Artículos de revistas sobre el tema "C-S bond formation"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: C-S bond formation.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "C-S bond formation".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Xu, Yulong, Xiaonan Shi y Lipeng Wu. "tBuOK-triggered bond formation reactions". RSC Advances 9, n.º 41 (2019): 24025–29. http://dx.doi.org/10.1039/c9ra04242c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Gao, Jian, Jie Feng y Ding Du. "Shining Light on C−S Bonds: Recent Advances in C−C Bond Formation Reactions via C−S Bond Cleavage under Photoredox Catalysis". Chemistry – An Asian Journal 15, n.º 22 (14 de octubre de 2020): 3637–59. http://dx.doi.org/10.1002/asia.202000905.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Modha, Sachin G., Vaibhav P. Mehta y Erik V. Van der Eycken. "Transition metal-catalyzed C–C bond formation via C–S bond cleavage: an overview". Chemical Society Reviews 42, n.º 12 (2013): 5042. http://dx.doi.org/10.1039/c3cs60041f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Sun, Fengli, Xuemin Liu, Xinzhi Chen, Chao Qian y Xin Ge. "Progress in the Formation of C-S Bond". Chinese Journal of Organic Chemistry 37, n.º 9 (2017): 2211. http://dx.doi.org/10.6023/cjoc201703038.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Jean, Mickaël, Jacques Renault, Pierre van de Weghe y Naoki Asao. "Gold-catalyzed C–S bond formation from thiols". Tetrahedron Letters 51, n.º 2 (enero de 2010): 378–81. http://dx.doi.org/10.1016/j.tetlet.2009.11.025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Choudhuri, Khokan, Milan Pramanik y Prasenjit Mal. "Noncovalent Interactions in C–S Bond Formation Reactions". Journal of Organic Chemistry 85, n.º 19 (25 de agosto de 2020): 11997–2011. http://dx.doi.org/10.1021/acs.joc.0c01534.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Wang, Haibo, Lu Wang, Jinsai Shang, Xing Li, Haoyuan Wang, Jie Gui y Aiwen Lei. "Fe-catalysed oxidative C–H functionalization/C–S bond formation". Chem. Commun. 48, n.º 1 (2012): 76–78. http://dx.doi.org/10.1039/c1cc16184a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Stenfors, Brock A., Richard J. Staples, Shannon M. Biros y Felix N. Ngassa. "Crystal structure of 1-[(4-methylbenzene)sulfonyl]pyrrolidine". Acta Crystallographica Section E Crystallographic Communications 76, n.º 3 (28 de febrero de 2020): 452–55. http://dx.doi.org/10.1107/s205698902000208x.

Texto completo
Resumen
The molecular structure of the title compound, C11H15NO2S, features a sulfonamide group with S=O bond lengths of 1.4357 (16) and 1.4349 (16) Å, an S—N bond length of 1.625 (2) Å, and an S—C bond length of 1.770 (2) Å. When viewing the molecule down the S—N bond, both N—C bonds of the pyrrolidine ring are oriented gauche to the S—C bond with torsion angles of −65.6 (2)° and 76.2 (2)°. The crystal structure features both intra- and intermolecular C—H...O hydrogen bonds, as well as intermolecular C—H...π and π–π interactions, leading to the formation of sheets parallel to the ac plane.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Shen, Chao, Pengfei Zhang, Qiang Sun, Shiqiang Bai, T. S. Andy Hor y Xiaogang Liu. "Recent advances in C–S bond formation via C–H bond functionalization and decarboxylation". Chemical Society Reviews 44, n.º 1 (2015): 291–314. http://dx.doi.org/10.1039/c4cs00239c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Saidalimu, Ibrayim, Shugo Suzuki, Etsuko Tokunaga y Norio Shibata. "Successive C–C bond cleavage, fluorination, trifluoromethylthio- and pentafluorophenylthiolation under metal-free conditions to provide compounds with dual fluoro-functionalization". Chemical Science 7, n.º 3 (2016): 2106–10. http://dx.doi.org/10.1039/c5sc04208a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Lv, Zongchao, Huamin Wang, Zhicong Quan, Yuan Gao y Aiwen Lei. "Dioxygen-triggered oxidative cleavage of the C–S bond towards C–N bond formation". Chemical Communications 55, n.º 82 (2019): 12332–35. http://dx.doi.org/10.1039/c9cc05707b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Ren, Rongguo, Zhen Wu y Chen Zhu. "Manganese-catalyzed regiospecific sp3C–S bond formation through C–C bond cleavage of cyclobutanols". Chemical Communications 52, n.º 52 (2016): 8160–63. http://dx.doi.org/10.1039/c6cc01843b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Gogoi, Prasanta, Bappi Paul, Sukanya Hazarika y Pranjit Barman. "Gold nanoparticle catalyzed intramolecular C–S bond formation/C–H bond functionalization/cyclization cascades". RSC Advances 5, n.º 71 (2015): 57433–36. http://dx.doi.org/10.1039/c5ra10885c.

Texto completo
Resumen
An efficient synthesis of 2-(N-aryl)aminobenzo[d]-1,3-thiazoles via intramolecular C–S bond formation/C–H bond functionalization utilizing an unusual cocatalytic Au-NPs/KMnO4 system under an oxygen atmosphere at 80 °C is presented.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Morita, Iori, Takahiro Mori, Takaaki Mitsuhashi, Shotaro Hoshino, Yoshimasa Taniguchi, Takashi Kikuchi, Kei Nagae et al. "Exploiting a C–N Bond Forming Cytochrome P450 Monooxygenase for C–S Bond Formation". Angewandte Chemie 132, n.º 10 (23 de enero de 2020): 4017–22. http://dx.doi.org/10.1002/ange.201916269.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Morita, Iori, Takahiro Mori, Takaaki Mitsuhashi, Shotaro Hoshino, Yoshimasa Taniguchi, Takashi Kikuchi, Kei Nagae et al. "Exploiting a C–N Bond Forming Cytochrome P450 Monooxygenase for C–S Bond Formation". Angewandte Chemie International Edition 59, n.º 10 (23 de enero de 2020): 3988–93. http://dx.doi.org/10.1002/anie.201916269.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Wang, Min, Zhoujie Xie, Shoubin Tang, Ee Ling Chang, Yue Tang, Zhengyan Guo, Yinglu Cui, Bian Wu, Tao Ye y Yihua Chen. "Reductase of Mutanobactin Synthetase Triggers Sequential C–C Macrocyclization, C–S Bond Formation, and C–C Bond Cleavage". Organic Letters 22, n.º 3 (9 de enero de 2020): 960–64. http://dx.doi.org/10.1021/acs.orglett.9b04501.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Modha, Sachin G., Vaibhav P. Mehta y Erik V. Van der Eycken. "ChemInform Abstract: Transition Metal Catalyzed C-C Bond Formation via C-S Bond Cleavage: An Overview". ChemInform 44, n.º 36 (15 de agosto de 2013): no. http://dx.doi.org/10.1002/chin.201336215.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Yang, Daoshan, Kelu Yan, Wei Wei, Laijin Tian, Qinghe Li, Jinmao You y Hua Wang. "Metal-free n-Et4NBr-catalyzed radical cyclization of disulfides and alkynes leading to benzothiophenes under mild conditions". RSC Adv. 4, n.º 89 (2014): 48547–53. http://dx.doi.org/10.1039/c4ra08260e.

