Literatura académica sobre el tema "Butyl levulinate"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Butyl levulinate".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Butyl levulinate"
Annatelli, Mattia, Giacomo Trapasso, Lucrezia Lena y Fabio Aricò. "Alkyl Levulinates from Furfuryl Alcohol Using CT151 Purolite as Heterogenous Catalyst: Optimization, Purification, and Recycling". Sustainable Chemistry 2, n.º 3 (13 de agosto de 2021): 493–505. http://dx.doi.org/10.3390/suschem2030027.
Texto completoSilva, Márcio José da y Mariana Teixeira Cordeiro. "Metal-Nitrate-Catalyzed Levulinic Acid Esterification with Alkyl Alcohols: A Simple Route to Produce Bioadditives". Processes 12, n.º 9 (24 de agosto de 2024): 1802. http://dx.doi.org/10.3390/pr12091802.
Texto completoLiu, Ying, Lu Lin, Di Liu, Jun Ping Zhuang y Chun Sheng Pang. "Conversion of Biomass Sugars to Butyl Levulinate over Combined Catalyst of Solid Acid and other Acid". Advanced Materials Research 955-959 (junio de 2014): 779–84. http://dx.doi.org/10.4028/www.scientific.net/amr.955-959.779.
Texto completoPothu, Ramyakrishna, Naresh Mameda, Harisekhar Mitta, Rajender Boddula, Raveendra Gundeboyina, Vijayanand Perugopu, Ahmed Bahgat Radwan, Aboubakr M. Abdullah y Noora Al-Qahtani. "High Dispersion of Platinum Nanoparticles over Functionalized Zirconia for Effective Transformation of Levulinic Acid to Alkyl Levulinate Biofuel Additives in the Vapor Phase". Journal of Composites Science 6, n.º 10 (10 de octubre de 2022): 300. http://dx.doi.org/10.3390/jcs6100300.
Texto completoAntonetti, Claudia, Samuele Gori, Domenico Licursi, Gianluca Pasini, Stefano Frigo, Mar López, Juan Carlos Parajó y Anna Maria Raspolli Galletti. "One-Pot Alcoholysis of the Lignocellulosic Eucalyptus nitens Biomass to n-Butyl Levulinate, a Valuable Additive for Diesel Motor Fuel". Catalysts 10, n.º 5 (6 de mayo de 2020): 509. http://dx.doi.org/10.3390/catal10050509.
Texto completoDémolis, Alexandre, Marion Eternot, Nadine Essayem y Franck Rataboul. "Influence of butanol isomers on the reactivity of cellulose towards the synthesis of butyl levulinates catalyzed by liquid and solid acid catalysts". New Journal of Chemistry 40, n.º 4 (2016): 3747–54. http://dx.doi.org/10.1039/c5nj02493e.
Texto completoVásquez Salcedo, Wenel Naudy, Bruno Renou y Sébastien Leveneur. "Thermal Stability for the Continuous Production of γ-Valerolactone from the Hydrogenation of N-Butyl Levulinate in a CSTR". Processes 11, n.º 1 (11 de enero de 2023): 237. http://dx.doi.org/10.3390/pr11010237.
Texto completoChen, Zhuo, Zhiwei Wang, Tingzhou Lei y Ashwani K. Gupta. "Physical-Chemical Properties and Engine Performance of Blends of Biofuels with Gasoline". Journal of Biobased Materials and Bioenergy 15, n.º 2 (1 de abril de 2021): 163–70. http://dx.doi.org/10.1166/jbmb.2021.2050.
Texto completoRaspolli Galletti, Anna Maria, Domenico Licursi, Serena Ciorba, Nicola Di Fidio, Valentina Coccia, Franco Cotana y Claudia Antonetti. "Sustainable Exploitation of Residual Cynara cardunculus L. to Levulinic Acid and n-Butyl Levulinate". Catalysts 11, n.º 9 (8 de septiembre de 2021): 1082. http://dx.doi.org/10.3390/catal11091082.
