteins present in frustules were the objectives of this work, along with cadmium quantification in the frustule fractions. Results showed that Cd increased frustule protein content. About 80% of the peptides increased their expression in the presence of Cd . Cadmium was mostly retained extracellularly, and 85% was bound to frustulines. Frustulins were found to be extremely important to the cell defense against cadmium stress, providing two putative novel mechanisms of cadmium tolerance: strengthening of frustules, and protection against Cd, through extracellular metal chelation. These results show that frustulines can play a leading role in the tolerance of diatoms to metals.
Woods, Scott Andrew. "Behavioral and physiological effects of oxidative stress throughout the lifecycle of Drosophila sod1 mutants". Thesis, University of Iowa, 2017. https://ir.uiowa.edu/etd/6014.
Texto completoHanson, Miranda Leah. "Prenatal cadmium exposure dysregulates sonic hedgehog and Wnt/beta-catenin signaling in the thymus resulting in immunomodulatory effects". Morgantown, W. Va. : [West Virginia University Libraries], 2009. http://hdl.handle.net/10450/10625.
Texto completoTitle from document title page. Document formatted into pages; contains vii, 250 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
Jinadasa, N., of Western Sydney Hawkesbury University, of Science Technology and Agriculture Faculty y School of Horticulture. "Cadmium effects on vegetables : production, physiology and biochemistry". THESIS_FSTA_HOR_Jinadasa_K.xml, 1998. http://handle.uws.edu.au:8081/1959.7/456.
Texto completoDoctor of Philosophy (PhD)
Brandt, Clarissa. "The Effects of Cadmium and Lead on Phaseolus vulgaris". University of the Western Cape, 2012. http://hdl.handle.net/11394/5096.
Texto completoThe demand for better quality produce by consumers is on the increase, as higher heavy metal concentrations pose a problem in agriculture. They result in decreased yield and unsuitable food for human consumption. This brings about a negative economic effect as such products become unprofitable on the domestic or export markets thus affecting productivity of farms.Four heavy metals (Cd, Cu, Pb and Zn) have been shown to be a problem in the farming areas in Cape Town. Pot and field studies were carried out on the effects and concentrations of cadmium and lead on Phaseolus vulgaris. Field studies included collecting plant samples from the Joostenbergvlakte/ Kraaifontein farming areas and measuring the heavy metal concentrations within the different organs of the plants. Pot experiments were carried out, where Phaseolus vulgaris var. Contender were grown and then heavy metals were administered to these plants together with two heavy metal mitigation techniques, precipitation with phosphate and mobilisation with EDTA to see if they were successful in combating heavy metal pollution.Samples taken from farms in the Joostenbergvlakte/ Kraaifontein area revealed that cadmium, lead and zinc concentrations were higher than the legal standard in the edible fruits. In the pot experiment, results revealed that cadmium reduced the chlorophyll index as well as the shoot fresh mass and changes in mineral uptake were seen. Lead did not affect growth or the chlorophyll index. The high cadmium treatment resulted in a marked increase in sodium concentration in the shoots. The phosphate treatments and EDTA treatments both resulted in increased cadmium concentrations in the roots and shoots. The higher phosphate and lead treatments also reduced lead concentrations in the roots. Low phosphate and the EDTA treatments increased the shoot sodium concentrations.
Pinho, Francisco Carvalho Vieira. "Cytotoxic and genotoxic effects of cadmium in human osteoblasts". Master's thesis, Universidade de Aveiro, 2011. http://hdl.handle.net/10773/8061.