Texto completo
Resumen
The title reaction involves metal free TEAB-catalyzed S–S bond cleavage, C–S bond formation and C–C bond formation; it uses readily available disulfides and alkynes as substrates, and environmentally friendly TEAB as catalyst to synthesize useful benzothiophene derivatives.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Allen, F. H., C. M. Bird, R. S. Rowland y P. R. Raithby. "Resonance-Induced Hydrogen Bonding at Sulfur Acceptors in R 1 R 2C=S and R 1CS2 − Systems". Acta Crystallographica Section B Structural Science 53, n.º 4 (1 de agosto de 1997): 680–95. http://dx.doi.org/10.1107/s0108768197002656.

Texto completo
Resumen
The hydrogen-bond acceptor ability of sulfur in C=S systems has been investigated using crystallographic data retrieved from the Cambridge Structural Database and via ab initio molecular orbital calculations. The R1R2C=S bond lengths span a wide range, from 1.58 Å in pure thiones (R 1 = R 2 = Csp 3) to 1.75 Å in thioureido species (R 1 = R 2 = N) and in dithioates —CS^{-}_2. The frequency of hydrogen-bond formation at =S increases from 4.8% for C=S > 1.63 Å to more than 70% for C=S > 1.70 Å in uncharged species. The effective electronegativity of S is increased by conjugative interactions between C=S and the lone pairs of one or more N substituents (R 1 R 2): a clear example of resonance-induced hydrogen bonding. More than 80% of S in —CS^{-}_2 accept hydrogen bonds. C=S...H—N,O bonds are shown to be significantly weaker than their C=O...H—N,O analogues by (a) comparing mean S...H and O...H distances (taking account of the differing non-bonded sizes of S and O and using neutron-normalized H positions) and (b) comparing frequencies of hydrogen-bond formation in `competitive' environments, i.e. in structures containing both C=S and C=O acceptors. The directional properties and hydrogen-bond coordination numbers of C=S and C=O acceptors have also been compared. There is evidence for lone-pair directionality in both systems, but =S is more likely (17% of cases) than =O (4%) to accept more than two hydrogen bonds. Ab initio calculations of residual atomic charges and electrostatic potentials reinforce the crystallographic observations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Liu, Zijian, Kunbing Ouyang y Nianfa Yang. "The thiolation of pentafluorobenzene with disulfides by C–H, C–F bond activation and C–S bond formation". Organic & Biomolecular Chemistry 16, n.º 6 (2018): 988–92. http://dx.doi.org/10.1039/c7ob02836a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Sundaravelu, Nallappan, Subramani Sangeetha y Govindasamy Sekar. "Metal-catalyzed C–S bond formation using sulfur surrogates". Organic & Biomolecular Chemistry 19, n.º 7 (2021): 1459–82. http://dx.doi.org/10.1039/d0ob02320e.