Texto completoGao, Xueying, Xin Yu, Ruili Tao y Lincai Peng. "Enhanced conversion of furfuryl alcohol to alkyl levulinates catalyzed by synergy of CrCl3 and H3PO4". BioResources 12, n.º 4 (31 de agosto de 2017): 7642–55. http://dx.doi.org/10.15376/biores.12.4.7642-7655.
Texto completoTesis sobre el tema "Butyl levulinate"
Freddi, Giovanni. "One-pot Butyl Levulinate Production from Fructose and 1-Butanol". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16744/.
Texto completoCapecci, Sarah. "Experimental and modelling study for the production of GVL via hydrogenation of n-butyl levulinate". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Buscar texto completoVásquez, Salcedo Wenel Naudy. "Biο jet fuels prοductiοn frοm lignοcellulοsic biοmass : butyl levulinate a prοmising mοlecule tοwards the develοpment οf sustainable aviatiοn fuels". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR12.
Texto completoIn the context of the aviation sector, which poses significant challenges due to the complexity and stringent standards of fuel, our research proposal gains particular relevance. We aim to develop an integrated approach that fully valorizes lignocellulosic biomass into jet fuels, thereby contributing to the sustainable development of society. Lignocellulosic biomass is a renewable resource that can be used as feedstock to produce high-value materials and chemicals, such as jet fuel. This type of biomass valorization includes many transformation steps, for which the kinetics and the thermal risk of the chemical reaction are not necessarily known. This work focuses on a specific compound: butyl levulinate (BL). This compound can be obtained from lignocellulosic biomass and can be transformed into gamma-valerolactone (GVL) via hydrogenation. The GVL is a vital platform molecule that can serve as a feedstock to produce substitutes for fossil fuels like gasoline, diesel, and jet fuels. The main objectives of this research are: 1) To develop a robust and reliable kinetic model for BL hydrogenation to produce GVL. Here, we seek to develop a kinetic model experimentally in different thermal modes of operation, i.e., isothermal, isoperibolic, and adiabatic. This model type not only predicts kinetics and the corresponding heat-flow rate but also allows the assessment of the thermal risk related to the chemical reaction. The experiments for developing this kinetic model were performed in the calorimeter reactor Mettler-Toledo RC1. 2) The complete valorization of lignocellulosic biomass targets the industrial scale. Therefore, the continuous production of GVL from BL should be assessed. In that sense, we studied the thermal stability of the continuous production of GVL from BL in a CSTR reactor (continuous stirred tank reactor). 3) One of the intriguing aspects of our research is the potential use of butyl levulinate (BL) as a fuels additive. We have conducted a thorough assessment of the suitability of BL as a kerosene additive, aiming to understand how its addition affects the combustion efficiency and operating limits in a gas turbine combustion chamber. The results obtained concerning the kinetic model showed that the Non-Competitive Langmuir-Hinshelwood models predict the experimental data of concentration and temperature for BL hydrogenation with good accuracy. The thermal risk analysis, linked to BL hydrogenation, showed that the energy released during the reaction is relatively low, ΔH_{hyd} = -35.28 kJ/mol +/- 1.00 kJ/mol, and subsequently the thermal stability study showed that for values of Ua > 1500 W/m³/K in a continuous reactor, the risk of thermal instabilities is low. The evaluation of BL as a kerosene additive showed that adding up to 20% of BL into Kerosene does not significantly change the physical properties, neither the combustion efficiency nor the operating limits in the operating conditions considered during the combustion assessment