Texto completoDue to industrialization, cadmium has been increasingly accumulated in soil, water and air, and consequently the food chain, thus, being responsible for many diseases. In humans, damages to several organs and carcinogenic effects take place. However, the mechanisms underlying the bone diseases remain unknown, and so, this work aims to evaluate cytotoxic and genotoxic effects of cadmium in human osteoblasts cell line MG-63. Cells were exposed to 0 μM, 20 μM and 50 μM CdCl2 for 24 and 48 hours. Cell proliferation / viability was determined by the MTT assay, cell cycle effects were evaluated by flow cytometry, and DNA damage was assessed by the comet assay. After both times of exposure, cell viability decreased in both cadmium doses, although cell cycle progression alterations were not detected. However, cadmium lead to clastogenic effects and DNA damage in cells exposed to the cadmium dose of 50 μM, for 48 h. In conclusion, at 20 μM and 50 μM and for the periods tested cadmium chloride induced cytotoxic and genotoxic effects on MG-63 cell line, as it decreased cell viability, induced DNA damage and clastogenicity, though it did not change cell cycle progression.
Devido à industrialização, a contaminação ambiental por metais como o cádmio tem aumentado no solo, água e ar. Consequentemente, a cadeia alimentar é afetada e, desta forma, o cádmio surge como agente carcinogénico e como causador de algumas doenças relacionadas com lesões em vários órgãos. Contudo, os mecanismos subjacentes a doenças ósseas ainda não se encontram totalmente desvendados, e assim neste trabalho, pretende-se avaliar os efeitos citotóxicos e genotóxicos do cádmio em osteoblastos humanos, na linha celular MG-63. As células foram expostas a 0 μM, 20 μM e 50 μM de cloreto de cádmio durante 24 e 48 horas. A proliferação / viabilidade celular foi avaliada pelo ensaio MTT, os efeitos na progressão do ciclo celular por foram avaliados por citometria de fluxo e os danos no DNA pelo ensaio de cometas. Após ambos os tempos de exposição a 20 μM e 50 μM de cloreto de cádmio, as células sofreram uma diminuição da viabilidade celular e não foram observadas alterações na progressão do ciclo celular. No entanto, o cádmio conduziu a efeitos clastogénicos e danos no DNA em células expostas à concentração de 50 μM, após 48 h de exposição. Concluindo, as concentrações 20 μM e 50 μM de cloreto de cádmio para os períodos testados, induziram efeitos citotóxicos e genotóxicos nas células da linha MG-63, dado que conduziram a uma diminuição da sua viabilidade, danos no DNA e clastogenicidade, não havendo, contudo, alterações na progressão do ciclo celular.
Haider, Syed Raza. "Effects of chronic cadmium exposure on macrophage function in mice". Thesis, University of Essex, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236639.
Texto completoШкольна, Ірина Іванівна, Ирина Ивановна Школьная, Iryna Ivanivna Shkolna, Андрій Миколайович Лобода, Андрей Николаевич Лобода, Andrii Mykolaiovych Loboda, Віталій Едуардович Маркевич, Виталий Эдуардович Маркевич y Vitalii Eduardovych Markevych. "Protective role of the placenta against toxic effects of cadmium". Thesis, Sumy State University, 2016. http://essuir.sumdu.edu.ua/handle/123456789/46325.
Texto completoLibros sobre el tema "Cadmium effects on SOD1"
A, Bernard y Foulkes Ernest C. 1924-, eds. Cadmium. Berlin: Springer-Verlag, 1986.
Buscar texto completo1907-, Mislin Hans y Ravera O, eds. Cadmium in the environment. Basel: Birkhäuser, 1986.
Buscar texto completoC, Pappas A., ed. Cadmium toxicity and the antioxidant system. Hauppauge, N.Y: Nova Science, 2010.
Buscar texto completoMcKenzie, Joan. Cadmium intake via oysters and health effects in New Zealand: Cadmium intake, metabolism, and effects in people with a high intake of oysters in New Zealand. Research Triangle Park, NC: U.S. Environmental Protection Agency, Health Effects Research Laboratory, 1986.
Buscar texto completoMcKenzie, Joan. Cadmium intake via oysters and health effects in New Zealand: Cadmium intake, metabolism, and effects in people with a high intake of oysters in New Zealand. Research Triangle Park, NC: U.S. Environmental Protection Agency, Health Effects Research Laboratory, 1986.
Buscar texto completoDier-Ackley, Liisa. Effects of cadmium and zinc on the germination of mung beans (Vigna radiata). Bellingham, WA: Huxley College of Environmental Studies, Western Washington University, 1998.
Buscar texto completoIARC Working Group on the Evaluation of Carcinogenic Risks to Humans (1993 Lyon, France). Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. Lyon: IARC, 1993.
Buscar texto completoGunnar, Nordberg, Herber R. F. M, Alessio L, International Agency for Research on Cancer., International Union of Pure and Applied Chemistry. y Università di Brescia. Institute of Occupational Health., eds. Cadmium in the human environment: Toxicity and carcinogenicity. Lyon: International Agency for Research on Cancer ; New York : Distributed in the USA by Oxford University Press, 1992.
Buscar texto completoMatović, Vesna. Zinc, copper, or magnesium supplementation against cadmium toxicity. Hauppauge, N.Y: Nova Science, 2010.
Buscar texto completoMatović, Vesna. Zinc, copper, or magnesium supplementation against cadmium toxicity. New York: Nova Science, 2010.
Buscar texto completoCapítulos de libros sobre el tema "Cadmium effects on SOD1"
Nordberg, Gunnar F., Teruhiko Kido y Harry A. Roels. "Cadmium-induced renal effects". En Clinical Nephrotoxins, 785–810. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-84843-3_35.
Texto completoKido, Teruhiko, Gunnar F. Nordberg y Harry A. Roels. "Cadmium-induced renal effects". En Clinical Nephrotoxins, 507–30. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/1-4020-2586-6_25.
Texto completoFlick, Karin y Peter Kaiser. "Cellular Mechanisms to Respond to Cadmium Cadmium Exposure: Ubiquitin Ligases". En Cellular Effects of Heavy Metals, 275–89. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0428-2_13.
Texto completoHallenbeck, William H. "Human health effects of exposure to cadmium". En Cadmium in the Environment, 131–37. Basel: Birkhäuser Basel, 1986. http://dx.doi.org/10.1007/978-3-0348-7238-6_17.
Texto completoCox, R. M. "Contamination and effects of cadmium in native plants". En Cadmium in the Environment, 101–9. Basel: Birkhäuser Basel, 1986. http://dx.doi.org/10.1007/978-3-0348-7238-6_13.
Texto completoBernard, A. y R. Lauwerys. "Effects of Cadmium Exposure in Humans". En Handbook of Experimental Pharmacology, 135–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70856-5_5.
Texto completoNishijo, Muneko y Hideaki Nakagawa. "Effects of Cadmium Exposure on Life Prognosis". En Current Topics in Environmental Health and Preventive Medicine, 63–73. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3630-0_5.
Texto completoMcGrath, S. P. "Adverse Effects of Cadmium on Soil Microflora and Fauna". En Cadmium in Soils and Plants, 199–218. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4473-5_8.
Texto completoMatysik, J., Alial, H. J. van Gorkom y H. J. M. de Groot. "Substitution of Calcium By Cadmium in Photosystem II Complex". En Photosynthesis: Mechanisms and Effects, 1423–26. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-3953-3_336.
Texto completoBánfalvi, Gáspár. "Cellular Changes in Mammalian Cells Induced by Cadmium". En Cellular Effects of Heavy Metals, 147–62. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0428-2_6.
Texto completoActas de conferencias sobre el tema "Cadmium effects on SOD1"
Hui Li y Nanning Duan. "Effects on the rice seedling growth by cadmium tolerant bacteria under cadmium stress". En 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE). IEEE, 2011. http://dx.doi.org/10.1109/rsete.2011.5965930.
Texto completoWurm, Patrick, Makram Hage-Ali, Jean M. Koebel, Christiane Ritt y Paul Siffert. "Afterglow effects in cadmium telluride radiation detectors". En SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation, editado por Elena Aprile. SPIE, 1994. http://dx.doi.org/10.1117/12.187263.