Texto completo
Resumen
This review presents the metal-catalyzed C–S bond-formation reaction to access organosulfur compounds using various sulfur surrogates with an extended discussion on the reaction mechanism, regioselectivity of product and pharmaceutical application.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Huang, Zhiliang, Dongchao Zhang, Xiaotian Qi, Zhiyuan Yan, Mengfan Wang, Haiming Yan y Aiwen Lei. "Radical–Radical Cross-Coupling for C–S Bond Formation". Organic Letters 18, n.º 10 (6 de mayo de 2016): 2351–54. http://dx.doi.org/10.1021/acs.orglett.6b00764.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Li, Jianxiao, Shaorong Yang, Wanqing Wu y Huanfeng Jiang. "Recent developments in palladium-catalyzed C–S bond formation". Organic Chemistry Frontiers 7, n.º 11 (2020): 1395–417. http://dx.doi.org/10.1039/d0qo00377h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Bahekar, Sushilkumar S., Aniket P. Sarkate, Vijay M. Wadhai, Pravin S. Wakte y Devanand B. Shinde. "CuI catalyzed C S bond formation by using nitroarenes". Catalysis Communications 41 (noviembre de 2013): 123–25. http://dx.doi.org/10.1016/j.catcom.2013.07.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Dong, Dao-Qing, Shuang-Hong Hao, Dao-Shan Yang, Li-Xia Li y Zu-Li Wang. "Sulfenylation of C-H Bonds for C-S Bond Formation under Metal-Free Conditions". European Journal of Organic Chemistry 2017, n.º 45 (28 de agosto de 2017): 6576–92. http://dx.doi.org/10.1002/ejoc.201700853.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Zhao, Jian-Nan, Muzaffar Kayumov, Dong-Yu Wang y Ao Zhang. "Transition-Metal-Free Aryl–Heteroatom Bond Formation via C–S Bond Cleavage". Organic Letters 21, n.º 18 (29 de agosto de 2019): 7303–6. http://dx.doi.org/10.1021/acs.orglett.9b02584.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Sun, Kai, Yunhe Lv, Zhonghong Zhu, Liping Zhang, Hankui Wu, Lin Liu, Yongqing Jiang, Beibei Xiao y Xin Wang. "Oxidative C–S bond cleavage reaction of DMSO for C–N and C–C bond formation: new Mannich-type reaction for β-amino ketones". RSC Advances 5, n.º 4 (2015): 3094–97. http://dx.doi.org/10.1039/c4ra14249g.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Lanzi, Matteo, Jérémy Merad, Dina V. Boyarskaya, Giovanni Maestri, Clémence Allain y Géraldine Masson. "Visible-Light-Triggered C–C and C–N Bond Formation by C–S Bond Cleavage of Benzylic Thioethers". Organic Letters 20, n.º 17 (16 de agosto de 2018): 5247–50. http://dx.doi.org/10.1021/acs.orglett.8b02196.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Kaur, Navjeet. "Cobalt-catalyzed C–N, C–O, C–S bond formation: synthesis of heterocycles". Journal of the Iranian Chemical Society 16, n.º 12 (6 de julio de 2019): 2525–53. http://dx.doi.org/10.1007/s13738-019-01731-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Zhang, Rui, Huaiwei Ding, Xiangling Pu, Zhiping Qian y Yan Xiao. "Recent Advances in the Synthesis of Sulfides, Sulfoxides and Sulfones via C-S Bond Construction from Non-Halide Substrates". Catalysts 10, n.º 11 (17 de noviembre de 2020): 1339. http://dx.doi.org/10.3390/catal10111339.

Texto completo
Resumen
The construction of a C-S bond is a powerful strategy for the synthesis of sulfur containing compounds including sulfides, sulfoxides, and sulfones. Recent methodological developments have revealed lots of novel protocols for C-S bond formation, providing easy access to sulfur containing compounds. Unlike traditional Ullmann typed C-S coupling reaction, the recently developed reactions frequently use non-halide compounds, such as diazo compounds and simple arenes/alkanes instead of aryl halides as substrates. On the other hand, novel C-S coupling reaction pathways involving thiyl radicals have emerged as an important strategy to construct C-S bonds. In this review, we focus on the recent advances on the synthesis of sulfides, sulfoxides, and sulfones from non-halide substrates involving C-S bond construction.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Wang, Haibo, Lu Wang, Jinsai Shang, Xing Li, Haoyuan Wang, Jie Gui y Aiwen Lei. "ChemInform Abstract: Fe-Catalyzed Oxidative C-H Functionalization/C-S Bond Formation." ChemInform 43, n.º 16 (22 de marzo de 2012): no. http://dx.doi.org/10.1002/chin.201216130.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Ngo, Thi-Thuy-Duong, Thi-Huong Nguyen, Chloée Bournaud, Régis Guillot, Martial Toffano y Giang Vo-Thanh. "Phosphine-Thiourea-Organocatalyzed Asymmetric C−N and C−S Bond Formation Reactions". Asian Journal of Organic Chemistry 5, n.º 7 (30 de mayo de 2016): 895–99. http://dx.doi.org/10.1002/ajoc.201600212.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Song, Chunlan, Kun Liu, Xin Dong, Chien-Wei Chiang y Aiwen Lei. "Recent Advances in Electrochemical Oxidative Cross-Coupling for the Construction of C–S Bonds". Synlett 30, n.º 10 (15 de abril de 2019): 1149–63. http://dx.doi.org/10.1055/s-0037-1611753.