En el contexto del sector de la aviación, que plantea importantes retos debido a la complejidad y a los estrictos estándares de combustible, nuestra propuesta de investigación cobra especial relevancia. Nuestro objetivo es desarrollar un enfoque integrado que valorice plenamente labiomasa lignocelulósica en combustibles para aviones, contribuyendo así al desarrollo sostenible de la sociedad. La biomasa lignocelulósica es un recurso renovable que se puede utilizar como materia prima para producir materiales y productos químicos de alto valor, como el combustible para aviones. Este tipo de valorización de la biomasa incluye muchas etapas de transformación, para las cuales no necesariamente se conoce la cinética y el riesgo térmico de la reacción química. Este trabajo se centra en un compuesto específico: el levulinato de butilo (BL). Este compuesto se puede obtener a partir de biomasa lignocelulósica y se puede transformar en gamma-valerolactona (GVL) mediante hidrogenación. El GVL es una molécula plataforma vital que puede servir como materia prima para producir sustitutos de combustibles fósiles como la gasolina, el diésel y los combustibles para aviones. Los principales objetivos de esta investigación son: 1. Desarrollar un modelo cinético robusto y fiable para la hidrogenación de BL para producir GVL. Aquí, buscamos desarrollar un modelo cinético experimentalmente en diferentesmodos de operación térmica, es decir, isotérmico, isoperibólico y adiabático. Este tipo de modelo no solo predice la cinética y el flujo de calor correspondiente, sino que también permite evaluar el riesgo térmico relacionado con la reacción química. Los experimentos para el desarrollo de este modelo cinético se realizaron en el reactor calorímetro Mettler-Toledo RC1. 2. La valorización completa de la biomasa lignocelulósica se dirige a la escala industrial. Por lo tanto, debe evaluarse la producción continua de GVL a partir de BL. En ese sentido, estudiamos la estabilidad térmica de la producción continua de GVL a partir de BL en un reactor CSTR (reactor continuo de tanque agitado). 3. Uno de los aspectos intrigantes de nuestra investigación es el potencial uso del levulinato de butilo (BL) como aditivo de combustibles. Hemos llevado a cabo una evaluación exhaustiva de la idoneidad del BL como aditivo de queroseno, con el objetivo de comprender cómo su adición afecta la eficiencia de la combustión y los límites de funcionamiento en una cámara de combustión de turbina de gas. Los resultados obtenidos en relación con el modelo cinético mostraron que los modelos no competitivos de Langmuir-Hinshelwood predicen los datos experimentales de concentración y temperatura para la hidrogenación de BL con buena precisión. El análisis de riesgo térmico, vinculado a la hidrogenación BL, mostró que la energía liberada durante la reacción es relativamente baja, ΔH_{hyd} = -35.28 kJ/mol +/- 1.00 kJ/mol, y posteriormente el estudio de estabilidad térmica mostró que para valores de Ua > 1500 W/m ³/K en un reactor continuo, el riesgo de inestabilidades térmicas es bajo. La evaluación del BL como aditivo de queroseno mostró que la adición de hasta un 20% de BL al queroseno no cambia significativamente las propiedades físicas, ni la eficiencia de la combustión ni los límites de funcionamiento en las condiciones de funcionamiento consideradas durante la evaluación de la combustión
Demolis, Alexandre. "Synthèse catalytique de lévulinates de butyle à partir de biomasse en présence d’alcools ou d’oléfines". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1180/document.
Texto completoThe objective of this work was to study in details the catalytic synthesis of butyl levulinates from biomass, first by using butanol isomers, then butene isomers as esterifying agents. Usually obtained by esterification of levulinic acid, levulinic esters including butyl levulinates possess physical and chemical properties making them potential fuel additives, platform molecules, solvents or additives for the food or pharmaceutical industry. By selectively converting cellulose into butyl levulinates, no step of synthesis and purification of reaction intermediates was necessary. In butanol isomers, the conversion of cellulose to levulinates with H2SO4 gave at 200°C, respectively 50 and 14 % of esters in the primary and secondary alcohols. The use of sulfated zirconia and cesium phosphotungstate led to 15% of esters from primary alcohols, and 3% from secondary alcohol. The use of olefins as alcohol substituents was studied in the presence of sulfuric acid. With n-butene, the esterification of levulinic acid gave 55% of sec-butyl levulinate at 100°C and in the absence of solvent. From cellulose, 19% yield was obtained at 100°C in iso-octane. With iso-butene, 50% of tert-butyl levulinate was obtained from levulinic acid, without solvent and at 25°C. In the presence of Amberlyst-15, 80% yield was obtained, with a reuse up to 6 times of the catalyst without significant deactivation
Di, Menno Di Bucchianico Daniele. "Development of processes for the valorization of lignocellulosic biomass based on renewable energies". Electronic Thesis or Diss., Normandie, 2023. http://www.theses.fr/2023NORMIR27.
