Literatura académica sobre el tema "C.I. ENGINE"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "C.I. ENGINE".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "C.I. ENGINE"

1

Jamil, Abdullah, Masri B. Baharom, and Abd Rashid B. Abd Aziz. "In-Cylinder Cold-Flow Analysis - ‘A Comparison of Crank-Slider Engine and Crank-Rocker Engine’." Journal Européen des Systèmes Automatisés​ 55, no. 2 (2022): 229–36. http://dx.doi.org/10.18280/jesa.550210.

Texto completo
Resumen
Researchers and engineers are continuously working to improve the overall efficiency of internal combustion engines by modifying the engine designs and configurations. As new engine designs are introduced, the in-cylinder flow behaviour becomes more and more complex. The maximum output and efficiency that can be achieved from a single cylinder engine depends upon the amount of air entrapped in the combustion chamber during intake stroke. A novel crank-rocker (C-R) engine was designed and fabricated in Universiti Teknologi PETRONAS (UTP), Malaysia and is currently under optimization phase. This paper narrates the in-cylinder cold-flow analysis of the C-R engine considering widely used industrial automotive software, Converge CFD. The turbulent behaviour of the C-R engine was compared with that of the conventional crank-slider engine. The initial and boundary conditions for the C-R engine simulations were set according to the benchmarked crank-slider engine. RNG k-ε turbulence model was used to generate the data plots for tumble & swirl ratios, cylinder pressure, TKE, turbulent dynamic viscosity and vorticity at cold-flow conditions. It was observed that the C-R engine has better air scavenging properties and can achieve better air-fuel mixing that can lead to emission-free combustion. This study will help in understanding the turbulent airflow behaviour within the curved cylinder under the influence of rocking piston motion, and its advantageous flow properties compared to those in crank-slider engines.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Ji, Yan Ping, Ping Sun, and Si Bo Zhao. "Analysis of Temperature Field of High Speed Diesel Engine Parts and their Structural Optimization." Applied Mechanics and Materials 490-491 (January 2014): 1003–7. http://dx.doi.org/10.4028/www.scientific.net/amm.490-491.1003.

Texto completo
Resumen
The analysis of structure and performance of internal combustion engine is presented in this paper from the following two aspects: the thermal load of I. C. Engine and the thermal efficiency of diesel engines. Firstly, the thermal load of key parts of I. C. Engine as well as the evaluation parameters of which are introduced briefly. Furthermore, based on the factors influencing the heat transfer process of internal combustion engine, the current research situation of internal combustion engine work process and heat balance for combustion chamber components, and the whole engine using numerical simulation method is described, while the coupled study of internal combustion engine components is developing trends of internal combustion engine heat balance study in the future.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Radchenko, Andrii, Dariusz Mikielewicz, Mykola Radchenko, Serhiy Forduy, Oleksandr Rizun, and Viktor Khaldobin. "Innovative combined in-cycle trigeneration technologies for food industries." E3S Web of Conferences 323 (2021): 00029. http://dx.doi.org/10.1051/e3sconf/202132300029.

Texto completo
Resumen
The majority of integrated energy systems (IES) for combined electricity, heat and refrigeration generation, or trigeneration, are based on gas engines. The fuel efficiency of gas engines are strictly influenced by intake air temperatures. Practically in all IES the absorption lithium-bromide chillers (ACh) are applied for conversing the heat removed from the engine into refrigeration in the form of chilled water. The peculiarity of trigeneration in food industries is the use of chilled water of about 12°C for technological needs instead of 7°C as typical for ACh. This leads to a considerable great potential of engine intake air deeper cooling not realized by ACh, that can be used by ejector chiller (ECh) as the low temperature stage of two-stage absorption-ejector chiller (AECh) to provide engine cyclic air deep cooling and enhancing engine fuel efficiency. To evaluate the effect of gas engine cyclic air cooling the data on fuel consumption and power output of gas engine JMS 420 GS-N.L were analyzed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Radchenko, Andrii, Mykola Radchenko, Dariusz Mikielewicz, Anatoliy Pavlenko, Roman Radchenko, and Serhiy Forduy. "Energy Saving in Trigeneration Plant for Food Industries." Energies 15, no. 3 (2022): 1163. http://dx.doi.org/10.3390/en15031163.