Texto completo
Resumen
With the importance of sulfur-containing organic molecules, developing methodologies toward C–S bond formation is a long-standing goal, and, to date, considerable progress has been made in this area. Recent electrochemical oxidative cross-coupling reactions for C–S bond formation allow the synthesis of sulfur-containing molecules from more effective synthetic routes with high atom economy under mild conditions. In this review, we highlight the vital progress in this novel research arena with an emphasis on the synthetic and mechanistic aspects of the organic electrochemistry reactions.1 Introduction2 Electrochemical Oxidative Sulfonylation for the Formation of C–S Bonds2.1 Applications of Sulfinic Acid Derivatives for the Formation of C–S Bonds2.2 Applications of Sulfonylhydrazide Derivatives for the Formation of C–S Bonds3 Electrochemical Oxidative Thiolation for the Formation of C–S Bonds3.1 Applications of Disulfide Derivatives for the Formation of C–S Bonds3.2 Applications of Thiophenol Derivatives for the Formation of C–S Bonds4 Electrochemical Oxidative Thiocyanation for the Formation of C–S Bonds5 Electrochemical Oxidative Cyclization for the Formation of C–S Bonds6 Conclusion
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Zhao, Binlin, Torben Rogge, Lutz Ackermann y Zhuangzhi Shi. "Metal-catalysed C–Het (F, O, S, N) and C–C bond arylation". Chemical Society Reviews 50, n.º 16 (2021): 8903–53. http://dx.doi.org/10.1039/c9cs00571d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Valentini, Federica, Oriana Piermatti y Luigi Vaccaro. "Metal and Metal Oxide Nanoparticles Catalyzed C–H Activation for C–O and C–X (X = Halogen, B, P, S, Se) Bond Formation". Catalysts 13, n.º 1 (22 de diciembre de 2022): 16. http://dx.doi.org/10.3390/catal13010016.

Texto completo
Resumen
The direct functionalization of an inactivated C–H bond has become an attractive approach to evolve toward step-economy, atom-efficient and environmentally sustainable processes. In this regard, the design and preparation of highly active metal nanoparticles as efficient catalysts for C–H bond activation under mild reaction conditions still continue to be investigated. This review focuses on the functionalization of un-activated C(sp3)–H, C(sp2)–H and C(sp)–H bonds exploiting metal and metal oxide nanoparticles C–H activation for C–O and C–X (X = Halogen, B, P, S, Se) bond formation, resulting in more sustainable access to industrial production.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Arisawa, Mieko, Kenji Fujimoto, Satoshi Morinaka y Masahiko Yamaguchi. "Equilibrating C−S Bond Formation by C−H and S−S Bond Metathesis. Rhodium-Catalyzed Alkylthiolation Reaction of 1-Alkynes with Disulfides". Journal of the American Chemical Society 127, n.º 35 (septiembre de 2005): 12226–27. http://dx.doi.org/10.1021/ja0527121.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Gogoi, Anupal, Srimanta Guin, Suresh Rajamanickam, Saroj Kumar Rout y Bhisma K. Patel. "Synthesis of 1,2,4-Triazoles via Oxidative Heterocyclization: Selective C–N Bond Over C–S Bond Formation". Journal of Organic Chemistry 80, n.º 18 (9 de septiembre de 2015): 9016–27. http://dx.doi.org/10.1021/acs.joc.5b00956.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Shen, Chao, Pengfei Zhang, Qiang Sun, Shiqiang Bai, T. S. Andy Hor y Xiaogang Liu. "ChemInform Abstract: Recent Advances in C-S Bond Formation via C-H Bond Functionalization and Decarboxylation". ChemInform 46, n.º 15 (26 de marzo de 2015): no. http://dx.doi.org/10.1002/chin.201515296.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Gogoi, Prasanta, Bappi Paul, Sukanya Hazarika y Pranjit Barman. "ChemInform Abstract: Gold Nanoparticle Catalyzed Intramolecular C-S Bond Formation/C-H Bond Functionalization/Cyclization Cascades." ChemInform 46, n.º 47 (noviembre de 2015): no. http://dx.doi.org/10.1002/chin.201547144.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Shin, Jeongcheol, Jiseon Lee, Jong-Min Suh y Kiyoung Park. "Ligand-field transition-induced C–S bond formation from nickelacycles". Chemical Science 12, n.º 48 (2021): 15908–15. http://dx.doi.org/10.1039/d1sc05113j.

Texto completo
Resumen
d–d excitations can accelerate C–S reductive eliminations of nickelacycles via intersystem crossing to a repulsive 3(C-to-Ni charge transfer) state inducing Ni–C bond homolysis. This homolytic photoreactivity is common for organonickel(ii) complexes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Jegelka, Markus y Bernd Plietker. "Selective C−S Bond Formation via Fe-Catalyzed Allylic Substitution". Organic Letters 11, n.º 15 (6 de agosto de 2009): 3462–65. http://dx.doi.org/10.1021/ol901297s.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Mitsudo, Koichi, Toki Yonezawa, Ren Matsuo y Seiji Suga. "Electrochemical Intramolecular C–S Bond Formation Leading to Thienoacene Derivatives". ECS Meeting Abstracts MA2020-01, n.º 43 (1 de mayo de 2020): 2507. http://dx.doi.org/10.1149/ma2020-01432507mtgabs.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Chen, Lian, Ali Noory Fajer, Zhanibek Yessimbekov, Mosstafa Kazemi y Masoud Mohammadi. "Diaryl sulfides synthesis: copper catalysts in C–S bond formation". Journal of Sulfur Chemistry 40, n.º 4 (24 de marzo de 2019): 451–68. http://dx.doi.org/10.1080/17415993.2019.1596268.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Seleznev, A. A., D. P. Radchenko, S. I. Golubova, S. A. Safronov y V. A. Navrotskiy. "SULFONYL CHLORIDES - NOVEL SOURCE OF FREE RADICALS". IZVESTIA VOLGOGRAD STATE TECHNICAL UNIVERSITY, n.º 12(259) (21 de diciembre de 2021): 103–14. http://dx.doi.org/10.35211/1990-5297-2021-12-259-103-114.

Texto completo
Resumen
Novel free radicals source based on sulfonyl chlorides is discovered. The radical mechanism is confirmed by 2,3-dimethyl-2,3-diphenylbutane formation under chlorosulfonated polyethylene heating in the isopropylbenzene solution. Concerted homolytic C-S and S-Cl bond scission of chlorosulfonated polyethylene thermal degradation mechanism proved by kinetic analysis. The proof of the two bonds simultaneous breaking is provided by the threefold activation energy reduction (83 kJ/mol) in comparison to the C-S and C-Cl bond dissociation energy (280 and 286 kJ/mol respectively), the 6 orders lower preexponential factor (2,46 ∙ 10 s) in Arrhenius equation in comparison to one bond cleavage (≈10-10 s) as well as the strongly negative activation entropy value (-134 J/mol∙K).
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Allen, F. H., C. M. Bird, R. S. Rowland y P. R. Raithby. "Hydrogen-Bond Acceptor and Donor Properties of Divalent Sulfur (Y-S-Z and R-S-H)". Acta Crystallographica Section B Structural Science 53, n.º 4 (1 de agosto de 1997): 696–701. http://dx.doi.org/10.1107/s0108768197002644.