Texto completoCornelius, L. K., P. A. Tick y N. F. Borelli. "Photochromic/photoconductive effects in cadmium-alumino fluorosilicates". En Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/bgppf.1997.jsue.24.
Texto completoRaita, Erik, Alexei A. Kamshilin, Oleg Kobozev y Aleksandr Shumelyuk. "Germanium doped cadmium telluride crystals for optical sensing". En Photorefractive Effects, Materials, and Devices. Washington, D.C.: OSA, 2001. http://dx.doi.org/10.1364/pemd.2001.344.
Texto completoHuang, Hui, Rui-min Wan, Zeng-lin Zhao, Rong-bin Ji y Shun-chen Pan. "Growth and structure of cadmium zinc telluride crystal". En Photorefractive Effects, Materials, and Devices. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/pemd.2005.26.
Texto completoLin, Lijin, Zhihui Wang y Loao Liao. "Effects of DTPA on Cadmium Accumulation of Galinsoga parviflora". En 2015 3rd International Conference on Advances in Energy and Environmental Science. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icaees-15.2015.170.
Texto completoZhao, Jing y Yuhui Qiao. "The Effects of Cadmium on Soil Free Living Nematodes". En 2008 2nd International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2008. http://dx.doi.org/10.1109/icbbe.2008.615.
Texto completoHuang, Jiajing, Lijin Lin, Lei Yuan y Ming'an Liao. "Effects of Paclobutrazol on Cadmium Accumulation of Stellaria Media". En 2016 2nd International Conference on Advances in Energy, Environment and Chemical Engineering (AEECE 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/aeece-16.2016.24.
Texto completoOdoulov, S. G., K. V. Shcherbin, A. N. Shumelyuk, P. M. Fochuk y O. E. Panchuk. "Electron-hole competition in dynamic hologram recording in cadmium telluride". En Photorefractive Materials, Effects, and Devices II. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/pmed.1993.frc.3.
Texto completoVerstraeten, D., Ph C. Lemaire y J. C. Launay. "Bridgman growth and electric breakdown behavior of Vanadium-Zinc codoped Cadmium Telluride". En Photorefractive Effects, Materials, and Devices. Washington, D.C.: OSA, 2001. http://dx.doi.org/10.1364/pemd.2001.558.
Texto completoInformes sobre el tema "Cadmium effects on SOD1"
Zimmerman, A. H. Effects of Cadmium Electrode Properties on Nickel-Cadmium Cell Performance. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1987. http://dx.doi.org/10.21236/ada191394.
Texto completoSacco-Gibson, N., J. Abrams, S. Chaudhry, D. Hurst, D. Peterson y M. Bhattacharyya. Osteoporotic-like effects of cadmium on bone mineral density and content in aged ovariectomized beagles. Office of Scientific and Technical Information (OSTI), diciembre de 1992. http://dx.doi.org/10.2172/10185066.
Texto completoCraig, K. D., K. Burnett, A. Ringwood, K. MacDougal y L. Kendall. The effects of cadmium of the growth and metallothionein expression of the bivalve larvae, crassostrea virginica. Office of Scientific and Technical Information (OSTI), diciembre de 1994. http://dx.doi.org/10.2172/121302.
Texto completoPetersen, Michael David. Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices. Office of Scientific and Technical Information (OSTI), enero de 2001. http://dx.doi.org/10.2172/804001.
Texto completoPetersen, Michael David. Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices. Office of Scientific and Technical Information (OSTI), mayo de 2001. http://dx.doi.org/10.2172/797338.
Texto completoDesiderati, Christopher. Carli Creek Regional Water Quality Project: Assessing Water Quality Improvement at an Urban Stormwater Constructed Wetland. Portland State University, 2022. http://dx.doi.org/10.15760/mem.78.
Texto completo