Texto completoThe world is facing the impacts of climate change due to its long dependence on fossil fuels, and specifically Europe, which is facing an energy crisis, has recognized the fragility of its fossil fuel-dependent energy system and has moved strongly towards renewable energy resources. Among renewables, biomass not only powers bio-energy production but also serves as a vital source of bio-carbon, used to create high-value molecules, replacing fossil-based products. Alkyl levulinates, derived from biomass, particularly stand out for their potential as bio-additives and bio-fuels. Acid solvolysis of hexose sugars from biomass appears to be a promising and cost-effective production route, which requires further investigation not yet found in the literature. The potential of alkyl levulinate extends to its conversion into γ-valerolactone (GVL), a promising bio-solvent, commonly obtained by hydrogenation through molecular-hydrogen. Besides being a key reagent, hydrogen is also a promising energy carrier, facilitating the integration of renewable energy sources into the market. Hydrogen energy storage systems support this integration, promoting 'green' industrial transformation. This thesis focuses on technological investigation and sustainability assessment of a potential biorefinery system, integrating lignocellulosic biomass valorization, energy production, and hydrogen generation. The study encompasses experimental investigations, optimizing technologies for the production of butyl levulinate and its subsequent hydrogenation to GVL. Sustainability considerations are fundamental to the process configuration, aligning with the global shift towards renewable and carbon bio-resources. In order to answer the question of sustainability, the research presents a first section focused on the experimental investigation of the optimal technology for the production of butyl levulinate. The solvolysis of the biomass-derived hexose Fructose to butyl levulinate was investigated, in terms of optimal process conditions and kinetic modelling. Selected an effective heterogeneous catalyst, the effect of the solvent was investigated, showing the benefits of using GVL as co-solvent, together with butanol, on the conversion and dissolution kinetics of fructose. In these conditions, the solvolysis to butyl levulinate was studied in depth from a kinetic point of view, first by proposing a model for the solvolysis of 5-HMF, an intermediate in the fructose pathway, and then extending the modelling from fructose itself. A robust kinetic model, describing the reaction mechanism of solvolysis, was defined and validated, particularly under conditions of high initial fructose concentration (applying the concept of High-gravity), and including in the modelling the kinetics of dissolution, and degradation of fructose, under acidic conditions.In the second part of the research, the technological perspective was extended to the hydrogenation of butyl levulinate to GVL. Starting from a conceptual design phase, the overall fructose-to-GVL process scheme was defined, simulated, and optimized on the basis of the process intensification concept. In the third part, the process was then dropped into a real case study in Normandy, France, adapting the analysis to the local availability of lignocellulosic biomass and wind energy. The study defines a methodology for designing and integrating the energy-supply system, evaluating different scenarios. The sustainability assessment, based on key performance indicators spanning economic, environmental, and social dimensions, culminates in an aggregated overall sustainability index. The results highlight scenarios integrating the GVL biorefinery system with wind power and hydrogen energy storage as promising, demonstrating high economic profitability and reduced environmental impact. Finally, sensitivity analyses validate the robustness and reliability of the methodology, generally extendable also to other technological systems
Come previsto, il mondo sta affrontando gli effetti tangibili del cambiamento climatico come conseguenza di un'economia basata sui combustibili fossili per centinaia di anni. Oltre a dover affrontare e adottare misure correttive per limitare gli effetti del riscaldamento globale, l'Europa sta affrontando una grave crisi energetica, che rivela la fragilità del sistema energetico europeo, prevalentemente dipendente dalle importazioni di combustibili fossili. La geopolitica delle risorse fossili ha innescato la necessaria rimodulazione dell'economia energetica europea, che si sta spostando "forzatamente" verso le risorse energetiche rinnovabili per diventare un'economia fossile e a zero emissioni di carbonio. Nel panorama delle rinnovabili, le risorse più sfruttate sono l'energia solare, eolica e da biomassa. Oltre