Texto completo
Resumen
The hydrogen-bond acceptor ability of divalent sulfur in Y—S—Z systems, Y, Z= C, N, O or S, and the donor ability of thiol S—H have been studied using crystallographic data retrieved from the Cambridge Structural Database. Of 1811 Y—S—Z substructures that co-occur with N—H or O—H donors, only 86 (4.75%) form S...H—N,O bonds within S...H < 2.9 Å. In dialkylthioethers, the frequency of S...H bond formation is 6.24%, but drops below 3% when the alkyl groups are successively replaced by Csp 2 centres. This parallels an increasing \delta-positivity of S as calculated using ab initio methods. A similar frequency trend is observed for O...H—N,O bond formation by analogous oxyethers. Mean intermolecular >S...H distances for O—H [2.67 (3) Å] and N—H [2.75 (2) Å] donors (with H positions normalized to neutron values) are ca 0.25 Å longer than in C=S...H—N,O systems, indicative of very weak hydrogen bonding to >S. Intramolecular >S...H are slightly more frequent (8.56%), with S...H slightly shorter than for the intermolecular case. In contrast, 26 (70.3%) out of 37 S—H donors that co-occur with suitable acceptors form X...H—S bonds. The C=O...H—S system is predominant with a mean O...H distance of 2.34 (4) Å, considerably longer (weaker) than in C=O...H—O systems.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Bhunia, Subhajit, Govind Goroba Pawar, S. Vijay Kumar, Yongwen Jiang y Dawei Ma. "Selected Copper-Based Reactions for C−N, C−O, C−S, and C−C Bond Formation". Angewandte Chemie International Edition 56, n.º 51 (15 de noviembre de 2017): 16136–79. http://dx.doi.org/10.1002/anie.201701690.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Anand, Devireddy, Yuwei He, Linyong Li y Lei Zhou. "A photocatalytic sp3 C–S, C–Se and C–B bond formation through C–C bond cleavage of cycloketone oxime esters". Organic & Biomolecular Chemistry 17, n.º 3 (2019): 533–40. http://dx.doi.org/10.1039/c8ob02987c.

Texto completo
Resumen
The photocatalytic sulfuration, selenylation and borylation of cycloketone oxime esters through iminyl radical-triggered C–C bond cleavage were described. The reactions provide a unified approach to alkyl sulfur, selenium and boron compounds tethered to a synthetically useful nitrile group.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Flood, Dillon T., Xuejing Zhang, Xiang Fu, Zhenxiang Zhao, Shota Asai, Brittany B. Sanchez, Emily J. Sturgell et al. "RASS‐Enabled S/P−C and S−N Bond Formation for DEL Synthesis". Angewandte Chemie 132, n.º 19 (11 de marzo de 2020): 7447–53. http://dx.doi.org/10.1002/ange.201915493.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Flood, Dillon T., Xuejing Zhang, Xiang Fu, Zhenxiang Zhao, Shota Asai, Brittany B. Sanchez, Emily J. Sturgell et al. "RASS‐Enabled S/P−C and S−N Bond Formation for DEL Synthesis". Angewandte Chemie International Edition 59, n.º 19 (11 de marzo de 2020): 7377–83. http://dx.doi.org/10.1002/anie.201915493.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Ngah, Nurziana, Nor Azanita Mohamed, Bohari M. Yamin y Hamizah Mohd Zaki. "3-[3-(2-Fluorobenzoyl)thioureido]propionic acid". Acta Crystallographica Section E Structure Reports Online 70, n.º 6 (24 de mayo de 2014): o705. http://dx.doi.org/10.1107/s1600536814011404.

Texto completo
Resumen
In the title compound, C10H11FN3O3S, the 2-fluorobenzoyl and proponic acid groups maintain atrans–cisconformation with respect to the thiono C=S bond across their C—N bonds. The propionic acid group adopts ananticonformation about the C—C bond, with an N—C—C—C torsion angle of 173.8 (2)°. The amino groups are involved in the formation of intramolecular N—H...O and N—H...F hydrogen bonds. In the crystal, pairs of O—H...O hydrogen bonds link molecules into inversion dimers.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía