Índice
Literatura académica sobre el tema "C-trimer (CT)"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "C-trimer (CT)".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "C-trimer (CT)"
Summer, Dominik, Christine Rangger, Maximilian Klingler, Peter Laverman, Gerben M. Franssen, Beatrix E. Lechner, Thomas Orasch, Hubertus Haas, Elisabeth von Guggenberg y Clemens Decristoforo. "Exploiting the Concept of Multivalency with 68Ga- and 89Zr-Labelled Fusarinine C-Minigastrin Bioconjugates for Targeting CCK2R Expression". Contrast Media & Molecular Imaging 2018 (2018): 1–12. http://dx.doi.org/10.1155/2018/3171794.
Texto completoJarret, R. L., L. C. Merrick, T. Holms, J. Evans y M. K. Aradhya. "Simple sequence repeats in watermelon (Citrullus lanatus (Thunb.) Matsum. &Nakai)". Genome 40, n.º 4 (1 de agosto de 1997): 433–41. http://dx.doi.org/10.1139/g97-058.
Texto completoDenomme, G. A. "An Adenine Trimer Precedes a C/G Polymorphism in the 3′-Amplimer Region of the Human Platelet Glycoprotein IIIa Intron 6 CT Repeat". Human Heredity 48, n.º 2 (1998): 115–18. http://dx.doi.org/10.1159/000022790.
Texto completoYartsev, V. M. "Complex conductivity of trimerized quasi-one-dimensional CT crystals: Arbitrary trimer". Synthetic Metals 35, n.º 1-2 (febrero de 1990): 29–38. http://dx.doi.org/10.1016/0379-6779(90)90021-c.
Texto completoMa, Gary S., Nicolas Aznar, Nicholas Kalogriopoulos, Krishna K. Midde, Inmaculada Lopez-Sanchez, Emi Sato, Ying Dunkel, Richard L. Gallo y Pradipta Ghosh. "Therapeutic effects of cell-permeant peptides that activate G proteins downstream of growth factors". Proceedings of the National Academy of Sciences 112, n.º 20 (29 de abril de 2015): E2602—E2610. http://dx.doi.org/10.1073/pnas.1505543112.
Texto completoVasselli, James Robert, Sophia Frentzas, Andrew James Weickhardt, Paul L. de Souza, Jenny Tang, Tim Wyant, Inbar Amit, Yanay Ofran y Aron Knickerbocker. "Trial in progress: A phase 1-2, first-in-human, open label, dose escalation and expansion study of AU-007, a monoclonal antibody that binds to IL-2 and inhibits IL-2Rα binding, in patients with advanced solid tumors." Journal of Clinical Oncology 40, n.º 16_suppl (1 de junio de 2022): TPS2671. http://dx.doi.org/10.1200/jco.2022.40.16_suppl.tps2671.
Texto completoAlfadhli, Ayna, August O. Staubus, Philip R. Tedbury, Mariia Novikova, Eric O. Freed y Eric Barklis. "Analysis of HIV-1 Matrix-Envelope Cytoplasmic Tail Interactions". Journal of Virology 93, n.º 21 (2 de agosto de 2019). http://dx.doi.org/10.1128/jvi.01079-19.
Texto completoPrchal, Jan, Jakub Sýs, Petra Junková, Jan Lipov y Tomáš Ruml. "Interaction Interface of Mason-Pfizer Monkey Virus Matrix and Envelope Proteins". Journal of Virology 94, n.º 20 (12 de agosto de 2020). http://dx.doi.org/10.1128/jvi.01146-20.
Texto completoWhite, Ellen, Fan Wu, Elena Chertova, Julian Bess, James D. Roser, Jeffrey D. Lifson y Vanessa M. Hirsch. "Truncating the gp41 Cytoplasmic Tail of Simian Immunodeficiency Virus Decreases Sensitivity to Neutralizing Antibodies without Increasing the Envelope Content of Virions". Journal of Virology 92, n.º 3 (15 de noviembre de 2017). http://dx.doi.org/10.1128/jvi.01688-17.
Texto completoTesis sobre el tema "C-trimer (CT)"
VOTTARIELLO, FRANCESCA. "OLIGOMERIZATION OF RNase A:a) A STUDY OF THE INFLUENCE OF SERINE 80 RESIDUE ON THE 3D DOMAIN SWAPPING MECHANISMb) “ZERO-LENGTH” DIMERS OF RNase A AND THEIR CATIONIZATION WITH PEI". Doctoral thesis, 2010. http://hdl.handle.net/11562/344075.
Texto completo"Zero-length" dimers of ribonuclease A, a novel type of dimers formed by two RNase A molecules bound to each other through a zero-length amide bond [Simons, B.L. et al. (2007) Proteins 66, 183-195], were analyzed, and tested for their possible in vitro cytotoxic activity. Results: (i) Besides dimers, also trimers and higher oligomers can be identified among the products of the covalently linking reaction. (ii) The "zero-length" dimers prepared by us appear not to be a unique species, as was instead reported by Simons et al. The product is heterogeneous, as shown by the involvement in the amide bond of amino and carboxyl groups others than only those belonging to Lys66 and Glu9. This is demonstrated by results obtained with two RNase A mutants, E9A and K66A. (iii) The "zero-length" dimers degrade poly(A).poly(U) (dsRNA) and yeast RNA (ssRNA): while the activity against poly(A).poly(U) increases with the increase of the oligomer's basicity, the activity towards yeast RNA decreases with the increase of oligomers' basicity, in agreement with many previous data, but in contrast with the results reported by Simons et al. (iv) No cytotoxicity against various tumor cells lines could be evidenced in RNase A "zero-length" dimers. (v) They instead become cytotoxic if cationized by conjugation with polyethylenimine [Futami, J. et al. (2005) J. Biosci. Bioengin. 99, 95-103]. However, polyethylenimine derivatives of RNase A "zero-length" dimers and native, monomeric RNase A are equally cytotoxic. In other words, protein "dimericity" does not play any role in this case. Moreover, (vi) cytotoxicity seems not to be specific for tumor cells: polyethylenimine-cationized native RNase A is also cytotoxic towards human monocytes.