alla produzione di bioenergia, la biomassa è una fonte inestimabile di biocarbonio, che può essere sfruttata e valorizzata per la produzione di molecole ad alto valore aggiunto che possono essere utilizzate in vari settori industriali, per la produzione di carburanti, prodotti chimici, materiali e sostituendo i corrispondenti prodotti di origine fossile. In questo contesto, sono stati sviluppati sistemi innovativi di bioraffinazione della biomassa di seconda generazione per trasformare e decostruire la complessa struttura della biomassa in molecole piattaforma più semplici, che possono poi essere trasformate in molecole ad alto potenziale. Tra queste, gli alchil levulinati sono stati identificati per il loro notevole potenziale come bioadditivi e biocarburanti. Esteri dell'acido levulinico, questi composti possono essere ottenuti da derivati della biomassa, come i monosaccaridi dello zucchero, secondo diverse vie di reazione; tra queste, la solvolisi acida degli zuccheri esosi può essere una via di produzione promettente ed economicamente vantaggiosa, che richiede ulteriori indagini non ancora presenti in letteratura. Il potenziale degli alchil levulinati risiede anche nella possibilità di un ulteriore trasformazione mediante idrogenazione per produrre γ-valerolattone (GVL), una molecola con un mercato promettente come bio-solvente, grazie alle sue proprietà di stabilità, ecotossicità e biodegradabilità. L'uso dell'idrogeno gassoso è la via più comune per l'idrogenazione del GVL, ma, oltre a essere un reagente chimico fondamentale, l'idrogeno è anche uno dei principali protagonisti della transizione energetica. Infatti, come vettore energetico, l'idrogeno può portare alla piena penetrazione delle fonti energetiche rinnovabili nel mercato dell'energia, costituendo un complemento-tampone per lo stoccaggio delle energie rinnovabili intermittenti, attraverso la progettazione di sistemi di stoccaggio dell'energia dell'idrogeno (HydESS). L'accumulo di energia a idrogeno a lungo termine può consentire l'autosufficienza dei sistemi di energia rinnovabile, in quanto agisce da ponte tra le funzionalità dei sistemi Power-to-Hydrogen, in grado di assorbire i surplus energetici delle energie rinnovabili e di immagazzinarli, e quelle dei sistemi Hydrogen-to-Power, che restituiscono energia rinnovabile quando le fonti di energia primaria non sono disponibili. In quest'ottica, lo sviluppo di tali sistemi può portare all'integrazione completa e stabile delle fonti di energia rinnovabile in asset industriali già esistenti, così come in nuovi mercati industriali, come le bioraffinerie di biomassa lignocellulosica, promuovendo lo sviluppo di realtà industriali "verdi" in termini di trasformazione di materiali ed energia. Il mercato industriale globale si sta evolvendo verso la decarbonizzazione e la riqualificazione di diversi asset, attraverso investimenti in efficienza energetica e l'introduzione di processi green per la valorizzazione delle fonti rinnovabili, ma l'implementazione su larga scala di queste iniziative richiede un'analisi completa e approfondita della loro sostenibilità
Yu, Chang-Ju y 游昌儒. "Kinetic Behavior Study on the Synthesis of Butyl Levulinate over Heterogeneous Catalyst". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/82093549384103812155.
Texto completo明志科技大學
化學工程系碩士班
104
The heterogeneous kinetic behavior for the synthesis of butyl levulinate from levulinic acid with butanol over acidic cation-exchange resin, (Amberlyst 39) was investigated by using a batch reactor. The kinetic experiments were performed at temperatures between 328.2 K and 348.2 K, and molar ratio of butanol to acid in the feed stream from 1 to 10. Additionally, the mass transfer resistances on the catalytic reaction, and the different levels of catalyst loadings were also observed. The reaction rate of acid increased with increase of reaction temperature, molar ratio of butanol to acid in the feed stream, catalyst loading, and rotational speed. Moreover, the equilibrium conversion of acid increased with increase of reaction temperature and molar ratio of butanol to acid in the feed stream. The relative adsorption strengths of the reacting species were determined by adsorption experiment. The kinetic data of the synthesis of butyl levulinate were correlated with the ideal-quasi-homogeneous (IQH), the non-ideal-quasi-homogeneous (NIQH) ,the Eley-Rideal(ER) and the Langmuir-Hinshelwood-Hougen-Watson (LHHW) models, respectively. The optimal values of the kinetic parameters were determined from the data fitting. The NRTL model was used to calculate the activity coefficients for each reacting species. The ER model, which consider the effect of adsorption was the best representation for the kinetic behavior of heterogeneous catalytic synthesis of butyl levulinate.
Peng, Tzu-Hsuan y 彭子軒. "Design of Reactive Distillation Process for the Production of n-Butyl Levulinate". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/04126847758389243860.
Texto completo國立臺灣大學
化學工程學研究所
100
Butyl Levulinate (LABE) is one of the potential fuel additives due to its good characteristics such as high octane number, high oxygen content, and low water solubility, etc. In the mean time, the raw materials that can produce LABE are n-Butanol (n-butyl alcohol) and Levulinic acid (LA). Both of them can come from biochemical conversions. For example, the biobutanol can be produced by ABE (Acetone-Butanol-Ethanol) fermentation process, and LA is one of the famous intermediate from hydrolysis of lignocellulostic biomass. Therefore, LABE becomes the variable biomass material. The traditional process to manufacture levulinic ester takes two-step reactions. First, converting the Levulinic acid to angelica lactone and then followed by reaction of angelica lactone with alcohol. However, the two-step reactions may result in complicated process flowsheet and high operating cost. Direct esterification is an alternative way to produce levulinic esters, but the equilibrium limitation still have similar problem like the traditional process. This work aims to use the reactive distillation for simplifying the process of direct esterification of Levulinic acid to Butyl Levulinate. In the reactive distillation system, n-Butanol (n-butyl alcohol) and Levulinic acid are added into the column with sulfuric acid as the catalyst. Levulinic acid and n-Butanol are converted to Butyl Levulinate as bottom product in the reaction section. The rectifying section is the heterogeneous azeotropic distillation system that can separate high purity water as the top product. By using ASPEN plus as simulation platform, the economy and applicability of the proposed reactive distillation process with stoichiometric feed of Levulinic acid and n-Butanol is illustrated in this study.
Capítulos de libros sobre el tema "Butyl levulinate"
Wohlfarth, Christian. "Viscosity of butyl levulinate". En Viscosity of Pure Organic Liquids and Binary Liquid Mixtures, 350. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49218-5_322.
Texto completoWohlfarth, Christian. "Refractive index of butyl levulinate". En Optical Constants, 358. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49236-9_342.
Texto completoWohlfarth, Christian. "Surface tension of butyl levulinate". En Surface Tension of Pure Liquids and Binary Liquid Mixtures, 173. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48336-7_170.
Texto completoWohlfarth, Christian. "Static dielectric constant of butyl levulinate". En Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures, 189. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48168-4_188.
Texto completoKremer, Florian y Stefan Pischinger. "Butyl Ethers and Levulinates". En Biofuels from Lignocellulosic Biomass, 87–104. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527685318.ch4.
Texto completoTaber, Douglass. "Best Synthetic Methods: Oxidation and Reduction". En Organic Synthesis. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199764549.003.0003.
Texto completoActas de conferencias sobre el tema "Butyl levulinate"
DI MENNO DI BUCCHIANICO, Daniele, Jean-Christophe BUVAT, Valeria CASSON MORENO y Sebastien LEVENEUR. "Biofuel candidate n-butyl levulinate from fructose solvolysis:Detailed kinetic investigation under high gravity conditions." En 15th Mediterranean Congress of Chemical Engineering (MeCCE-15). Grupo Pacífico, 2023. http://dx.doi.org/10.48158/mecce-15.t4-o-20.
Texto completoAntonetti, Claudia, Serena Ciorba, Domenico Licursi, Valentina Coccia, Franco Cotana y Anna Maria Raspolli Galletti. "Production of Levulinic Acid and n-Butyl Levulinate from the Waste Biomasses Grape Pomace and Cynara Cardunculus L." En 1st International Electronic Conference on Catalysis Sciences. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/eccs2020-07549.
Texto completo