Texto completo
Resumen
The trigeneration plants for combined cooling, heating, and electricity supply, or integrated energy systems (IES), are mostly based on gas reciprocating engines. The fuel efficiency of gas reciprocating engines depends essentially on air intake temperatures. The transformation of the heat removed from the combustion engines into refrigeration is generally conducted by absorption lithium-bromide chillers (ACh). The peculiarity of refrigeration generation in food technologies is the use of chilled water of about 12 °C instead of 7 °C as the most typical for ACh. This leads to a considerable cooling potential not realized by ACh that could be used for cooling the engine intake air. A refrigerant ejector chiller (ECh) is the simplest in design, cheap, and can be applied as the low-temperature stage of a two-stage absorption-ejector chiller (AECh) to provide engine intake air cooling and increase engine fuel efficiency as result. The monitoring data on gas engine fuel consumption and power were analyzed in order to evaluate the effect of gas engine cyclic air cooling.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Li, Yi, Zhihui Yuan, Yujie Li, and Jing Liu. "Factors influencing search engine usage behavior." Social Behavior and Personality: an international journal 46, no. 1 (2018): 1–10. http://dx.doi.org/10.2224/sbp.6211.

Texto completo
Resumen
We analyzed the effect of individual factors, contextual factors, and perception of search engine advertising on users' search engine usage behavior. The sample comprised 404 Chinese who used search engines in the context of their paid employment. Results showed that (a) perceived search skills and perceived search engine reliance significantly and positively impacted users' general search engine usage, (b) perceived advertising clutter reduced the beneficial effects of perceived search skills on users' general search engine usage, (c) users with higher perceived search engine reliance preferred search engines to other online search methods, and (d) prior negative experience reduced the positive link between perceived search engine reliance and users' specific search engine usage. Our findings suggest that search engine designers and operators should focus on individual and contextual factors influencing search engine usage behavior, and should consider users' perception of advertising on search engine programs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Knauder, Christoph, Hannes Allmaier, David E. Sander, and Theodor Sams. "Investigations of the Friction Losses of Different Engine Concepts. Part 2: Sub-Assembly Resolved Friction Loss Comparison of Three Engines." Lubricants 7, no. 12 (2019): 105. http://dx.doi.org/10.3390/lubricants7120105.

Texto completo
Resumen
In this work, friction loss investigations and comparisons of three different four-cylinder engines for passenger car applications are presented, using a recently developed combined approach. By merging extensive experimental with reliable and predictive journal bearing simulation results, a sub-assembly-resolved friction loss analysis of the piston group, crankshaft journal bearings and valve train is conducted for all three engines. The engines have been chosen individually based on their specific power output and crank train geometry. The measurement program covers a wide range of corresponding engine operation points (identical speed, load and thermal boundary conditions). In addition, the investigations are carried out for different engine media supply temperatures ranging from 70 ∘ C to 110 ∘ C for a comprehensive consideration of the friction losses at reduced lubricant viscosity. For reasons of comparability, all investigations conducted in this work have been carried out using the same modern SAE 5W30 lubricant. This is done to exclude influences from different lubricant properties which may have significant effects on the tribological behaviour of the engines’ sub-assemblies. While the diesel engine showed a friction reduction potential over the entire engine operation range when increasing the engine media supply temperatures, the gasoline engines showed a different behaviour. For the gasoline engines, disadvantages arise especially at low engine speeds. By using the developed combined approach, it was possible to assign mixed lubrication regimes at the valve train systems and at the piston groups.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Albert K. Arkoh, Esther B. Kyere, and Isaac Edunyah. "Comparative analysis of engine running performance with and without thermostat." International Journal of Science and Research Archive 4, no. 1 (2021): 047–53. http://dx.doi.org/10.30574/ijsra.2021.4.1.0171.

Texto completo
Resumen
The rate of removal of internal combustion (IC) engine thermostat when engines are imported to Ghana and other part of African continent is alarming. Such phenomenon calls for an experiment to compare the performance of IC engines imported here in Ghana running with and without engine thermostat. The analysis was done by determine engine performance characteristic such as engine torque, indicated power (Ip), brake power (bp), frictional power (fp), fuel consumption, exhaust gas temperature (EGT) as well as exhaust emission at engine speed of 1500 rpm for engine running with thermostat (WT) and without thermostat (WOT). Descriptive statistics and analysis of variance (ANOVA) were done using GenStat software (VSN International, 2021). Statistical significance was carried out at p≤0.05. The best fuel mean value of 103 ml was recorded for engine condition WT at EGT of 283.2 °C while fuel consumed for engine condition WOT was 170 ml at EGT of 155.4 °C. The recorded mean exhaust emission gases for Ex, O2, CO, H2S were 13.2%, 16.2%, 1000 ppm and 35.2 ppm and 0%, 18.38%, 393.2 ppm and 0.4 ppm for engine condition WOT and WT respectively. There was significant difference (p≤0.05) in mean values of EGT, Fuel consumption and exhaust emissions for engine condition WOT with the exception of O2. The removal of engine thermostat affect engine working temperature which result in incomplete combustion, high fuel consumption and high exhaust emissions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Galindo, José, Vicente Dolz, Javier Monsalve-Serrano, Miguel Angel Bernal Maldonado, and Laurent Odillard. "EGR cylinder deactivation strategy to accelerate the warm-up and restart processes in a Diesel engine operating at cold conditions." International Journal of Engine Research 23, no. 4 (2021): 614–23. http://dx.doi.org/10.1177/14680874211039587.

Texto completo
Resumen
The aftertreatment systems used in internal combustion engines need high temperatures for reaching its maximum efficiency. By this reason, during the engine cold start period or engine restart operation, excessive pollutant emissions levels are emitted to the atmosphere. This paper evaluates the impact of using a new cylinder deactivation strategy on a Euro 6 turbocharged diesel engine running under cold conditions (−7°C) with the aim of improving the engine warm-up process. This strategy is evaluated in two parts. First, an experimental study is performed at 20°C to analyze the effect of the cylinder deactivation strategy at steady-state and during an engine cold start at 1500 rpm and constant load. In particular, the pumping losses, pollutant emissions levels and engine thermal efficiency are analyzed. In the second part, the engine behavior is analyzed at steady-state and transient conditions under very low ambient temperatures (−7°C). In these conditions, the results show an increase of the exhaust temperatures of around 100°C, which allows to reduce the diesel oxidation catalyst light-off by 250 s besides of reducing the engine warm-up process in approximately 120 s. This allows to reduce the CO and HC emissions by 70% and 50%, respectively, at the end of the test.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Rubino, L., R. I. Crane, J. S. Shrimpton, and C. Arcoumanis. "An electrostatic trap for control of ultrafine particle emissions from gasoline-engined vehicles." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 219, no. 4 (2005): 535–46. http://dx.doi.org/10.1243/095440705x6668.

Texto completo
Resumen
Health concerns over ultrafine (< 100 nm) particles in the urban atmosphere have focused attention on measurement and control of particle number as well as mass. Gasoline-engined as well as diesel-engined vehicles are likely to be within the scope of future particulate matter (PM) emission regulations. As a potential option for after-treatment of PM emissions from gasoline engines, the trapping performance of a catalysed wire-cylinder electrostatic trap has been investigated, first in a laboratory rig with simulated PM and then in the exhaust of a direct injection spark ignition engine. In the simulation experiments, the trap achieved capture efficiencies by total particle number exceeding 90 per cent at wire voltages of 7–10 kV, gas temperatures up to 400°C, and operating durations up to one hour, with no adverse effects from a catalyst coating on the collecting electrode. In the engine tests, at moderate speeds and loads, capture efficiency was 60–85 per cent in the homogeneous combustion mode and 50–60 per cent, of a much larger number of engine-out particles, in the stratified (overall-lean) mode. Gas residence time in the trap appeared to be a major factor in determining efficiency. The electrical power requirement and the effect on engine back-pressure were both minimal.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Seraj, Mohd, Syed Mohd Yahya, Irfan Anjum Badruddin, Ali E. Anqi, Mohammad Asjad, and Zahid A. Khan. "Multi-Response Optimization of Nanofluid-Based I. C. Engine Cooling System Using Fuzzy PIV Method." Processes 8, no. 1 (2019): 30. http://dx.doi.org/10.3390/pr8010030.

Texto completo
Resumen
Effective cooling of the internal combustion (I. C.) engines is of utmost importance for their improved performance. Automotive heat exchangers used as radiator with low efficiency in the industry may pose a serious threat to the engines. Thus, thermal scientists and engineers are always looking for modern methods to boost the heat extraction from the engine. A novel idea of using nanofluids for engine cooling has been in the news for some time now, as they have huge potential because of better thermal properties, strength, compactness, etc. Nanofluids are expected to replace the conventional fluids such as ethylene glycol, propylene glycol, water etc. due to performance and environmental concerns. Overall performance of the engine cooling system depends on several input parameters and therefore they need to be optimised to achieve an optimum performance. This study is focussed on developing a nanofluid engine cooling system (NFECS) where Al2O3 nanoparticles mixed with ethylene glycol (EG) and water is used as nanofluid. Furthermore, it also explores the effect of four important input parameters of the NFECS i.e., nanofluid inlet temperature, engine load, nanofluid flow rate, and nanoparticle concentration on its five attributes (output responses) viz thermal conductivity of the nanofluid, heat transfer coefficient, viscosity of the nanofluid, engine pumping power required to pump the desired amount of the nanofluid, and stability of the nanofluid. Taguchi’s L18 orthogonal array is used as the design of experiment to collect experimental data. Weighting factors are determined for output responses using the Triangular fuzzy numbers (TFN) and optimal setting of the input parameters is obtained using a novel fuzzy proximity index value (FPIV) method.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía